1
|
Hu Y, Meng Y, Zhuang Z, Li Y, Nan J, Xu N, Ye Z, Jing J. Prospects for PARG inhibitors in cancer therapy. J Mol Cell Biol 2025; 16:mjae050. [PMID: 39668635 PMCID: PMC12123320 DOI: 10.1093/jmcb/mjae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024] Open
Abstract
Poly(ADP-ribose) glycosylhydrolase (PARG) is an enzyme involved in hydrolyzing the ribose-ribose bonds present in poly(ADP-ribose) (PAR), which are primarily found in the nucleus. Along with poly(ADP-ribose) polymerase, PARG regulates the level of PAR in cells, playing a crucial role in DNA maintenance and repair processes. Recent studies have revealed elevated levels of PARG in various cancers, such as breast, liver, prostate, and esophageal cancers, indicating a link to unfavorable cancer outcomes. PARG is a significant molecular target for treating PAR-related cancers. This review provides a comprehensive overview of the physiological role of PARG and the development of its inhibitors, highlighting its potential as an innovative target for cancer treatment.
Collapse
Affiliation(s)
- Yangchan Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuxin Meng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Zirui Zhuang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou 310024, China
| | - Yuancong Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Junjun Nan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ning Xu
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China
| | - Zu Ye
- Gastric Cancer Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou 310022, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| | - Ji Jing
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| |
Collapse
|
2
|
Wang Q, Yan X, Fu B, Xu Y, Li L, Chang C, Jia C. mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation. Anal Chem 2023; 95:3684-3693. [PMID: 36757215 DOI: 10.1021/acs.analchem.2c04648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Characterization of protein arginine dimethylation presents significant challenges due to its occurrence at the substoichiometric level. To enable a targeted MS/MS analysis of these dimethylation sites, we developed the mNeuCode (methyl-neutron-coding) tag by metabolically labeling methylarginine with stable isotopes during cell culture, which generated a diagnostic peak containing the NeuCode isotopologue signature in a high-resolution MS scan. A software tool, termed NeuCodeFinder, was developed for screening the NeuCode signatures in mass spectra. Therefore, a targeted MS/MS workflow was established for proteome-wide discovery of arginine dimethylation. The efficacy and utility were demonstrated by identifying 176 arginine dimethylation sites residing on 70 proteins in HeLa cells. Among them, 38% of the sites and 29% of the dimethylated proteins are novel, including five novel arginine dimethylation sites on the protein FAM98A, which is a substrate of protein arginine methyltransferase 1 (PRMT1). Our results show that deletion of FAM98A in HeLa cells suppressed cell migration, and importantly, dimethylation-deficient mutation suppressed this process as well. Therefore, the PRMT1-FAM98A pathway mediates cell migration possibly through dimethylation of these newly identified sites of FAM98A. Our study might drive the methodological shift from shotgun-based to targeted proteome analysis for interrogation of the substoichiometric biomolecules by using NeuCode-enabled techniques.
Collapse
Affiliation(s)
- Qianqian Wang
- National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xin Yan
- National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China.,Xiong County Center for Disease Control and Prevention, Baoding 071000, China
| | - Bin Fu
- National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ying Xu
- National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Cheng Chang
- National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China.,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Chenxi Jia
- National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|