1
|
JIANG DONG, QI ZHI, XU ZHIYING, LI YIRAN. CYB5D2 inhibits the malignant progression of hepatocellular carcinoma by inhibiting TGF-β expression and epithelial-mesenchymal transition. Oncol Res 2025; 33:709-722. [PMID: 40109873 PMCID: PMC11915040 DOI: 10.32604/or.2024.050125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/19/2024] [Indexed: 03/22/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a prevalent liver malignancy. This study examined the roles of transforming growth factor beta (TGF-β) and cytochrome b5 domain containing 2 (CYB5D2) in HCC etiology and their prognostic biomarker potential. Methods Key modules and prognostic genes were identified by analyzing the GSE101685 dataset by weighted gene co-expression network analysis (WGCNA) and Least absolute shrinkage and selection operator (LASSO) Cox regression. The expression levels of CYB5D2 and TGF-β in HCC cell lines were quantified using Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting (WB) assays. Effects of CYB5D2 overexpression on cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) marker regulation were assessed in vitro, while in vivo tumorigenicity was evaluated using a xenograft model of HCC in nude mice. Results In this study, WGCNA identified the turquoise module as significantly associated with HCC, containing 452 DEGs. LASSO Cox regression analysis revealed 9 key prognostic genes, with CYB5D2 being underexpressed in HCC cells and tissues. TGF-β was negatively correlated with CYB5D2 expression, resulting in poor patient prognosis. Functional assays demonstrated that CYB5D2 overexpression inhibited proliferation, migration, and invasion of HCC cell lines, and altered EMT marker expression. Furthermore, the addition of TGF-β partially reversed the suppressive effects caused by CYB5D2 overexpression. In vivo, CYB5D2 overexpression significantly reduced tumor growth, indicating its potential as a therapeutic target for HCC. Conclusion The tumor suppressor function of CYB5D2 in HCC and its interaction with TGF-β offered fresh information on the molecular pathophysiology of HCC and possible treatment avenues.
Collapse
Affiliation(s)
- DONG JIANG
- Department of Ultrasound, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - ZHI QI
- Department of Neurology, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - ZHIYING XU
- Department of Hepatic Surgery IV, Shanghai Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - YIRAN LI
- Department of Ultrasound, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
2
|
Chen H, Li J, Cao D, Tang H. Construction of a Prognostic Model for Hepatocellular Carcinoma Based on Macrophage Polarization-Related Genes. J Hepatocell Carcinoma 2024; 11:857-878. [PMID: 38751862 PMCID: PMC11095518 DOI: 10.2147/jhc.s453080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Background The progression of hepatocellular carcinoma (HCC) is related to macrophage polarization (MP). Our aim was to identify genes associated with MP in HCC patients and develop a prognostic model based on these genes. Results We successfully developed a prognostic model consisting of six MP-related genes (SCN4A, EBF3, ADGRB2, HOXD9, CLEC1B, and MSC) to calculate the risk score for each patient. Patients were then classified into high- and low-risk groups based on their median risk score. The performance of the MP-related prognostic model was evaluated using Kaplan-Meier and ROC curves, which yielded favorable results. Additionally, the nomogram demonstrated good clinical effectiveness and displayed consistent survival predictions with actual observations. Gene Set Enrichment Analysis (GSEA) revealed enrichment of pathways related to KRAS signaling downregulation, the G2M checkpoint, and E2F targets in the high-risk group. Conversely, pathways associated with fatty acid metabolism, xenobiotic metabolism, bile acid metabolism, and adipogenesis were enriched in the low-risk group. The risk score positively correlated with the number of invasion-related genes. Immune checkpoint expression differed significantly between the two groups. Patients in the high-risk group exhibited increased sensitivity to mitomycin C, cisplatin, gemcitabine, rapamycin, and paclitaxel, while those in the low-risk group showed heightened sensitivity to doxorubicin. These findings suggest that the high-risk group may have more invasive HCC with greater susceptibility to specific drugs. IHC staining revealed higher expression levels of SCN4A in HCC tissues. Furthermore, experiments conducted on HepG2 cells demonstrated that supernatants from cells with reduced SCN4A expression promoted M2 macrophage polarization marker, CD163 in THP-1 cells. Reduced SCN4A expression induced HCC-related genes, while increased SCN4A expression reduced their expression in HepG2 cells. Conclusion The MP-related prognostic model comprising six MPRGs can effectively predict HCC prognosis, infer invasiveness, and guide drug therapy. SCN4A is identified as a suppressor gene in HCC.
Collapse
Affiliation(s)
- Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Jianhao Li
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Dan Cao
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
3
|
Zhang H, Xu Y, Han H, Ye X, Cheng L, Shen Y, Wan X. Comprehensive Analysis Identifies Hyaluronan Mediated Motility Receptor and Cell Division Cycle 25C as Potential Prognostic Biomarkers in Head and Neck Squamous Cell Carcinoma. Cancer Control 2024; 31:10732748241287904. [PMID: 39323031 PMCID: PMC11440566 DOI: 10.1177/10732748241287904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
INTRODUCTION Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, but its pathogenic mechanisms remain unclear. This study aimed to identify the potential biomarkers underlying the diagnosis and treatment of HNSCC. METHODS Weighted gene co-expression network analysis (WGCNA) followed by pathway enrichment analysis, analysis of infiltrating immune cells, survival analysis, and methylation analysis were applied to identify the potential hub genes underlying the prognosis of HNSCC. The expression of hub genes was validated by immunofluorescence staining. RESULTS A total of 10,274 differentially expressed genes (DEGs) were identified. Through WGCNA, the yellow module (R2 = 0.33, P = 2e-14) was confirmed to be the most significantly associated with the histological grade of HNSCC, and the "Cell Cycle" proved to be the most enriched signaling pathway. Based on the results of survival analysis and immune cell infiltration, 10 hub genes (HMMR, CENPK, AURKA, CDC25C, FEN1, CKS1B, MAJIN, PCLAF, SPC25, and STAG3) were identified. Eight of these (excluding MAJIN and STAG3) were confirmed by performing survival analysis using another dataset (GSE41613). Further, we identified 4 methylation loci in 3 hub genes (cg15122828 and cg20554926 in HMMR, cg12519992 in CDC25C, and cg2655739 in KIAA0101/PCLAF) as being significantly related to survival. Finally, we demonstrated the high mRNA and protein expression of HMMR and CDC25C in HNSCC patients. CONCLUSION Two real hub genes (HMMR and CDC25C) and 3 methylation loci were identified that could potentially serve as prognostic and therapeutic targets for HNSCC, which is significant for studying the pathological mechanisms underlying HNSCC and for developing novel therapies for this disease.
Collapse
Affiliation(s)
- Hongrui Zhang
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Yi Xu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haijun Han
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xiongwei Ye
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Lu Cheng
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Yueshuang Shen
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Xiaochen Wan
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
4
|
Chen E, Mo Y, Yi J, Liu J, Luo T, Li Z, Lin Z, Hu Y, Zou Z, Liu J. A novel hepatocellular carcinoma-specific mTORC1-related signature for anticipating prognosis and immunotherapy. Aging (Albany NY) 2023; 15:7933-7955. [PMID: 37589508 PMCID: PMC10497017 DOI: 10.18632/aging.204862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/09/2023] [Indexed: 08/18/2023]
Abstract
Tumor oncogenesis, cancer metastasis, and immune evasion were substantially impacted by the mammalian target of the rapamycin complex 1 (mTORC1) pathway. However, in hepatocellular carcinoma (HCC), no mTORC1 signaling-based gene signature has ever been published. mTORC1 scores were computed employing a single sample gene set enrichment analysis based on databases including the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). The PAG1, LHFPL2, and FABP5 expression levels were obtained to construct a mTORC1 pathway-related model. In two databases, the overall survival (OS) rate was shorter for high-mTORC1 score patients compared to those with low scores. The activation of TFs in the group with high risk was enhanced, such as the HIF-1 pathway. Additionally, it was discovered that a high mTORC1 score was linked to an immune exclusion phenotype and enhanced immunosuppressive cell infiltration. Notably, it was discovered that high-mTORC1 scores patients had poorer immunotherapeutic results and might not gain benefit from immunotherapy. When compared to the low HCC metastatic cell lines, the high HCC metastatic cell lines have overexpressed levels of PAG1, LHFPL2, and FABP5 expression. The expression of PAG1, LHFPL2, and FABP5 was inhibited by the MAPK and mTORC1 pathway inhibitors. Our study identified mTORC1 score signature can aid in the development of individualized immunotherapy protocols and predict the HCC patients' prognoses.
Collapse
Affiliation(s)
- Erbao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yuqian Mo
- School of Public Health, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jing Yi
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jie Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Ting Luo
- Operating Room, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zheng Li
- Department of Ophthalmology, Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zewei Lin
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yibing Hu
- Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhilin Zou
- Department of Ophthalmology, Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jikui Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Zhu H, Lin Y, Lu D, Wang S, Liu Y, Dong L, Meng Q, Gao J, Wang Y, Song N, Suo Y, Ding L, Wang P, Zhang B, Gao D, Fan J, Gao Q, Zhou H. Proteomics of adjacent-to-tumor samples uncovers clinically relevant biological events in hepatocellular carcinoma. Natl Sci Rev 2023; 10:nwad167. [PMID: 37575948 PMCID: PMC10416816 DOI: 10.1093/nsr/nwad167] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 08/15/2023] Open
Abstract
Normal adjacent tissues (NATs) of hepatocellular carcinoma (HCC) differ from healthy liver tissues and their heterogeneity may contain biological information associated with disease occurrence and clinical outcome that has yet to be fully evaluated at the proteomic level. This study provides a detailed description of the heterogeneity of NATs and the differences between NATs and healthy livers and revealed that molecular features of tumor subgroups in HCC were partially reflected in their respective NATs. Proteomic data classified HCC NATs into two subtypes (Subtypes 1 and 2), and Subtype 2 was associated with poor prognosis and high-risk recurrence. The pathway and immune features of these two subtypes were characterized. Proteomic differences between the two NAT subtypes and healthy liver tissues were further investigated using data-independent acquisition mass spectrometry, revealing the early molecular alterations associated with the progression from healthy livers to NATs. This study provides a high-quality resource for HCC researchers and clinicians and may significantly expand the knowledge of tumor NATs to eventually benefit clinical practice.
Collapse
Affiliation(s)
- Hongwen Zhu
- Department of Analytical Chemistry, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Youpei Lin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Dayun Lu
- Department of Analytical Chemistry, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shisheng Wang
- Institutes for Systems Genetics and NHC Key Lab of Transplant Engineering and Immunology, Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuejia Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liangqing Dong
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Qian Meng
- Department of Analytical Chemistry, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Gao
- Department of Analytical Chemistry, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuqiu Wang
- Department of Analytical Chemistry, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Nixue Song
- Department of Analytical Chemistry, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuying Suo
- Department of Analytical Chemistry, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Ding
- Department of Medicine, McDonnell Genome Institute, Siteman Cancer Center, Washington University, St. Louis, MI 63108, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NewYork, NY 10029, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Daming Gao
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Hu Zhou
- Department of Analytical Chemistry, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Kurniansyah N, Wallace DA, Zhang Y, Yu B, Cade B, Wang H, Ochs-Balcom HM, Reiner AP, Ramos AR, Smith JD, Cai J, Daviglus M, Zee PC, Kaplan R, Kooperberg C, Rich SS, Rotter JI, Gharib SA, Redline S, Sofer T. An integrated multi-omics analysis of sleep-disordered breathing traits implicates P2XR4 purinergic signaling. Commun Biol 2023; 6:125. [PMID: 36721044 PMCID: PMC9889381 DOI: 10.1038/s42003-023-04520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Sleep Disordered Breathing (SDB) is a common disease associated with increased risk for cardiometabolic, cardiovascular, and cognitive diseases. How SDB affects the molecular environment is still poorly understood. We study the association of three SDB measures with gene expression measured using RNA-seq in multiple blood tissues from the Multi-Ethnic Study of Atherosclerosis. We develop genetic instrumental variables for the associated transcripts as polygenic risk scores (tPRS), then generalize and validate the tPRS in the Women's Health Initiative. We measure the associations of the validated tPRS with SDB and serum metabolites in Hispanic Community Health Study/Study of Latinos. Here we find differential gene expression by blood cell type in relation to SDB traits and link P2XR4 expression to average oxyhemoglobin saturation during sleep and butyrylcarnitine (C4) levels. These findings can be used to develop interventions to alleviate the effect of SDB on the human molecular environment.
Collapse
Affiliation(s)
- Nuzulul Kurniansyah
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Danielle A Wallace
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Ying Zhang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Brian Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Heather M Ochs-Balcom
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Alexander P Reiner
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Alberto R Ramos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua D Smith
- Northwest Genomic Center, University of Washington, Seattle, WA, USA
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina, at Chapel Hill, NC, USA
| | - Martha Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Robert Kaplan
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology & Population Health, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
- Departments of Medicine and of Biostatistics, Harvard University, Boston, MA, USA.
| |
Collapse
|
7
|
Li J, Chen J, Tao Q, Zheng J, Zhou Z. Machine learning integrations for development of a T-cell-tolerance derived signature to improve the clinical outcomes and precision treatment of hepatocellular carcinoma. Am J Cancer Res 2023; 13:66-85. [PMID: 36777501 PMCID: PMC9906086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/07/2023] [Indexed: 02/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by high rates of recurrence and metastasis and poor prognosis. A recently discovered concept of T cell tolerance (TCT) has become an entirely new target of cancer immunotherapy. Unfortunately, the effect of TCT on the outcomes of HCC has not been explored. In this study, 7 public datasets and one external clinical cohort, including 1716 HCC patients were explored. Through WGCNA analysis and differential analysis, we explored the key TCT-related modulates. A total of 95 machine learning integrations across all validation cohorts were compared and the optimal method with the highest average C-index value was selected to construct the TCT derived signature (TCTS). In all independent clinical cohorts, TCTS showed accurate prediction of the prognosis, and was significantly correlated with clinical indicators and molecular features. Compared with 77 published gene signatures, the TCTS exhibited superior predictive performance. In the external clinical cohort, a novel nomogram (comprising TNM stage, Hepatitis B, Vascular invasion, Perineural invasion, AFP and TCTS) was constructed to test the clinical performance of TCTS. The results showed that the high TCTS scoring group showed dismal prognosis, improved sensitivity to oxaliplatin and good response to anti-PD-1/PD-L1 immunotherapy. Moreover, the low TCTS score group had few genomic alterations, low immune activation and low PD-1/PD-L1 expression levels. In conclusion, TCTS is an ideal biomarker for predicting the clinical outcomes and improving precision treatment of HCC.
Collapse
Affiliation(s)
- Junjian Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
| | - Ji Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
| | - Qiqi Tao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
| | - Jianjian Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
| | - Zhenxu Zhou
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
| |
Collapse
|
8
|
Identification and Validation of Two Heterogeneous Molecular Subtypes and a Prognosis Predictive Model for Hepatocellular Carcinoma Based on Pyroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8346816. [PMID: 36071875 PMCID: PMC9441383 DOI: 10.1155/2022/8346816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/27/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is a worldwide malignant cancer with high incidence and mortality. Considering the high heterogeneity of HCC, clarifying molecular characteristics associated with HCC development could help improve patients' outcomes. Pyroptosis is a novel form of cell death and is noted to be implicated in HCC pathogenesis whereas its molecular feature in HCC is unclear. Thus, we intended to clarify the molecular characteristic as well as the clinical significance of pyroptosis for HCC. A systematic bioinformatics analysis was conducted among 40 pyroptosis-related genes based on The Cancer Genome Atlas, the International Cancer Genome Consortium, and the Gene Expression Omnibus databases. A total of 12 HCC-associated pyroptosis-related genes (HPRGs) were identified to be overexpressed in HCC tissues and significantly connected to patients' poor survival. Through consensus clustering based on the HPRGs' expression, we found patients could be stratified into two distinctive pyroptosis subtypes, PyLow and PyHigh. The PyHigh group owned a notable lower survival rate and a higher high-grade proportion compared with the PyLow subtype. Besides, patients' sensitivities to chemotherapeutic drugs also presented distinctive differences between the two subtypes. Indicated by pathway enrichment analysis and immune characteristic difference analysis, the distinctions between the pyroptosis subtypes may be related to tumor immunity. Further, a five-gene risk model composed of BAK1, CHMP4A, CHMP4B, DHX9, and GSDME was established. Subsequent analyses demonstrated that the model could credibly classify patients as low or high risk and was an independent prognostic indicator for HCC. Abnormal expressions of the five genes were validated by biological experiments and new bioinformatics analysis. In conclusion, this study recognized and verified two heterogeneous pyroptosis subtypes and a predictable prognosis model for HCC. Our work may help facilitate the clinical management and treatment of HCC and understand the functions of pyroptosis in oncology.
Collapse
|