1
|
Shang W, Geng X, Sun X, Fan X, Li A, Zhang C, Kang Y, Liang Y, Zhang J. Non-coding RNAs modulate pyroptosis in diabetic cardiomyopathy: A comprehensive review. Int J Biol Macromol 2025; 309:142865. [PMID: 40188918 DOI: 10.1016/j.ijbiomac.2025.142865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/07/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Diabetic cardiomyopathy (DCM) is a leading cause of heart failure (HF) among individuals with diabetes, presenting a significant medical challenge due to its complex pathophysiology and the lack of targeted therapies. Pyroptosis, a pro-inflammatory form of programmed cell death (PCD), is the predominant mode of cell death in the primary resident cells involved in DCM. It has been reported to be critical in DCM's onset, progression, and pathogenesis. Non-coding RNAs (ncRNAs), diverse transcripts lacking protein-coding potential, are essential for cellular physiology and the progression of various diseases. Increasing evidence indicates that ncRNAs are pivotal in the pathogenesis of DCM by regulating pyroptosis. This observation suggests that targeting the regulation of pyroptosis by ncRNAs may offer a novel therapeutic approach for DCM. However, a comprehensive review of this topic is currently lacking. Our objective is to elucidate the regulatory role of ncRNAs in pyroptosis associated with DCM and to elucidate the relationships among these factors. Additionally, we explored how ncRNAs influence pyroptosis and contribute to the pathophysiology of DCM. By doing so, we aim to identify new research targets for the clinical diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Wenyu Shang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xiaofei Geng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xitong Sun
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xinbiao Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Aolin Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Chi Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Yuxin Kang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Yongchun Liang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Junping Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China.
| |
Collapse
|
2
|
Liu Y, Yuan J, Zhang Y, Ma T, Ji Q, Tian S, Liu C. Non-coding RNA as a key regulator and novel target of apoptosis in diabetic cardiomyopathy: Current status and future prospects. Cell Signal 2025; 128:111632. [PMID: 39922440 DOI: 10.1016/j.cellsig.2025.111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
The occurrence of diabetic cardiomyopathy (DCM) can be independent of several risk factors such as hypertension and myocardial ischemia, which can lead to heart failure, thus seriously threatening human health and life. Sustained hyperglycemic stimulation can induce cardiomyocyte apoptosis, which is recognized as the pathological basis of DCM. It has been demonstrated that dysregulation induced by apoptosis is closely associated to progression of DCM, but mechanisms behind it requires further clarification. Currently, increasing evidence has shown that non-coding RNA (ncRNA), especially microRNA, long-chain non-coding RNA (lncRNA), and circular RNA (circRNA), play a regulative role in apoptosis, thus affecting the progression of DCM. Notably, some ncRNAs have also exhibit potential significance as biomarkers and/or therapeutic targets for patients with DCM. In this review, recent findings regarding the potential mechanisms of ncRNA in regulating apoptosis and their role in the progression of DCM were systematically summarized in this research. The conclusion reveals that ncRNA abnormalities exert a crucial role in pathological changes of DCM, which offers potential therapeutic targets for the prevention of DCM.
Collapse
Affiliation(s)
- Yicheng Liu
- College of Rehabilitation Medicine,Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jie Yuan
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yuhang Zhang
- College of Rehabilitation Medicine,Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Ma
- College of Rehabilitation Medicine,Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qianqian Ji
- Department one of Cardiovascular Disease, Tai'an Hospital of Traditional Chinese Medicine, Taian 271000, China
| | - Sheng Tian
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chunxiao Liu
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
3
|
Li K, Wang YJ, Chen C, Wang XJ, Li W. Targeting pyroptosis: A novel strategy of ginseng for the treatment of diabetes and its chronic complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156430. [PMID: 39892311 DOI: 10.1016/j.phymed.2025.156430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/28/2024] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Pyroptosis is a recently identified form of programmed cell death that plays a crucial role in the pathogenesis and progression of diabetes and associated chronic complications, while the occurrence mechanism remains unclear. Ginseng (Panax Ginseng C. A. Mey.) is a valuable traditional medicinal material with proved therapeutic effects on prevention and treatment of diabetes and diabetic complications. Targeting pyroptosis pathway has become a focus of study for ginseng in improvement of diabetes and related chronic complications. PURPOSE The review aims to elucidate the happening mechanism of pyroptosis in diabetes and diabetic chronic complications, evaluate the effects of ginseng and its active components on diabetes and its chronic complications via pyroptosis-related pathways, and provide a new perspective for the management of diabetes. METHODS We conducted the literature retrieval with PubMed, Web of Science, and ScienceDirect databases in a systematic manner (up to August 2024). The keywords included pyroptosis, diabetes, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, diabetic neuropathy, ginseng, ginseng extract, and ginsenoside. The obtained literatures were comprehensively sorted out. RESULTS Oxidative stress, endoplasmic reticulum stress (ERS), and inflammatory responses were primary contributors to pyroptosis in diabetes and associated chronic complications. In addition, some RNA molecules (miRNAs, circRNAs, and lncRNAs) also contributed to pyroptosis under hyperglycemia. The signaling pathways mainly included Nrf2/HO-1, IκB/NF-κB/NLRP3, NOX1/NOX4/TXNIP, and P2X7R/TXNIP/NLRP3. Ginseng extracts, some ginsenosides and flavonoid (Quercetin) could exert anti-diabetic effect by regulating pyroptosis-related pathways. We also discussed the toxicity, side effects and clinical applications of ginseng. CONCLUSION In summary, this review elucidates the happening mechanisms of pyroptosis in diabetes and associated chronic complications, and summarizes published studies about ginseng and its active ingredients in improving diabetes by regulating pyroptosis-related pathways. However, almost all researches are limited to animal and cell experiments, and more clinical trials are required to prove the therapeutic effect of ginseng on diabetes by targeting pyroptosis.
Collapse
Affiliation(s)
- Ke Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun 130118, China
| | - Ya-Jun Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chen Chen
- Endocrinology and Metabolism, School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | - Xiao-Jie Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Wei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun 130118, China.
| |
Collapse
|
4
|
Meng YQ, Cui X, Li S, Jin CH. Application of Compounds with Anti-Cardiac Fibrosis Activity: A Review. Chem Biodivers 2024; 21:e202401078. [PMID: 39223082 DOI: 10.1002/cbdv.202401078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Coronary heart disease, hypertension, myocarditis, and valvular disease cause myocardial fibrosis, leading to heart enlargement, heart failure, heart rate failure, arrhythmia, and premature ventricular beat, even defibrillation can increase the risk of sudden death. Although cardiac fibrosis is common and widespread, there are still no effective drugs to provide adequate clinical intervention for cardiac fibrosis. In this review article, we classify the compounds for treating cardiac fibrosis into natural products, synthetic compounds, and patent drugs according to their sources. Additionally, the structures, activities and signaling pathways of these compounds are discussed. This review provides insight and could provide a reference for the design of new anti-cardiac fibrosis compounds and the new use of older drugs.
Collapse
Affiliation(s)
- Yu-Qing Meng
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xun Cui
- Department of Physiology, School of Medicinal Sciences, Yanbian University, Yanji, Jilin, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
5
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
6
|
Geng XF, Shang WY, Qi ZW, Zhang C, Li WX, Yan ZP, Fan XB, Zhang JP. The mechanism and promising therapeutic strategy of diabetic cardiomyopathy dysfunctions: Focus on pyroptosis. J Diabetes Complications 2024; 38:108848. [PMID: 39178624 DOI: 10.1016/j.jdiacomp.2024.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Diabetes is a major risk factor for cardiovascular diseases, and myocardial damage caused by hyperglycemia is the main cause of heart failure. However, there is still a lack of systematic understanding of myocardial damage caused by diabetes. At present, we believe that the cellular inflammatory damage caused by hyperglycemia is one of the causes of diabetic cardiomyopathy. Pyroptosis, as a proinflammatory form of cell death, is closely related to the occurrence and development of diabetic cardiomyopathy. Therefore, this paper focuses on the important role of inflammation in the occurrence and development of diabetic cardiomyopathy. From the perspective of pyroptosis, we summarize the pyroptosis of different types of cells in diabetic cardiomyopathy and its related signaling pathways. It also summarizes the treatment of diabetic cardiomyopathy, hoping to provide methods for the prevention and treatment of diabetic cardiomyopathy by inhibiting pyroptosis.
Collapse
Affiliation(s)
- Xiao-Fei Geng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Wen-Yu Shang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhong-Wen Qi
- Postdoctoral Research Station of China Academy of Chinese Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Chi Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Wen-Xiu Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhi-Peng Yan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xin-Biao Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jun-Ping Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
7
|
Shao Y, Xu J, Chen W, Hao M, Liu X, Zhang R, Wang Y, Dong Y. miR-135b: An emerging player in cardio-cerebrovascular diseases. J Pharm Anal 2024; 14:100997. [PMID: 39211791 PMCID: PMC11350494 DOI: 10.1016/j.jpha.2024.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 09/04/2024] Open
Abstract
miR-135 is a highly conserved miRNA in mammals and includes miR-135a and miR-135b. Recent studies have shown that miR-135b is a key regulatory factor in cardio-cerebrovascular diseases. It is involved in regulating the pathological process of myocardial infarction, myocardial ischemia/reperfusion injury, cardiac hypertrophy, atrial fibrillation, diabetic cardiomyopathy, atherosclerosis, pulmonary hypertension, cerebral ischemia/reperfusion injury, Parkinson's disease, and Alzheimer's disease. Obviously, miR-135b is an emerging player in cardio-cerebrovascular diseases and is expected to be an important target for the treatment of cardio-cerebrovascular diseases. However, the crucial role of miR-135b in cardio-cerebrovascular diseases and its underlying mechanism of action has not been reviewed. Therefore, in this review, we aimed to comprehensively summarize the role of miR-135b and the signaling pathway mediated by miR-135b in cardio-cerebrovascular diseases. Drugs targeting miR-135b for the treatment of diseases and related patents, highlighting the importance of this target and its utility as a therapeutic target for cardio-cerebrovascular diseases, have been discussed.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Minglu Hao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Yinying Dong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| |
Collapse
|
8
|
Samaha MM, Nour OA. Ranolazine ameliorates T1DM-induced testicular dysfunction in rats; role of NF-κB/TXNIP/GSDMD-N/IL-18/Beclin-1 signaling pathway. Eur J Pharmacol 2024; 977:176744. [PMID: 38897438 DOI: 10.1016/j.ejphar.2024.176744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Approximately 90% of diabetic males have varying degrees of testicular dysfunction. The current study investigates the possible beneficial consequences of ranolazine against T1DM-induced testicular dysfunction in rats. Thirty-two male Sprague Dawley rats were assorted into 4 groups; normal, diabetic (single 50 mg/kg STZ, I.P.) and ranolazine (40 and 80 mg/kg, orally). The present investigation revealed that the hypoglycemic impact of ranolazine significantly improved the testicular weight and body weight of the final rats, as well as the concentration of blood testosterone, sperm count, and viability, all of which were associated with STZ-induced testicular dysfunction. Furthermore, as demonstrated by elevated reduced glutathione (GSH) activity and lowered malondialdehyde (MDA) levels, diabetic rats administered ranolazine showed a noteworthy improvement in the oxidant/antioxidant ratio. Furthermore, a substantial rise in beclin-1 concentration was seen in conjunction with a significant decrease in thioredoxin-interacting protein (TXNIP) and interleukin-18 (IL-18) concentrations when ranolazine was administered. Although ranolazine exhibited a reduction in inflammation as seen by lower expression of nuclear factor-κB (NF-κB) and cluster of differentiation (CD68) in the testicles, these biochemical findings were validated by improvements in the morphological and histopathological outcomes of both the pancreatic and testicular tissues. In conclusion, daily oral administration of ranolazine (40 and 80 mg/kg) for 8 weeks could be a promising therapy for T1DM-induced testicular dysfunction through its dose-dependent anti-oxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Mahmoud M Samaha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Omnia A Nour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
9
|
Zhang B, Wu H, Zhang J, Cong C, Zhang L. The study of the mechanism of non-coding RNA regulation of programmed cell death in diabetic cardiomyopathy. Mol Cell Biochem 2024; 479:1673-1696. [PMID: 38189880 DOI: 10.1007/s11010-023-04909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024]
Abstract
Diabetic cardiomyopathy (DCM) represents a distinct myocardial disorder elicited by diabetes mellitus, characterized by aberrations in myocardial function and structural integrity. This pathological condition predominantly manifests in individuals with diabetes who do not have concurrent coronary artery disease or hypertension. An escalating body of scientific evidence substantiates the pivotal role of programmed cell death (PCD)-encompassing apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis-in the pathogenic progression of DCM, thereby emerging as a prospective therapeutic target. Additionally, numerous non-coding RNAs (ncRNAs) have been empirically verified to modulate the biological processes underlying programmed cell death, consequently influencing the evolution of DCM. This review systematically encapsulates prevalent types of PCD manifest in DCM as well as nascent discoveries regarding the regulatory influence of ncRNAs on programmed cell death in the pathogenesis of DCM, with the aim of furnishing novel insights for the furtherance of research in PCD-associated disorders relevant to DCM.
Collapse
Affiliation(s)
- Bingrui Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Hua Wu
- Tai'an Special Care Hospital Clinical Laboratory Medical Laboratory Direction, Tai'an, 271000, Shandong, China
| | - Jingwen Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Cong Cong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Lin Zhang
- Tai'an Hospital of Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, No.216, Yingxuan Street, Tai'an, 271000, Shandong, China.
| |
Collapse
|
10
|
Yao X, Huang X, Chen J, Lin W, Tian J. Roles of non-coding RNA in diabetic cardiomyopathy. Cardiovasc Diabetol 2024; 23:227. [PMID: 38951895 PMCID: PMC11218407 DOI: 10.1186/s12933-024-02252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 07/03/2024] Open
Abstract
In recent years, the incidence of diabetes has been increasing rapidly, posing a serious threat to human health. Diabetic cardiomyopathy (DCM) is characterized by cardiomyocyte hypertrophy, myocardial fibrosis, apoptosis, ventricular remodeling, and cardiac dysfunction in individuals with diabetes, ultimately leading to heart failure and mortality. However, the underlying mechanisms contributing to DCM remain incompletely understood. With advancements in molecular biology technology, accumulating evidence has shown that numerous non-coding RNAs (ncRNAs) crucial roles in the development and progression of DCM. This review aims to summarize recent studies on the involvement of three types of ncRNAs (micro RNA, long ncRNA and circular RNA) in the pathophysiology of DCM, with the goal of providing innovative strategies for the prevention and treatment of DCM.
Collapse
Affiliation(s)
- Xi Yao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xinyue Huang
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weiqiang Lin
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China.
| | - Jingyan Tian
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Clinical Trials Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
11
|
Balestrieri G, Limonta R, Ponti E, Merlo A, Sciatti E, D'Isa S, Gori M, Casu G, Giannattasio C, Senni M, D'Elia E. The Therapy and Management of Heart Failure with Preserved Ejection Fraction: New Insights on Treatment. Card Fail Rev 2024; 10:e05. [PMID: 38708376 PMCID: PMC11066852 DOI: 10.15420/cfr.2023.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/28/2023] [Indexed: 05/07/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a clinical syndrome characterised by the presence of diastolic dysfunction and elevated left ventricular filling pressure, in the setting of a left ventricular ejection fraction of at least 50%. Despite the epidemiological prevalence of HFpEF, a prompt diagnosis is challenging and many uncertainties exist. HFpEF is characterised by different phenotypes driven by various cardiac and non-cardiac comorbidities. This is probably the reason why several HFpEF clinical trials in the past did not reach strong outcomes to recommend a single therapy for this syndrome; however, this paradigm has recently changed, and the unmet clinical need for HFpEF treatment found a proper response as a result of a new class of drug, the sodium-glucose cotransporter 2 inhibitors, which beneficially act through the whole spectrum of left ventricular ejection fraction. The aim of this review was to focus on the therapeutic target of HFpEF, the role of new drugs and the potential role of new devices to manage the syndrome.
Collapse
Affiliation(s)
| | - Raul Limonta
- School of Medicine and Surgery, Milano Bicocca UniversityMilan, Italy
| | - Enrico Ponti
- Department of Medical, Surgical and Experimental Sciences, University of SassariSassari, Italy
| | - Anna Merlo
- School of Medicine and Surgery, Milano Bicocca UniversityMilan, Italy
| | - Edoardo Sciatti
- Cardiovascular Department, ASST Papa Giovanni XXIIIBergamo, Italy
| | - Salvatore D'Isa
- Cardiovascular Department, ASST Papa Giovanni XXIIIBergamo, Italy
| | - Mauro Gori
- Cardiovascular Department, ASST Papa Giovanni XXIIIBergamo, Italy
| | - Gavino Casu
- Department of Medical, Surgical and Experimental Sciences, University of SassariSassari, Italy
| | | | - Michele Senni
- Cardiovascular Department, ASST Papa Giovanni XXIIIBergamo, Italy
- Department of Medicine and Surgery, University of Milano BicoccaMilan, Italy
| | - Emilia D'Elia
- Cardiovascular Department, ASST Papa Giovanni XXIIIBergamo, Italy
| |
Collapse
|
12
|
Feng X, Yang X, Zhong Y, Cheng X. The role of ncRNAs-mediated pyroptosis in diabetes and its vascular complications. Cell Biochem Funct 2024; 42:e3968. [PMID: 38439590 DOI: 10.1002/cbf.3968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
Over the past decade, the prevalence of diabetes has increased significantly worldwide, leading to an increase in vascular complications of diabetes (VCD), such as diabetic cardiomyopathy (DCM), diabetic nephropathy (DN), and diabetic retinopathy (DR). Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long Noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), play a key role in cellular processes, including the pathophysiology of diabetes and VCD via pyroptosis. ncRNAs (e.g., miR-17, lnc-MEG3, and lnc-KCNQ1OT1) can regulate pyroptosis in pancreatic β cells. Some ncRNAs are involved in VCD progression. For example, miR-21, lnc-KCNQ1OT1, lnc-GAS5, and lnc-MALAT1 were reported in DN and DCM, and lnc-MIAT was identified in DCM and DR. Herein, this review aimed to summarize recent research findings related to ncRNAs-mediated pyroptosis at the onset and progression of diabetes and VCD.
Collapse
Affiliation(s)
- Xinyao Feng
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoxu Yang
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yancheng Zhong
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xihua Cheng
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
13
|
Wang G, Ma TY, Huang K, Zhong JH, Lu SJ, Li JJ. Role of pyroptosis in diabetic cardiomyopathy: an updated review. Front Endocrinol (Lausanne) 2024; 14:1322907. [PMID: 38250736 PMCID: PMC10796545 DOI: 10.3389/fendo.2023.1322907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), one of the common complications of diabetes, presents as a specific cardiomyopathy with anomalies in the structure and function of the heart. With the increasing prevalence of diabetes, DCM has a high morbidity and mortality worldwide. Recent studies have found that pyroptosis, as a programmed cell death accompanied by an inflammatory response, exacerbates the growth and genesis of DCM. These studies provide a theoretical basis for exploring the potential treatment of DCM. Therefore, this review aims to summarise the possible mechanisms by which pyroptosis promotes the development of DCM as well as the relevant studies targeting pyroptosis for the possible treatment of DCM, focusing on the molecular mechanisms of NLRP3 inflammasome-mediated pyroptosis, different cellular pyroptosis pathways associated with DCM, the effects of pyroptosis occurring in different cells on DCM, and the relevant drugs targeting NLRP3 inflammasome/pyroptosis for the treatment of DCM. This review might provide a fresh perspective and foundation for the development of therapeutic agents for DCM.
Collapse
Affiliation(s)
- Gan Wang
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Tian-Yi Ma
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Kang Huang
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Jiang-Hua Zhong
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Shi-Juan Lu
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Jian-Jun Li
- State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Liu Z, Chen Y, Mei Y, Yan M, Liang H. Gasdermin D-Mediated Pyroptosis in Diabetic Cardiomyopathy: Molecular Mechanisms and Pharmacological Implications. Molecules 2023; 28:7813. [PMID: 38067543 PMCID: PMC10708146 DOI: 10.3390/molecules28237813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a pathophysiological condition triggered by diabetes mellitus (DM), which can lead to heart failure (HF). One of the most important cellular processes associated with DCM is the death of cardiomyocytes. Gasdermin D (GSDMD) plays a key role in mediating pyroptosis, a type of programmed cell death closely associated with inflammasome activation. Recent studies have revealed that pyroptosis is induced during hyperglycemia, which is crucial to the development of DCM. Although the effects of pyroptosis on DCM have been discussed, the relationship between DCM and GSDMD is not fully clarified. Recent studies gave us the impetus for clarifying the meaning of GSDMD in DCM. The purpose of this review is to summarize new and emerging insights, mainly discussing the structures of GSDMD and the mechanism of pore formation, activation pathways, molecular mechanisms of GSDMD-mediated pyroptosis, and the therapeutic potential of GSDMD in DCM. The implications of this review will pave the way for a new therapeutic target in DCM.
Collapse
Affiliation(s)
- Zhou Liu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yifan Chen
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yu Mei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Meiling Yan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Haihai Liang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| |
Collapse
|
15
|
Silva JC, Pereira Silva PS, Ramos Silva M, Fantechi E, Chelazzi L, Ciattini S, Eusébio MES, Rosado MTS. Amorphous Solid Forms of Ranolazine and Tryptophan and Their Relaxation to Metastable Polymorphs. CRYSTAL GROWTH & DESIGN 2023; 23:6679-6691. [PMID: 37692331 PMCID: PMC10486308 DOI: 10.1021/acs.cgd.3c00565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Different methods were explored for the amorphization of ranolazine, a sparingly soluble anti-anginal drug, such as mechanochemistry, quench-cooling, and solvent evaporation from solutions. Amorphous phases, with Tg values lower than room temperature, were obtained by cryo-milling and quench-cooling. New forms of ranolazine, named II and III, were identified from the relaxation of the ranolazine amorphous phase produced by cryo-milling, which takes place within several hours after grinding. At room temperature, these metastable polymorphs relax to the lower energy polymorph I, whose crystal structure was solved in this work for the first time. A binary co-amorphous mixture of ranolazine and tryptophan was produced, with three important advantages: higher glass transition temperature, increased kinetic stability preventing relaxation of the amorphous to crystalline phases for at least two months, and improved aqueous solubility. Concomitantly, the thermal behavior of amorphous tryptophan obtained by cryo-milling was studied by DSC. Depending on experimental conditions, it was possible to observe relaxation directly to the lower energy form or by an intermediate metastable crystalline phase and the serendipitous production of the neutral form of this amino acid in the pure solid phase.
Collapse
Affiliation(s)
- Joana
F. C. Silva
- CQC-IMS,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Pedro S. Pereira Silva
- CFisUC,
Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Rua Larga, 3000-370 Coimbra, Portugal
| | - Manuela Ramos Silva
- CFisUC,
Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Rua Larga, 3000-370 Coimbra, Portugal
| | - Elvira Fantechi
- Centro
di Cristallografia Strutturale (CRIST), Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino 50019 Firenze, Italy
| | - Laura Chelazzi
- Centro
di Cristallografia Strutturale (CRIST), Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino 50019 Firenze, Italy
| | - Samuele Ciattini
- Centro
di Cristallografia Strutturale (CRIST), Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino 50019 Firenze, Italy
| | - M. Ermelinda S. Eusébio
- CQC-IMS,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Mário T. S. Rosado
- CQC-IMS,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
16
|
Habimana O, Modupe Salami O, Peng J, Yi GH. Therapeutic Implications of Targeting Pyroptosis in Cardiac-related Etiology of Heart Failure. Biochem Pharmacol 2022; 204:115235. [PMID: 36044938 DOI: 10.1016/j.bcp.2022.115235] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Heart failure remains a considerable clinical and public health problem, it is the dominant cause of death from cardiovascular diseases, besides, cardiovascular diseases are one of the leading causes of death worldwide. The survival of patients with heart failure continues to be low with 45-60% reported deaths within five years. Apoptosis, necrosis, autophagy, and pyroptosis mediate cardiac cell death. Acute cell death is the hallmark pathogenesis of heart failure and other cardiac pathologies. Inhibition of pyroptosis, autophagy, apoptosis, or necrosis reduces cardiac damage and improves cardiac function in cardiovascular diseases. Pyroptosis is a form of inflammatory deliberate cell death that is characterized by the activation of inflammasomes such as NOD-like receptors (NLR), absent in melanoma 2 (AIM2), interferon-inducible protein 16 (IFI-16), and their downstream effector cytokines: Interleukin IL-1β and IL-18 leading to cell death. Recent studies have shown that pyroptosis is also the dominant cell death process in cardiomyocytes, cardiac fibroblasts, endothelial cells, and immune cells. It plays a crucial role in the pathogenesis of cardiac diseases that contribute to heart failure. This review intends to summarize the therapeutic implications targeting pyroptosis in the main cardiac pathologies preceding heart failure.
Collapse
Affiliation(s)
- Olive Habimana
- International College, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China
| | | | - Jinfu Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China; Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China; Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China.
| |
Collapse
|
17
|
Chai R, Xue W, Shi S, Zhou Y, Du Y, Li Y, Song Q, Wu H, Hu Y. Cardiac Remodeling in Heart Failure: Role of Pyroptosis and Its Therapeutic Implications. Front Cardiovasc Med 2022; 9:870924. [PMID: 35509275 PMCID: PMC9058112 DOI: 10.3389/fcvm.2022.870924] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/31/2022] [Indexed: 12/17/2022] Open
Abstract
Pyroptosis is a kind of programmed cell death closely related to inflammation. The pathways that mediate pyroptosis can be divided into the Caspase-1-dependent canonical pathway and the Caspase4/5/11-dependent non-canonical pathway. The most significant difference from other cell death is that pyroptosis rapidly causes rupture of the plasma membrane, cell expansion, dissolution and rupture of the cell membrane, the release of cell contents and a large number of inflammatory factors, and send pro-inflammatory signals to adjacent cells, recruit inflammatory cells and induce inflammatory responses. Cardiac remodeling is the basic mechanism of heart failure (HF) and the core of pathophysiological research on the underlying mechanism. A large number of studies have shown that pyroptosis can cause cardiac fibrosis, cardiac hypertrophy, cardiomyocytes death, myocardial dysfunction, excessive inflammation, and cardiac remodeling. Therefore, targeting pyroptosis has a good prospect in improving cardiac remodeling in HF. In this review, the basic molecular mechanism of pyroptosis is summarized, the relationship between pyroptosis and cardiac remodeling in HF is analyzed in-depth, and the potential therapy of targeting pyroptosis to improve adverse cardiac remodeling in HF is discussed, providing some ideas for improving the study of adverse cardiac remodeling in HF.
Collapse
Affiliation(s)
- Ruoning Chai
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjing Xue
- Department of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuqing Shi
- Department of Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Zhou
- Department of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yihang Du
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Li
- Department of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qingqiao Song
- Department of Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huaqin Wu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Huaqin Wu
| | - Yuanhui Hu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Yuanhui Hu
| |
Collapse
|
18
|
Li X, Xiao GY, Guo T, Song YJ, Li QM. Potential therapeutic role of pyroptosis mediated by the NLRP3 inflammasome in type 2 diabetes and its complications. Front Endocrinol (Lausanne) 2022; 13:986565. [PMID: 36387904 PMCID: PMC9646639 DOI: 10.3389/fendo.2022.986565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
As a new way of programmed cell death, pyroptosis plays a vital role in many diseases. In recent years, the relationship between pyroptosis and type 2 diabetes (T2D) has received increasing attention. Although the current treatment options for T2D are abundant, the occurrence and development of T2D appear to continue, and the poor prognosis and high mortality of patients with T2D remain a considerable burden in the global health system. Numerous studies have shown that pyroptosis mediated by the NLRP3 inflammasome can affect the progression of T2D and its complications; targeting the NLRP3 inflammasome has potential therapeutic effects. In this review, we described the molecular mechanism of pyroptosis more comprehensively, discussed the most updated progress of pyroptosis mediated by NLRP3 inflammasome in T2D and its complications, and listed some drugs and agents with potential anti-pyroptosis effects. Based on the available evidence, exploring more mechanisms of the NLRP3 inflammasome pathway may bring more options and benefits for preventing and treating T2D and drug development.
Collapse
|
19
|
Li C, Wang D, Jiang Z, Gao Y, Sun L, Li R, Chen M, Lin C, Liu D. Non-coding RNAs in diabetes mellitus and diabetic cardiovascular disease. Front Endocrinol (Lausanne) 2022; 13:961802. [PMID: 36147580 PMCID: PMC9487522 DOI: 10.3389/fendo.2022.961802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
More than 10% of the world's population already suffers from varying degrees of diabetes mellitus (DM), but there is still no cure for the disease. Cardiovascular disease (CVD) is one of the most common and dangerous of the many health complications that can be brought on by DM, and has become the leading cause of death in people with diabetes. While research on DM and associated CVD is advancing, the specific mechanisms of their development are still unclear. Given the threat of DM and CVD to humans, the search for new predictive markers and therapeutic ideas is imminent. Non-coding RNAs (ncRNAs) have been a popular subject of research in recent years. Although they do not encode proteins, they play an important role in living organisms, and they can cause disease when their expression is abnormal. Numerous studies have observed aberrant ncRNAs in patients with DM complications, suggesting that they may play an important role in the development of DM and CVD and could potentially act as biomarkers for diagnosis. There is additional evidence that treatment with existing drugs for DM, such as metformin, alters ncRNA expression levels, suggesting that regulation of ncRNA expression may be a key mechanism in future DM treatment. In this review, we assess the role of ncRNAs in the development of DM and CVD, as well as the evidence for ncRNAs as potential therapeutic targets, and make use of bioinformatics to analyze differential ncRNAs with potential functions in DM.
Collapse
Affiliation(s)
- Chengshun Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Minqi Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dianfeng Liu,
| |
Collapse
|