1
|
Cristina Diaconu C, Madalina Pitica I, Chivu-Economescu M, Georgiana Necula L, Botezatu A, Virginia Iancu I, Iulia Neagu A, L. Radu E, Matei L, Maria Ruta S, Bleotu C. SARS-CoV-2 Variant Surveillance in Genomic Medicine Era. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/26/2024] Open
Abstract
In the genomic medicine era, the emergence of SARS-CoV-2 was immediately followed by viral genome sequencing and world-wide sequences sharing. Almost in real-time, based on these sequences, resources were developed and applied around the world, such as molecular diagnostic tests, informed public health decisions, and vaccines. Molecular SARS-CoV-2 variant surveillance was a normal approach in this context yet, considering that the viral genome modification occurs commonly in viral replication process, the challenge is to identify the modifications that significantly affect virulence, transmissibility, reduced effectiveness of vaccines and therapeutics or failure of diagnostic tests. However, assessing the importance of the emergence of new mutations and linking them to epidemiological trend, is still a laborious process and faster phenotypic evaluation approaches, in conjunction with genomic data, are required in order to release timely and efficient control measures.
Collapse
|
2
|
Forsyth CB, Zhang L, Bhushan A, Swanson B, Zhang L, Mamede JI, Voigt RM, Shaikh M, Engen PA, Keshavarzian A. The SARS-CoV-2 S1 Spike Protein Promotes MAPK and NF-kB Activation in Human Lung Cells and Inflammatory Cytokine Production in Human Lung and Intestinal Epithelial Cells. Microorganisms 2022; 10:microorganisms10101996. [PMID: 36296272 PMCID: PMC9607240 DOI: 10.3390/microorganisms10101996] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic began in January 2020 in Wuhan, China, with a new coronavirus designated SARS-CoV-2. The principal cause of death from COVID-19 disease quickly emerged as acute respiratory distress syndrome (ARDS). A key ARDS pathogenic mechanism is the “Cytokine Storm”, which is a dramatic increase in inflammatory cytokines in the blood. In the last two years of the pandemic, a new pathology has emerged in some COVID-19 survivors, in which a variety of long-term symptoms occur, a condition called post-acute sequelae of COVID-19 (PASC) or “Long COVID”. Therefore, there is an urgent need to better understand the mechanisms of the virus. The spike protein on the surface of the virus is composed of joined S1–S2 subunits. Upon S1 binding to the ACE2 receptor on human cells, the S1 subunit is cleaved and the S2 subunit mediates the entry of the virus. The S1 protein is then released into the blood, which might be one of the pivotal triggers for the initiation and/or perpetuation of the cytokine storm. In this study, we tested the hypothesis that the S1 spike protein is sufficient to activate inflammatory signaling and cytokine production, independent of the virus. Our data support a possible role for the S1 spike protein in the activation of inflammatory signaling and cytokine production in human lung and intestinal epithelial cells in culture. These data support a potential role for the SARS-CoV-2 S1 spike protein in COVID-19 pathogenesis and PASC.
Collapse
Affiliation(s)
- Christopher B. Forsyth
- Department of Internal Medicine, Section of Gastroenterology, Rush Center for Integrated Microbiome and Chronobiology Research, Department of Anatomy and Cell Biology, Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lijuan Zhang
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
| | - Abhinav Bhushan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Barbara Swanson
- Department of Adult Health & Gerontological Nursing, Rush University Medical Center, Chicago, IL 60612, USA
| | - Li Zhang
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - João I. Mamede
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Robin M. Voigt
- Department of Internal Medicine, Section of Gastroenterology, Rush Center for Integrated Microbiome and Chronobiology Research, Department of Anatomy and Cell Biology, Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612, USA
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
| | - Phillip A. Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Section of Gastroenterology, Rush Center for Integrated Microbiome and Chronobiology Research, Department of Anatomy and Cell Biology, Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
3
|
Nan FY, Wu CJ, Su JH, Ma LQ. Potential mouse models of coronavirus-related immune injury. Front Immunol 2022; 13:943783. [PMID: 36119040 PMCID: PMC9478437 DOI: 10.3389/fimmu.2022.943783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Basic research for prevention and treatment of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues worldwide. In particular, multiple newly reported cases of autoimmune-related diseases after COVID-19 require further research on coronavirus-related immune injury. However, owing to the strong infectivity of SARS-CoV-2 and the high mortality rate, it is difficult to perform relevant research in humans. Here, we reviewed animal models, specifically mice with coronavirus-related immune disorders and immune damage, considering aspects of coronavirus replacement, viral modification, spike protein, and gene fragments. The evaluation of mouse models of coronavirus-related immune injury may help establish a standardised animal model that could be employed in various areas of research, such as disease occurrence and development processes, vaccine effectiveness assessment, and treatments for coronavirus-related immune disorders. COVID-19 is a complex disease and animal models cannot comprehensively summarise the disease process. The application of genetic technology may change this status.
Collapse
Affiliation(s)
- Fu-Yao Nan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cai-Jun Wu
- Department of Emergency Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Sepsis, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Hui Su
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Qin Ma
- Department of Emergency Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Sepsis, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|