1
|
Chen Q, Wang H, Liu Q, Luo C. CTHRC1: a key player in colorectal cancer progression and immune evasion. Front Immunol 2025; 16:1579661. [PMID: 40201173 PMCID: PMC11975584 DOI: 10.3389/fimmu.2025.1579661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
The multifunctional secreted protein, collagen triple helix repeat containing 1 (CTHRC1), has recently emerged as a significant focus within oncology research. CTHRC1 expression in tumors is governed by a complex interplay of regulatory signals, including methylation, glycosylation, and notably, non-coding RNAs, which constitute its predominant regulatory mechanism. Colorectal cancer (CRC), a highly prevalent epithelial malignancy, sees CTHRC1 influencing tumor progression and metastasis through its modulation of several downstream signaling cascades, such as Wnt/PCP, TGF-β/Smad, and MEK/ERK pathways. Furthermore, CTHRC1 contributes to immune evasion in CRC via diverse mechanisms. It is intricately associated with macrophage phenotypic switching within the tumor microenvironment (TME), favoring M2 macrophage polarization and facilitating the infiltration of T cells and neutrophils. CTHRC1 is also instrumental in immune escape by driving the remodeling of the extracellular matrix through interactions with cancer-associated fibroblasts. Additionally, CTHRC1's roles extend to the regulation of hypoxia-related pathways, metabolism of glycolysis and fatty acids, and involvement in tumor angiogenesis, all of which support tumor immune evasion. Considering its multifaceted activities, CTHRC1 emerges as a promising therapeutic target in CRC, with the potential to enhance the outcomes of existing radiotherapeutic and immunotherapeutic regimens. This review endeavors to delineate the mechanistic and therapeutic landscapes of CTHRC1 in CRC. Through a comprehensive discussion of CTHRC1's diverse functions, we aim to provide insights that could pave the way for innovative approaches in cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Changjiang Luo
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
2
|
Zhang R, Wang Z, Wang H, Li L, Dong L, Ding L, Li Q, Zhu L, Zhang T, Zhu Y, Ding K. CTHRC1 is associated with BRAF(V600E) mutation and correlates with prognosis, immune cell infiltration, and drug resistance in colon cancer, thyroid cancer, and melanoma. BIOMOLECULES & BIOMEDICINE 2024; 25:42-61. [PMID: 39052013 PMCID: PMC11647256 DOI: 10.17305/bb.2024.10397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Colon cancer, thyroid cancer, and melanoma are common malignant tumors that seriously threaten human health globally. The B-Raf proto-oncogene, serine/threonine kinase (BRAF)(V600E) mutation is an important driver gene mutation in these cancer types. In this study, we identified that collagen triple helix repeat containing 1 (CTHRC1) expression was associated with the BRAF(V600E) mutation in colon cancer, thyroid cancer, and melanoma. Based on database analysis and clinical tissue studies, CTHRC1 was verified to correlate with poor prognosis and worse clinicopathological features in colon cancer and thyroid cancer patients, but not in patients with melanoma. Several signaling pathways, immune cell infiltration, and immunotherapy markers were associated with CTHRC1 expression. Additionally, a high level of CTHRC1 was correlated with decreased sensitivity to antitumor drugs (vemurafenib, PLX-4720, dabrafenib, and SB-590885) targeting the BRAF(V600E) mutation. This study provides evidence of a significant correlation between CTHRC1 and the BRAF(V600E) mutation, suggesting its potential utility as a diagnostic and prognostic biomarker in human colon cancer, thyroid cancer, and melanoma.
Collapse
Affiliation(s)
- Rumeng Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zhihao Wang
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Huan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lin Li
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lin Dong
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lin Ding
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Qiushuang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Linyan Zhu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Tiantian Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Shi X, Zeng X, Jiao R, Yang Y, Du X, Qian J, Liu J, Chen G. Expression, Prognostic Value, and Biological Function of CTHRC1 in Different Types of Gliomas: A Bioinformatic Analysis and Experiment Validation. Clin Med Insights Oncol 2024; 18:11795549241260576. [PMID: 38894702 PMCID: PMC11185027 DOI: 10.1177/11795549241260576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Background In recent years, abnormal expression of collagen triple helix repeat containing 1 (CTHRC1) has been found in some tumors, closely related to the poor prognosis of cancer patients. However, the clinical significance of CTHRC1 in gliomas is not completely understood. Methods We investigated the expression, prognostic value, and potential biological function of CTHRC1 in different types of gliomas through bioinformatics analysis and experimental verification. Results Bioinformatics analysis revealed several key findings regarding the expression and clinical significance of CTHRC1 in gliomas. First, the analysis demonstrated a positive correlation between CTHRC1 expression and the World Health Organization (WHO) grading of gliomas, a relationship that was validated through immunohistochemistry experiments. In addition, a trend was observed in which CTHRC1 expression increased with the extent of glioma invasion, as supported by Western blot experiments. Subsequent bioinformatics analysis identified the mesenchymal subtype of gliomas as having the highest levels of CTHRC1 expression, a finding reinforced by immunohistochemical staining. Moreover, high CTHRC1 expression was associated with poor prognosis in gliomas and emerged as an independent prognostic factor, with varying impacts on prognosis between low-grade gliomas (LGGs) and glioblastoma (GBM) subgroups. Notably, comparative analysis unveiled distinct patterns of immune infiltration of CTHRC1 in LGG and GBM. Furthermore, alterations in copy number variations and DNA methylation were identified as potential mechanisms underlying elevated CTHRC1 levels in gliomas. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that CTHRC1 and its associated genes mainly function in the extracellular matrix and participate in tumor-related signaling pathways. Conclusions The CTHRC1 has shown significant clinical utility as a prognostic marker and mesenchymal subtype marker of glioma.
Collapse
Affiliation(s)
- Xueping Shi
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Xi Zeng
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Rukai Jiao
- Department of Neurosurgery, The Jinyang Hospital Affiliated to Guizhou Medical University, Guiyang, P.R. China
| | - Yushi Yang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Xiaolin Du
- Department of Neurosurgery, The Jinyang Hospital Affiliated to Guizhou Medical University, Guiyang, P.R. China
| | - Jiacai Qian
- Department of Neurosurgery, The Jinyang Hospital Affiliated to Guizhou Medical University, Guiyang, P.R. China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, P.R. China
| | - Guangtang Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| |
Collapse
|
4
|
Singh CK, Fernandez S, Chhabra G, Zaemisch GR, Nihal A, Swanlund J, Ansari N, Said Z, Chang H, Ahmad N. The role of collagen triple helix repeat containing 1 (CTHRC1) in cancer development and progression. Expert Opin Ther Targets 2024; 28:419-435. [PMID: 38686865 PMCID: PMC11189736 DOI: 10.1080/14728222.2024.2349686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Collagen triple helix repeat containing 1 (CTHRC1) is a protein that has been implicated in pro-migratory pathways, arterial tissue-repair processes, and inhibition of collagen deposition via the regulation of multiple signaling cascades. Studies have also demonstrated an upregulation of CTHRC1 in multiple cancers where it has been linked to enhanced proliferation, invasion, and metastasis. However, the understanding of the exact role and mechanisms of CTHRC1 in cancer is far from complete. AREAS COVERED This review focuses on analyzing the role of CTHRC1 in cancer as well as its associations with clinicopathologies and cancer-related processes and signaling. We have also summarized the available literature information regarding the role of CTHRC1 in tumor microenvironment and immune signaling. Finally, we have discussed the mechanisms associated with CTHRC1 regulations, and opportunities and challenges regarding the development of CTHRC1 as a potential target for cancer management. EXPERT OPINION CTHRC1 is a multifaceted protein with critical roles in cancer progression and other pathological conditions. Its association with lower overall survival in various cancers, and impact on the tumor immune microenvironment make it an intriguing target for further research and potential therapeutic interventions in cancer.
Collapse
Affiliation(s)
- Chandra K. Singh
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Sofia Fernandez
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Ayaan Nihal
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jenna Swanlund
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Naveed Ansari
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Zan Said
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Hao Chang
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
- William S. Middleton VA Medical Center, Madison, Wisconsin, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
- William S. Middleton VA Medical Center, Madison, Wisconsin, USA
| |
Collapse
|
5
|
López-Camacho E, Prado-Vázquez G, Martínez-Pérez D, Ferrer-Gómez M, Llorente-Armijo S, López-Vacas R, Díaz-Almirón M, Gámez-Pozo A, Vara JÁF, Feliu J, Trilla-Fuertes L. A Novel Molecular Analysis Approach in Colorectal Cancer Suggests New Treatment Opportunities. Cancers (Basel) 2023; 15:1104. [PMID: 36831448 PMCID: PMC9953902 DOI: 10.3390/cancers15041104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Colorectal cancer (CRC) is a molecular and clinically heterogeneous disease. In 2015, the Colorectal Cancer Subtyping Consortium classified CRC into four consensus molecular subtypes (CMS), but these CMS have had little impact on clinical practice. The purpose of this study is to deepen the molecular characterization of CRC. A novel approach, based on probabilistic graphical models (PGM) and sparse k-means-consensus cluster layer analyses, was applied in order to functionally characterize CRC tumors. First, PGM was used to functionally characterize CRC, and then sparse k-means-consensus cluster was used to explore layers of biological information and establish classifications. To this aim, gene expression and clinical data of 805 CRC samples from three databases were analyzed. Three different layers based on biological features were identified: adhesion, immune, and molecular. The adhesion layer divided patients into high and low adhesion groups, with prognostic value. The immune layer divided patients into immune-high and immune-low groups, according to the expression of immune-related genes. The molecular layer established four molecular groups related to stem cells, metabolism, the Wnt signaling pathway, and extracellular functions. Immune-high patients, with higher expression of immune-related genes and genes involved in the viral mimicry response, may benefit from immunotherapy and viral mimicry-related therapies. Additionally, several possible therapeutic targets have been identified in each molecular group. Therefore, this improved CRC classification could be useful in searching for new therapeutic targets and specific therapeutic strategies in CRC disease.
Collapse
Affiliation(s)
- Elena López-Camacho
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Biomedica Molecular Medicine SL, C/Faraday 7, 28049 Madrid, Spain
| | - Guillermo Prado-Vázquez
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Biomedica Molecular Medicine SL, C/Faraday 7, 28049 Madrid, Spain
| | - Daniel Martínez-Pérez
- Medical Oncology Service, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - María Ferrer-Gómez
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Sara Llorente-Armijo
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Rocío López-Vacas
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Mariana Díaz-Almirón
- Biostatistics Unit, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Angelo Gámez-Pozo
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Biomedica Molecular Medicine SL, C/Faraday 7, 28049 Madrid, Spain
| | - Juan Ángel Fresno Vara
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Biomedical Research Networking Center on Oncology—CIBERONC, Carlos III Healthy Institute ISCIII, 28029 Madrid, Spain
| | - Jaime Feliu
- Medical Oncology Service, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
- Biomedical Research Networking Center on Oncology—CIBERONC, Carlos III Healthy Institute ISCIII, 28029 Madrid, Spain
- Translational Oncology Group, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Cátedra UAM-Amgen, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Lucía Trilla-Fuertes
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Translational Oncology Group, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| |
Collapse
|
6
|
Wu L, Tian X, Du H, Liu X, Wu H. Bioinformatics Analysis of LGR4 in Colon Adenocarcinoma as Potential Diagnostic Biomarker, Therapeutic Target and Promoting Immune Cell Infiltration. Biomolecules 2022; 12:1081. [PMID: 36008975 PMCID: PMC9406187 DOI: 10.3390/biom12081081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Colon adenocarcinoma is one of the tumors with the highest mortality rate, and tumorigenesis or development of colon adenocarcinoma is the major reason leading to patient death. However, the molecular mechanism and biomarker to predict tumor progression are currently unclear. With the goal of understanding the molecular mechanism and tumor progression, we utilized the TCGA database to identify differentially expressed genes. After identifying the differentially expressed genes among colon adenocarcinoma tissues with different expression levels of LGR4 and normal tissue, protein-protein interaction, gene ontology, pathway enrichment, gene set enrichment analysis, and immune cell infiltration analysis were conducted. Here, the top 10 hub genes, i.e., ALB, F2, APOA2, CYP1A1, SPRR2B, APOA1, APOB, CYP3A4, SST, and GCG, were identified, and relative correlation analysis was conducted. Kaplan-Meier analysis revealed that higher expression of LGR4 correlates with overall survival of colon adenocarcinoma patients, although expression levels of LGR4 in normal tissues are higher than in tumor tissues. Further functional analysis demonstrated that higher expression of LGR4 in colon adenocarcinoma may be linked to up-regulate metabolism-related pathways, for example, the cholesterol biosynthesis pathway. These results were confirmed by gene set enrichment analysis. Immune cell infiltration analysis clearly showed that the infiltration percentage of T cells was significantly higher than other immune cells, and TIMER analysis revealed a positive correlation between T-cell infiltration and LGR4 expression. Finally, COAD cancer cells, Caco-2, were employed to be incubated with squalene and 25-hydroxycholesterol-3-sulfate, and relative experimental results confirmed that the cholesterol biosynthesis pathway involved in modulating the proliferation of COAD tumorigenesis. Our investigation revealed that LGR4 can be an emerging diagnostic and prognostic biomarker for colon adenocarcinoma by affecting metabolism-related pathways.
Collapse
Affiliation(s)
- Lijuan Wu
- Department of Gastroenterology, the First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Xiaoxiao Tian
- Department of Gastroenterology, the First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Hao Du
- Department of Orthopedic, the First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Xiaomin Liu
- Department of Gastroenterology, the First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Haigang Wu
- School of Life Sciences, Henan University, Kaifeng 475000, China
| |
Collapse
|