1
|
Pantouris G, Khurana L, Tilstam P, Benner A, Cho TY, Lelaidier M, Perrée M, Rosenbaum Z, Leng L, Foss F, Bhandari V, Verma A, Bucala R, Lolis EJ. Inhibition of MIF with an Allosteric Inhibitor Triggers Cell Cycle Arrest in Acute Myeloid Leukemia. ACS OMEGA 2025; 10:17441-17452. [PMID: 40352549 PMCID: PMC12059935 DOI: 10.1021/acsomega.4c10969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 05/14/2025]
Abstract
Macrophage migration inhibitory factor (MIF) is a key modulator of innate and adaptive immunity that has been extensively reported to promote tumor cell survival, proliferation, and metastasis. A recent study focusing on the microenvironment of acute myeloid leukemia (AML) showed that pharmacological inhibition of MIF signaling, in vitro as well as in vivo, reduces AML cell survival. Such data highlights the crucial role of MIF in AML pathogenesis and support the efforts for developing selective MIF modulators. Here, we report the identification and crystallographic characterization of a MIF inhibitor (compound 1) with an allosteric binding motif. Single point screening of 1 against a panel of National Cancer Institute (NCI) 60 human tumor cell lines revealed a selective antitumor activity for the AML cell line HL-60. After confirming the protein's expression in multiple AML cell lines, we utilized 1 to extract mechanistic insights into MIF action. Our findings demonstrate that AML cells utilize an MIF-dependent proliferation mechanism, which upon inhibition triggers a G0/G1 cell cycle arrest of the malignant cells. Complementary analysis of the MIF receptors utilizing neutralizing antibodies and selective small molecule antagonists associates this effect with inhibition of CD74 activation. The collection of data presented herein highlights the important role of MIF in proliferation of AML cells and points to the need of developing small molecule anticancer therapeutics that target MIF signaling.
Collapse
Affiliation(s)
- Georgios Pantouris
- Department
of Chemistry, University of the Pacific, Stockton, California 95211, United States
- Department
of Pharmacology, School of Medicine, Yale
University, New Haven, Connecticut 06510, United States
| | - Leepakshi Khurana
- Department
of Pharmacology, School of Medicine, Yale
University, New Haven, Connecticut 06510, United States
| | - Pathricia Tilstam
- Department
of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06510, United States
| | - Alison Benner
- Department
of Pharmacology, School of Medicine, Yale
University, New Haven, Connecticut 06510, United States
| | - Thomas Yoonsang Cho
- Department
of Pharmacology, School of Medicine, Yale
University, New Haven, Connecticut 06510, United States
| | | | | | - Zoe Rosenbaum
- Department
of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06510, United States
| | - Lin Leng
- Department
of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06510, United States
| | - Francine Foss
- Hematology
and Stem Cell Transplantation, Yale University
School of Medicine, New Haven, Connecticut 06510, United States
- Yale
Cancer Center, Yale School of Medicine, New Haven, Connecticut 06510, United States
| | - Vineet Bhandari
- Division
of Neonatology, Department of Pediatrics, The Children’s Regional Hospital at Cooper, Camden, New Jersey 08103, United States
| | - Amit Verma
- Albert
Einstein College of Medicine, Montefiore
Medical Center, Bronx, New York 10461, United States
| | - Richard Bucala
- Department
of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06510, United States
- Yale
Cancer Center, Yale School of Medicine, New Haven, Connecticut 06510, United States
| | - Elias J. Lolis
- Department
of Pharmacology, School of Medicine, Yale
University, New Haven, Connecticut 06510, United States
- Yale
Cancer Center, Yale School of Medicine, New Haven, Connecticut 06510, United States
| |
Collapse
|
2
|
Parkins A, Pilien AVR, Wolff AM, Argueta C, Vargas J, Sadeghi S, Franz AH, Thompson MC, Pantouris G. The C-terminal Region of D-DT Regulates Molecular Recognition for Protein-Ligand Complexes. J Med Chem 2024; 67:7359-7372. [PMID: 38670943 DOI: 10.1021/acs.jmedchem.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Systematic analysis of molecular recognition is critical for understanding the biological function of macromolecules. For the immunomodulatory protein D-dopachrome tautomerase (D-DT), the mechanism of protein-ligand interactions is poorly understood. Here, 17 carefully designed protein variants and wild type (WT) D-DT were interrogated with an array of complementary techniques to elucidate the structural basis of ligand recognition. Utilization of a substrate and two selective inhibitors with distinct binding profiles offered previously unseen mechanistic insights into D-DT-ligand interactions. Our results demonstrate that the C-terminal region serves a key role in molecular recognition via regulation of the active site opening, protein-ligand interactions, and conformational flexibility of the pocket's environment. While our study is the first comprehensive analysis of molecular recognition for D-DT, the findings reported herein promote the understanding of protein functionality and enable the design of new structure-based drug discovery projects.
Collapse
Affiliation(s)
- Andrew Parkins
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | | | - Alexander M Wolff
- Department of Chemistry and Biochemistry, University of California, Merced, California 95340, United States
| | - Christopher Argueta
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Jasmine Vargas
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Shahrzad Sadeghi
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Andreas H Franz
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Michael C Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, California 95340, United States
| | - Georgios Pantouris
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| |
Collapse
|
3
|
Dunbar H, Hawthorne IJ, McNamee EN, Armstrong ME, Donnelly SC, English K. The human MIF polymorphism CATT 7 enhances pro-inflammatory macrophage polarization in a clinically relevant model of allergic airway inflammation. FASEB J 2024; 38:e23576. [PMID: 38530238 DOI: 10.1096/fj.202400207r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
High level expression of the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF) has been associated with severe asthma. The role of MIF and its functional promotor polymorphism in innate immune training is currently unknown. Using novel humanized CATT7 MIF mice, this study is the first to investigate the effect of MIF on bone marrow-derived macrophage (BMDM) memory after house dust mite (HDM) challenge. CATT7 BMDMs demonstrated a significant primed increase in M1 markers following HDM and LPS stimulation, compared to naive mice. This M1 signature was found to be MIF-dependent, as administration of a small molecule MIF inhibitor, SCD-19, blocked the induction of this pro-inflammatory M1-like phenotype in BMDMs from CATT7 mice challenged with HDM. Training naive BMDMs in vitro with HDM for 24 h followed by a rest period and subsequent stimulation with LPS led to significantly increased production of the pro-inflammatory cytokine TNFα in BMDMs from CATT7 mice but not WT mice. Addition of the pan methyltransferase inhibitor MTA before HDM training significantly abrogated this effect in BMDMs from CATT7 mice, suggesting that HDM-induced training is associated with epigenetic remodelling. These findings suggest that trained immunity induced by HDM is under genetic control, playing an important role in asthma patients with the high MIF genotypes (CATT6/7/8).
Collapse
Affiliation(s)
- Hazel Dunbar
- Department of Biology, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Ian J Hawthorne
- Department of Biology, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Eóin N McNamee
- Department of Biology, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Michelle E Armstrong
- Department of Medicine, Trinity College Dublin and Tallaght University Hospital, Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Trinity College Dublin and Tallaght University Hospital, Dublin, Ireland
| | - Karen English
- Department of Biology, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| |
Collapse
|
4
|
Parkins A, Sandin SI, Knittel J, Franz AH, Ren J, de Alba E, Pantouris G. Underrepresented Impurities in 4-Hydroxyphenylpyruvate Affect the Catalytic Activity of Multiple Enzymes. Anal Chem 2023; 95:4957-4965. [PMID: 36877482 DOI: 10.1021/acs.analchem.2c04969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a key immunostimulatory protein with regulatory properties in several disorders, including inflammation and cancer. All the reported inhibitors that target the biological activities of MIF have been discovered by testing against its keto/enol tautomerase activity. While the natural substrate is still unknown, model MIF substrates are used for kinetic experiments. The most extensively used model substrate is 4-hydroxyphenyl pyruvate (4-HPP), a naturally occurring intermediate of tyrosine metabolism. Here, we examine the impact of 4-HPP impurities in the precise and reproducible determination of MIF kinetic data. To provide unbiased evaluation, we utilized 4-HPP powders from five different manufacturers. Biochemical and biophysical analyses showed that the enzymatic activity of MIF is highly influenced by underrepresented impurities found in 4-HPP. Besides providing inconsistent turnover results, the 4-HPP impurities also influence the accurate calculation of ISO-1's inhibition constant, an MIF inhibitor that is broadly used for in vitro and in vivo studies. The macromolecular NMR data show that 4-HPP samples from different manufacturers result in differential chemical shift perturbations of amino acids in MIF's active site. Our MIF-based conclusions were independently evaluated and confirmed by 4-hydroxyphenylpyruvate dioxygenase (HPPD) and D-dopachrome tautomerase (D-DT); two additional enzymes that utilize 4-HPP as a substrate. Collectively, these results explain inconsistencies in previously reported inhibition values, highlight the effect of impurities on the accurate determination of kinetic parameters, and serve as a tool for designing error-free in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Andrew Parkins
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Suzanne I Sandin
- Department of Bioengineering, University of California, Merced, California 95343, United States
- Chemistry and Biochemistry Graduate Program, University of California, Merced, California 95343, United States
| | - Jonathon Knittel
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Andreas H Franz
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Jianhua Ren
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Eva de Alba
- Department of Bioengineering, University of California, Merced, California 95343, United States
| | - Georgios Pantouris
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| |
Collapse
|
5
|
Parkins A, Das P, Prahaladan V, Rangel VM, Xue L, Sankaran B, Bhandari V, Pantouris G. 2,5-Pyridinedicarboxylic acid is a bioactive and highly selective inhibitor of D-dopachrome tautomerase. Structure 2023; 31:355-367.e4. [PMID: 36805127 DOI: 10.1016/j.str.2023.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 02/19/2023]
Abstract
Macrophage migration inhibitory factor (MIF) and D-dopachrome tautomerase (D-DT) are two pleotropic cytokines, which are coexpressed in various cell types to activate the cell surface receptor CD74. Via the MIF/CD74 and D-DT/CD74 axes, the two proteins exhibit either beneficial or deleterious effect on human diseases. In this study, we report the identification of 2,5-pyridinedicarboxylic acid (a.k.a. 1) that effectively blocks the D-DT-induced activation of CD74 and demonstrates an impressive 79-fold selectivity for D-DT over MIF. Crystallographic characterization of D-DT-1 elucidates the binding features of 1 and reveals previously unrecognized differences between the MIF and D-DT active sites that explain the ligand's functional selectivity. The commercial availability, low cost, and high selectivity make 1 the ideal tool for studying the pathophysiological functionality of D-DT in disease models. At the same time, our comprehensive biochemical, computational, and crystallographic analyses serve as a guide for generating highly potent and selective D-DT inhibitors.
Collapse
Affiliation(s)
- Andrew Parkins
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | - Pragnya Das
- Division of Neonatology, Department of Pediatrics, The Children's Regional Hospital at Cooper, Camden, NJ 08103, USA
| | - Varsha Prahaladan
- Division of Neonatology, Department of Pediatrics, The Children's Regional Hospital at Cooper, Camden, NJ 08103, USA
| | - Vanessa M Rangel
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | - Liang Xue
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, 1 Cyclotron Road, Lawrence Berkeley Nat. Lab, Berkeley, CA 94720, USA
| | - Vineet Bhandari
- Division of Neonatology, Department of Pediatrics, The Children's Regional Hospital at Cooper, Camden, NJ 08103, USA
| | - Georgios Pantouris
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA.
| |
Collapse
|