1
|
Li F, Dai Y, Tang C, Peng L, Huang H, Chen Y, Xu Y, Chen X, Wang Q, Lin Y. Elevated UBC9 expression and its oncogenic role in colorectal cancer progression and chemoresistance. Sci Rep 2025; 15:9123. [PMID: 40097547 PMCID: PMC11914596 DOI: 10.1038/s41598-025-93868-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
Colorectal cancer (CRC) is a highly prevalent and fatal malignancy, with incidence and mortality rates rising globally. While elevated UBC9 expression has been implicated in various cancers, its specific role in CRC remains poorly understood. This study aims to investigate the expression levels, prognostic significance, and functional roles of UBC9 in CRC. We assessed the expression and prognostic value of UBC9 mRNA and protein in colorectal cancer separately using multiple databases and immunohistochemical techniques. Additionally, in vitro functional assays and in vivo zebrafish tumor models were employed to elucidate the role of UBC9 in CRC cell proliferation, migration, invasion, and chemoresistance. UBC9 expression was significantly upregulated in CRC tissues. Elevated UBC9 levels were associated with poor prognosis in chemotherapy-treated CRC patients. Gene Set Enrichment Analysis revealed that pathways related to MYC targets, DNA repair, and oxidative stress response were enriched in groups with high UBC9 expression. Immune profiling indicated reduced infiltration of CD4+ memory-activated T cells and NK cells in tumors with elevated UBC9 levels. Functional assays demonstrated that UBC9 knockdown inhibited CRC cell proliferation, migration, and invasion, and sensitized cells to oxaliplatin, which was further validated using zebrafish xenograft models. UBC9 is crucial for CRC progression, genomic instability, and chemoresistance. It represents a potential prognostic biomarker and therapeutic target, particularly for enhancing chemotherapy efficacy in CRC patients.
Collapse
Affiliation(s)
- Feng Li
- Department of Pathology, Shengli Clinical Medical College of Fujian Medical University and Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China.
| | - Yongmei Dai
- Departments of Oncology, Shengli Clinical Medical College of Fujian Medical University and Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Chenchen Tang
- Longyan First Hospital Affiliated to Fujian Medical University, Longyan, 361000, China
| | - Lu Peng
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350001, China
| | - Haijian Huang
- Department of Pathology, Shengli Clinical Medical College of Fujian Medical University and Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Yuluo Chen
- Fujian Normal University, Fuzhou, 350001, China
| | - Yining Xu
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China
| | - Xuequn Chen
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China.
- Rehabilitation Technology Innovation Center by Joint Collaboration of Ministry of Education and Fujian Province, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China.
| | - Qingshui Wang
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China.
| | - Yao Lin
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China.
| |
Collapse
|
2
|
Ip K, Song G, Banov D, Bassani AS, Liu Y, Song H, Valdez BC. Evaluation of the in vitro human skin percutaneous absorption of ketoprofen in topical anhydrous and aqueous gels. Skin Res Technol 2024; 30:e13589. [PMID: 38396354 PMCID: PMC10891364 DOI: 10.1111/srt.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Ketoprofen is a nonsteroidal anti-inflammatory drug used for the treatment of acute and chronic pain associated with inflammatory conditions. This study aims to evaluate the in vitro percutaneous absorption of ketoprofen 10% formulated in proprietary anhydrous and aqueous gels using the Franz skin finite dose model. MATERIALS AND METHODS The anhydrous gel was initially characterized for cytotoxicity using EpiDerm skin tissue model by cell proliferation assay and Western blot analysis. The Ultra Performance Liquid Chromatography method for measuring ketoprofen was validated and the stability of ketoprofen 10% in the anhydrous gel formulation was evaluated at 5°C and 25°C for 181 days. The percutaneous absorption of ketoprofen was determined using donated human skin. The tissue sections were mounted within Franz diffusion cells. A variable finite dose of each ketoprofen formulation in either anhydrous or aqueous gel was applied to the skin sections and receptor solutions were collected at various time points. RESULTS Cell proliferation assay showed minimal cell death when EpiDerm skin tissue was exposed to the anhydrous gel for 24 h; the levels of protein markers of cell proliferation were not affected after 17-h exposure. Ketoprofen was stable in the anhydrous gel when stored at 5°C and 25°C. When compounded in the anhydrous and aqueous gels, ketoprofen had mean flux rate of 2.22 and 2.50 μg/cm2 /h, respectively, after 48 h. The drug was distributed to the epidermis and dermis sections of the skin. Both the anhydrous and aqueous gels facilitated the percutaneous absorption of ketoprofen without statistically significant differences. CONCLUSION The anhydrous gel can be used as a base to facilitate the transdermal delivery of ketoprofen. Although the anhydrous and aqueous gels can deliver a similar amount of ketoprofen, the anhydrous gel (water activity below 0.6) allows for extended default beyond-use-date of compounding preparations.
Collapse
Affiliation(s)
- Kendice Ip
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | - Guiyun Song
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | - Daniel Banov
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | | | - Yi Liu
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | - Hui Song
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | - Benigno C. Valdez
- Department of Stem Cell Transplantation and Cellular TherapyThe University of Texas MD, Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|