1
|
Tang D, Kroemer G, Kang R. Ferroptosis in hepatocellular carcinoma: from bench to bedside. Hepatology 2024; 80:721-739. [PMID: 37013919 PMCID: PMC10551055 DOI: 10.1097/hep.0000000000000390] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
The most widespread type of liver cancer, HCC, is associated with disabled cellular death pathways. Despite therapeutic advancements, resistance to current systemic treatments (including sorafenib) compromises the prognosis of patients with HCC, driving the search for agents that might target novel cell death pathways. Ferroptosis, a form of iron-mediated nonapoptotic cell death, has gained considerable attention as a potential target for cancer therapy, especially in HCC. The role of ferroptosis in HCC is complex and diverse. On one hand, ferroptosis can contribute to the progression of HCC through its involvement in both acute and chronic liver conditions. In contrast, having ferroptosis affect HCC cells might be desirable. This review examines the role of ferroptosis in HCC from cellular, animal, and human perspectives while examining its mechanisms, regulation, biomarkers, and clinical implications.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus; 94800 Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; 75015 Paris, France
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
2
|
Tarannum M, Dinh K, Vergara J, Birch G, Abdulhamid YZ, Kaplan IE, Ay O, Maia A, Beaver O, Sheffer M, Shapiro R, Ali AK, Dong H, Ham JD, Bobilev E, James S, Cameron AB, Nguyen QD, Ganapathy S, Chayawatto C, Koreth J, Paweletz CP, Gokhale PC, Barbie DA, Matulonis UA, Soiffer RJ, Ritz J, Porter RL, Chen J, Romee R. CAR memory-like NK cells targeting the membrane proximal domain of mesothelin demonstrate promising activity in ovarian cancer. SCIENCE ADVANCES 2024; 10:eadn0881. [PMID: 38996027 PMCID: PMC11244547 DOI: 10.1126/sciadv.adn0881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/10/2024] [Indexed: 07/14/2024]
Abstract
Epithelial ovarian cancer (EOC) remains one of the most lethal gynecological cancers. Cytokine-induced memory-like (CIML) natural killer (NK) cells have shown promising results in preclinical and early-phase clinical trials. In the current study, CIML NK cells demonstrated superior antitumor responses against a panel of EOC cell lines, increased expression of activation receptors, and up-regulation of genes involved in cell cycle/proliferation and down-regulation of inhibitory/suppressive genes. CIML NK cells transduced with a chimeric antigen receptor (CAR) targeting the membrane-proximal domain of mesothelin (MSLN) further improved the antitumor responses against MSLN-expressing EOC cells and patient-derived xenograft tumor cells. CAR arming of the CIML NK cells subtanstially reduced their dysfunction in patient-derived ascites fluid with transcriptomic changes related to altered metabolism and tonic signaling as potential mechanisms. Lastly, the adoptive transfer of MSLN-CAR CIML NK cells demonstrated remarkable inhibition of tumor growth and prevented metastatic spread in xenograft mice, supporting their potential as an effective therapeutic strategy in EOC.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Carcinoma, Ovarian Epithelial/metabolism
- Carcinoma, Ovarian Epithelial/pathology
- Carcinoma, Ovarian Epithelial/immunology
- Carcinoma, Ovarian Epithelial/therapy
- Cell Line, Tumor
- GPI-Linked Proteins/metabolism
- GPI-Linked Proteins/genetics
- Immunologic Memory
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mesothelin
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/therapy
- Protein Domains
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Mubin Tarannum
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Khanhlinh Dinh
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Juliana Vergara
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Grace Birch
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yasmin Z. Abdulhamid
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Isabel E. Kaplan
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Oyku Ay
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andreia Maia
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Owen Beaver
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Michal Sheffer
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Roman Shapiro
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alaa Kassim Ali
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Han Dong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - James Dongjoo Ham
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eden Bobilev
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sydney James
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Amy B. Cameron
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Suthakar Ganapathy
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chayapatou Chayawatto
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John Koreth
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cloud P. Paweletz
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Prafulla C. Gokhale
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David A. Barbie
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ursula A. Matulonis
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert J. Soiffer
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jerome Ritz
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rebecca L. Porter
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rizwan Romee
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Tan J, Yu X. A pyroptosis-related lncRNA-based prognostic index for hepatocellular carcinoma by relative expression orderings. Transl Cancer Res 2024; 13:1406-1424. [PMID: 38617506 PMCID: PMC11009817 DOI: 10.21037/tcr-23-1804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/29/2024] [Indexed: 04/16/2024]
Abstract
Background Hepatocellular carcinoma (HCC) is an invasive malignant tumor, and pyroptosis makes an important contribution to the pathology and progression of liver cancer. Many prognostic models have been proposed for HCC based on the quantitative expression level of candidate genes, which are unsuitable for clinical application due to their vulnerability against experimental batch effects. The aim of this study was to develop a novel pyroptosis-related long non-coding RNA (lncRNA)-based prognostic index (PLPI) for HCC based on relative expression orderings (REOs). Methods Firstly, the pyroptosis-related lncRNAs were identified through the Wilcoxon rank-sum test and gene co-expression analyses. Then, the novel prognostic model PLPI was constructed by pyroptosis-related lncRNA pairs, which were identified by multiple machine learning algorithms. Gene set enrichment, somatic mutation, and drug sensitivity analyses were conducted to measure the differences between high- and low-risk patients. Multiple immune analyses were used to explore the association between PLPI and the immunological microenvironment. Results In this study, a novel prognostic model PLPI based on 10 pyroptosis-related lncRNA pairs was constructed, which was proven to be an independent prognostic risk factor. The receiver operating characteristic (ROC) curves showed that the model had a good prognostic ability in the training, testing, and external set, respectively [5-year area under the curve (AUC) =0.73, 5-year AUC =0.81, 4-year AUC =0.79]. The results of survival, somatic mutation, and immune analyses showed that the patients in the low-risk group had a better prognosis, lower rates of somatic mutation, and better immune cell infiltration. Personalized chemotherapeutic drugs were also identified for the patients with HCC. Conclusions The novel PLPI not only greatly predicted the prognosis of patients with HCC but could also offer novel ideas and approaches for the therapeutic management of HCC.
Collapse
Affiliation(s)
- Jinhua Tan
- School of Sciences, Shanghai Institute of Technology, Shanghai, China
| | - Xiaoqing Yu
- School of Sciences, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
4
|
Yang BF, Ma Q, Hui Y, Gao XC, Ma DY, Li JX, Pei ZX, Huang BR. Identification of cuproptosis and ferroptosis-related subgroups and development of a signature for predicting prognosis and tumor microenvironment landscape in hepatocellular carcinoma. Transl Cancer Res 2023; 12:3327-3345. [PMID: 38192999 PMCID: PMC10774034 DOI: 10.21037/tcr-23-685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/08/2023] [Indexed: 01/10/2024]
Abstract
Background Ferroptosis and cuproptosis play a crucial role in the progression and dissemination of hepatocellular carcinoma (HCC). The primary objective of this study was to develop a unique scoring system for predicting the prognosis and immunological landscape of HCC based on ferroptosis-related genes (FRGs) and cuproptosis-related genes (CRGs). Methods As the training cohort, we assembled a novel HCC cohort by merging gene expression data and clinical data from The Cancer Genome Atlas (TCGA) database, and Gene Expression Omnibus (GEO) database. The validation cohort consisted of 230 HCC cases taken from the International Cancer Genome Consortium (ICGC) database. Multiple genomic characteristics, such as tumor mutation burden (TMB), and copy number variations were analyzed concurrently. On the basis of the expression of CRGs and FRGs, patients were classified into cuproptosis and ferroptosis subtypes. Then, we constructed a risk model using least absolute shrinkage and selection operator (LASSO) analysis and Cox regression analysis based on ferroptosis and cuproptosis-related differentially expressed genes (DEGs). Patients were separated into two groups according to median risk score. We compared the immunophenotype, tumor microenvironment (TME), cancer stem cell index, and treatment sensitivity of two groups. Results Three subtypes of ferroptosis and two subtypes of cuproptosis were identified among the patients. A greater likelihood of survival (P<0.05) was expected for patients in FRGcluster B and CRGcluster B. After that, a confirmed risk signature for ferroptosis and cuproptosis was developed and tested. Patients in the low-risk group had significantly higher survival rates than those in the high-risk group, according to our study (P<0.001). There was also a strong correlation between the signature and other variables including immunophenoscore, TMB, cancer stem cell index, immunological checkpoint genes, and sensitivity to chemotherapeutics. Conclusions Through this comprehensive research, we identified a unique risk signature associated with HCC patients' treatment status and prognosis. Our findings highlight FRGs' and CRGs' significance in clinical practice and imply ferroptosis and cuproptosis may be therapeutic targets for HCC patients.
Collapse
Affiliation(s)
- Bin-Feng Yang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Qi Ma
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuan Hui
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiang-Chun Gao
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Da-You Ma
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jing-Xian Li
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zheng-Xue Pei
- Department of Integrative Medicine, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Bang-Rong Huang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
5
|
Jiang W, Wang L, Zhang Y, Li H. Identification and verification of novel immune-related ferroptosis signature with excellent prognostic predictive and clinical guidance value in hepatocellular carcinoma. Front Genet 2023; 14:1112744. [PMID: 37671041 PMCID: PMC10475594 DOI: 10.3389/fgene.2023.1112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/25/2023] [Indexed: 09/07/2023] Open
Abstract
Background: Immunity and ferroptosis often play a synergistic role in the progression and treatment of hepatocellular carcinoma (HCC). However, few studies have focused on identifying immune-related ferroptosis gene biomarkers. Methods: We performed weighted gene co-expression network analysis (WGCNA) and random forest to identify prognostic differentially expressed immune-related genes (PR-DE-IRGs) highly related to HCC and characteristic prognostic differentially expressed ferroptosis-related genes (PR-DE-FRGs) respectively to run co-expression analysis for prognostic differentially expressed immune-related ferroptosis characteristic genes (PR-DE-IRFeCGs). Lasso regression finally identified 3 PR-DE-IRFeCGs for us to construct a prognostic predictive model. Differential expression and prognostic analysis based on shared data from multiple sources and experimental means were performed to further verify the 3 modeled genes' biological value in HCC. We ran various performance testing methods to test the model's performance and compare it with other similar signatures. Finally, we integrated composite factors to construct a comprehensive quantitative nomogram for accurate prognostic prediction and evaluated its performance. Results: 17 PR-DE-IRFeCGs were identified based on co-expression analysis between the screened 17 PR-DE-FRGs and 34 PR-DE-IRGs. Multi-source sequencing data, QRT-PCR, immunohistochemical staining and testing methods fully confirmed the upregulation and significant prognostic influence of the three PR-DE-IRFeCGs in HCC. The model performed well in the performance tests of multiple methods based on the 5 cohorts. Furthermore, our model outperformed other related models in various performance tests. The immunotherapy and chemotherapy guiding value of our signature and the comprehensive nomogram's excellent performance have also stood the test. Conclusion: We identified a novel PR-DE-IRFeCGs signature with excellent prognostic prediction and clinical guidance value in HCC.
Collapse
Affiliation(s)
- Wenxiu Jiang
- Department of Infectious Diseases, The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Lili Wang
- Department of Clinical Research, The Second Hospital of Nanjing, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yajuan Zhang
- General Medicine, Pingjiang Xincheng Community Health Service Center, Suzhou, China
| | - Hongliang Li
- Department of Infectious Diseases, The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China
| |
Collapse
|
6
|
Ding R, Zhao C, Jing Y, Chen R, Meng Q. Basement membrane-related regulators for prediction of prognoses and responses to diverse therapies in hepatocellular carcinoma. BMC Med Genomics 2023; 16:81. [PMID: 37081465 PMCID: PMC10116671 DOI: 10.1186/s12920-023-01504-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a global health threat. Finding a novel biomarker for assessing the prognosis and new therapeutic targets is vital to treating this patient population. Our study aimed to explore the contribution of basement membrane-related regulators (BMR) to prognostic assessment and therapeutic response prediction in HCC. MATERIAL AND METHODS The RNA sequencing and clinical information of HCC were downloaded from TCGA-LIHC, ICGC-JP, GSE14520, GSE104580, and CCLE datasets. The BMR signature was created by the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and used to separate HCC patients into low- and high-risk groups. We conducted analyses using various R 4.1.3 software packages to compare prognoses and responses to immunotherapy, transcatheter arterial chemoembolization (TACE), and chemotherapeutic drugs between the groups. Additionally, stemness indices, molecular functions, and somatic mutation analyses were further explored in these subgroups. RESULTS The BMR signature included 3 basement membrane-related genes (CTSA, P3H1, and ADAM9). We revealed that BMR signature was an independent risk contributor to poor prognosis in HCC, and high-risk group patients presented shorter overall survival. We discovered that patients in the high-risk group might be responsive to immunotherapy, while patients in the low-risk group may be susceptible to TACE therapy. Over 300 agents were screened to identify effective drugs for the two subgroups. CONCLUSION Overall, basement membrane-related regulators represent novel biomarkers in HCC for assessing prognosis, response to immunotherapy, the effectiveness of TACE therapy, and drug susceptibility.
Collapse
Affiliation(s)
- Ruili Ding
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuhan, 430061, Hubei Province, China
| | - Chuanbing Zhao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuhan, 430061, Hubei Province, China
| | - Yixin Jing
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuhan, 430061, Hubei Province, China
| | - Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuhan, 430061, Hubei Province, China
| | - Qingtao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuhan, 430061, Hubei Province, China.
| |
Collapse
|
7
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
8
|
Wang H, Zhang B, Shang Y, Chen F, Fan Y, Tan K. A novel risk score model based on pyroptosis-related genes for predicting survival and immunogenic landscape in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:1412-1444. [PMID: 36920176 PMCID: PMC10042690 DOI: 10.18632/aging.204544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/13/2023] [Indexed: 03/15/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer worldwide, with high incidence and mortality. Pyroptosis, a form of inflammatory-regulated cell death, is closely associated with oncogenesis. METHODS Expression profiles of HCC were downloaded from the TCGA database and validated using the ICGC and GEO databases. Consensus clustering analysis was used to determine distinct clusters. The pyroptosis-related genes (PRGs) included in the pyroptosis-related signature were selected by univariate Cox regression and LASSO regression analysis. Kaplan-Meier and receiver operating characteristic (ROC) analyses were performed to estimate the prognostic potential of the model. The characteristics of infiltration of immune cells between different groups of HCC were explored. RESULTS Two independent clusters were identified according to PRG expression. Cluster 2 showed upregulated expression, poor prognosis, increased immune cell infiltration and worse immunotherapy response than cluster 1. A prognostic risk signature consisting of five genes (GSDME, NOD1, PLCG1, NLRP6 and NLRC4) was identified. In the high-risk score group, HCC patients showed decreased survival rates. In particular, multiple clinicopathological characteristics and immune cell infiltration were significantly associated with the risk score. Notably, the 5 PRGs in the risk score have been implicated in carcinogenesis, immunological pathways and drug sensitivity. CONCLUSIONS A prognostic signature comprising five PRGs can be used as a potential prognostic factor for HCC. The PRG-related signature provides an in-depth understanding of the association between pyroptosis and chemotherapy or immunotherapy for HCC patients.
Collapse
Affiliation(s)
- Hongyu Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Bo Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Yanan Shang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Fei Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| |
Collapse
|
9
|
Ma Q, Hui Y, Huang BR, Yang BF, Li JX, Fan TT, Gao XC, Ma DY, Chen WF, Pei ZX. Ferroptosis and cuproptosis prognostic signature for prediction of prognosis, immunotherapy and drug sensitivity in hepatocellular carcinoma: development and validation based on TCGA and ICGC databases. Transl Cancer Res 2023; 12:46-64. [PMID: 36760376 PMCID: PMC9906058 DOI: 10.21037/tcr-22-2203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignancy. Ferroptosis and cuproptosis promote HCC spread and proliferation. While fewer studies have combined ferroptosis and cuproptosis to construct prognostic signature of HCC. This work attempts to establish a novel scoring system for predicting HCC prognosis, immunotherapy, and medication sensitivity based on ferroptosis-related genes (FRGs) and cuproptosis-related genes (CRGs). Methods FerrDb and previous literature were used to identify FRGs. CRGs came from original research. The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases included the HCC transcriptional profile and clinical information [survival time, survival status, age, gender, Tumor Node Metastasis (TNM) stage, etc.]. Correlation, Cox, and least absolute shrinkage and selection operator (LASSO) regression analyses were used to narrow down prognostic genes and develop an HCC risk model. Using "caret", R separated TCGA-HCC samples into a training risk set and an internal test risk set. As external validation, we used ICGC samples. We employed Kaplan-Meier analysis and receiver operating characteristic (ROC) curve to evaluate the model's clinical efficacy. CIBERSORT and TIMER measured immunocytic infiltration in high- and low-risk populations. Results TXNRD1 [hazard ratio (HR) =1.477, P<0.001], FTL (HR =1.373, P=0.001), GPX4 (HR =1.650, P=0.004), PRDX1 (HR =1.576, P=0.002), VDAC2 (HR =1.728, P=0.008), OTUB1 (HR =1.826, P=0.002), NRAS (HR =1.596, P=0.005), SLC38A1 (HR =1.290, P=0.002), and SLC1A5 (HR =1.306, P<0.001) were distinguished to build predictive model. In both the model cohort (P<0.001) and the validation cohort (P<0.05), low-risk patients had superior overall survival (OS). The areas under the curve (AUCs) of the ROC curves in the training cohort (1-, 3-, and 5-year AUCs: 0.751, 0.727, and 0.743), internal validation cohort (1-, 3-, and 5-year AUCs: 0.826, 0.624, and 0.589), and ICGC cohort (1-, 3-, and 5-year AUCs: 0.699, 0.702, and 0.568) were calculated. Infiltration of immune cells and immunological checkpoints were also connected with our signature. Treatments with BI.2536, Epothilone.B, Gemcitabine, Mitomycin.C, Obatoclax. Mesylate, and Sunitinib may profit high-risk patients. Conclusions We analyzed FRGs and CRGs profiles in HCC and established a unique risk model for treatment and prognosis. Our data highlight FRGs and CRGs in clinical practice and suggest ferroptosis and cuproptosis may be therapeutic targets for HCC patients. To validate the model's clinical efficacy, more HCC cases and prospective clinical assessments are needed.
Collapse
Affiliation(s)
- Qi Ma
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuan Hui
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Bang-Rong Huang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Bin-Feng Yang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Jing-Xian Li
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Ting-Ting Fan
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiang-Chun Gao
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Da-You Ma
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Wei-Fu Chen
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zheng-Xue Pei
- Department of Integrative Medicine, Gansu Cancer Hospital, Lanzhou, China
| |
Collapse
|
10
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World J Gastroenterol 2023; 29:616-655. [PMID: 36742167 PMCID: PMC9896614 DOI: 10.3748/wjg.v29.i4.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
It was clearly realized more than 50 years ago that iron deposition in the liver may be a critical factor in the development and progression of liver disease. The recent clarification of ferroptosis as a specific form of regulated hepatocyte death different from apoptosis and the description of ferritinophagy as a specific variation of autophagy prompted detailed investigations on the association of iron and the liver. In this review, we will present a brief discussion of iron absorption and handling by the liver with emphasis on the role of liver macrophages and the significance of the iron regulators hepcidin, transferrin, and ferritin in iron homeostasis. The regulation of ferroptosis by endogenous and exogenous mod-ulators will be examined. Furthermore, the involvement of iron and ferroptosis in various liver diseases including alcoholic and non-alcoholic liver disease, chronic hepatitis B and C, liver fibrosis, and hepatocellular carcinoma (HCC) will be analyzed. Finally, experimental and clinical results following interventions to reduce iron deposition and the promising manipulation of ferroptosis will be presented. Most liver diseases will be benefited by ferroptosis inhibition using exogenous inhibitors with the notable exception of HCC, where induction of ferroptosis is the desired effect. Current evidence mostly stems from in vitro and in vivo experimental studies and the need for well-designed future clinical trials is warranted.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71003, Greece
| | - Ioannis Tsomidis
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| |
Collapse
|
11
|
Wen K, Yang F, Hu L, Shi J, Mui S, Wang W, Liao H, Li H, Xiao Z, Yan Y. Analysis of the potential association between ferroptosis and immune in hepatocellular carcinoma and their relationship with prognosis. Front Oncol 2023; 12:1031156. [PMID: 36776357 PMCID: PMC9910086 DOI: 10.3389/fonc.2022.1031156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/20/2022] [Indexed: 01/27/2023] Open
Abstract
Background The development of targeted therapy and immunotherapy has enriched the treatment of hepatocellular carcinoma (HCC), however, have had poor or no reponse, or even no response. Previous research suggested that ferroptosis and tumor immune microenvironment (TIME) may have a fundamental impact on efficacy during HCC immunotherapy and targeted therapy. Therefore, there is a clinical need to develop a signature that categorizes HCC patients in order to make more accurate clinical decisions. Methods Clinical data and gene expression data of HCC patients were obtained from The Cancer Genome Atlas (TCGA) portal and International Cancer Genome Consortium (ICGC) portal. To identify ferroptosis-related immune-related genes (ferroptosis-related IRGs), Pearson correlation analysis was conducted. The ferroptosis-related IRGs prognostic signature (FIPS) was constructed using Univariate Cox and LASSO Cox algorithms. The predictive effectiveness of FIPS was evaluated using Receiver Operating Characteristic (ROC) curves and survivorship curve. The correlation ship between FIPS and TIME was evaluated using single-sample Gene Set Enrichment Analysis (ssGSEA) and CIBERSORT. The relationship between FIPS and immunotherapy responsiveness was evaluated using immunophenoscore. The expression level of 10 ferroptosis-related IRGs in normal liver tissues and HCC tissues was compared using immunohistochemistry. Finally, we established a nomogram (based on FIPS, TNM stage, and age) for clinical application. Results The FIPS was established with ten ferroptosis-related IRGs. The high-FIPS subgroup showed a poor clinical prognosis and an obviously higher proportion of HCC patients with advanced TNM stage, high WHO grade and high alpha fetoprotein(AFP) value. Analysis of TIME indicated that patients in the high-FIPS subgroup may be in immunosuppressed state. Meanwhile, we found that ferroptosis may be inhibited in the high-FIPS subgroup and this subgroup may be impervious to immunotherapy and sorafenib. Conclusion We constructed a novel potential prognostic signature for HCC patients that predicts overall survival, ferroptosis and immune status, sorafenib sensitivity, and immunotherapy responsiveness.
Collapse
Affiliation(s)
- Kai Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Feng Yang
- Department of General Surgery, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, China
| | - Lei Hu
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Juanyi Shi
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sintim Mui
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weidong Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hao Liao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huoming Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China,*Correspondence: Zhiyu Xiao, ; Yongcong Yan,
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China,*Correspondence: Zhiyu Xiao, ; Yongcong Yan,
| |
Collapse
|
12
|
Chuanbing Z, Zhengle Z, Ruili D, Kongfan Z, Jing T. Genes Modulating Butyrate Metabolism for Assessing Clinical Prognosis and Responses to Systematic Therapies in Hepatocellular Carcinoma. Biomolecules 2022; 13:52. [PMID: 36671437 PMCID: PMC9856074 DOI: 10.3390/biom13010052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Butyrate, one of the major products of the gut microbiota, has played notable roles in diverse therapies for multiple tumors. Our study aimed to determine the roles of genes that modulate butyrate metabolism (BM) in predicting the clinical prognosis and responses to systemic therapies in hepatocellular carcinoma (HCC). The genes modulating BM were available from the GeneCard database, and gene expression and clinical information were obtained from TCGA-LIHC, GEO, ICGC-JP, and CCLE databases. Candidate genes from these genes that regulate BM were then identified by univariate Cox analysis. According to candidate genes, the patients in TCGA were grouped into distinct subtypes. Moreover, BM- related gene signature (BMGs) was created via the LASSO Cox algorithm. The roles of BMGs in identifying high-risk patients of HCC, assessing the prognoses, and predicting systematic therapies were determined in various datasets. The statistical analyses were fulfilled with R 4.1.3, GraphPad Prism 8.0 and Perl 5.30.0.1 software. In the TCGA cohort, most butyrate-related genes were over-expressed in the B cluster, and patients in the B cluster showed worse prognoses. BMGs constructed by LASSO were composed of eight genes. BMGs exhibited a strong performance in evaluating the prognoses of HCC patients in various datasets, which may be superior to 33 published biomarkers. Furthermore, BMGs may contribute to the early surveillance of HCC, and BMGs could play active roles in assessing the effectiveness of immunotherapy, TACE, ablation therapy, and chemotherapeutic drugs for HCC. BMGs may be served as novel promising biomarkers for early identifying high-risk groups of HCC, as well as assessing prognoses, drug sensitivity, and the responses to immunotherapy, TACE, and ablation therapy in patients with HCC.
Collapse
Affiliation(s)
- Zhao Chuanbing
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Zhang Zhengle
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Ding Ruili
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Zhu Kongfan
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Tao Jing
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430061, China
| |
Collapse
|
13
|
Zhu R, Gao C, Feng Q, Guan H, Wu J, Samant H, Yang F, Wang X. Ferroptosis-related genes with post-transcriptional regulation mechanisms in hepatocellular carcinoma determined by bioinformatics and experimental validation. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1390. [PMID: 36660631 PMCID: PMC9843431 DOI: 10.21037/atm-22-5750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/05/2022] [Indexed: 01/01/2023]
Abstract
Background Ferroptosis is a form of iron-dependent cell death with increased free iron and massive lipid peroxidation. The discovery of ferroptosis offers insights into hepatocellular carcinoma (HCC) treatment. However, post-transcriptional regulation mechanisms of ferroptosis in HCC remain to be elucidated. The present study explored ferroptosis-related genes and their post-transcriptional regulation mechanisms in HCC. Methods A ferroptosis score was computed in The Cancer Genome Atlas (TCGA) cohort via gene set variation analysis (GSVA), and ferroptosis-related genes were screened by differential expression and correlation analyses. CircRNA/miRNA-mediated ferroptosis-related genes were predicted, and associations of ferroptosis-related genes with m1A/m5C/m6A regulators were analyzed. Immune cell infiltrations were inferred via CIBERSORT. NUDCD1 expression was examined in L-02, SMMC7721, and HepG2 cells via real time quantitative polymerase chain reaction (RT-qPCR) and western blots. After NUDCD1 was silenced, cell viability, glutathione peroxidase 4 (GPX4) and ferritin heavy chain 1 (FTH1) expression, and oxidized glutathione/glutathione (GSSG/GSH) and glutathione (GSH) levels were detected in SMMC7721 and HepG2 cells. Results The ferroptosis score was linked to poor overall survival (OS) of HCC, which was independent of other clinicopathological parameters. Ten ferroptosis-related genes were determined, namely UGT1A6, ATP6V1C1, MAFG, NUDCD1, PPP1R1A, TSKU, CTSB, AIFM2, CTSA, and CTNND2, which were post-transcriptionally regulated by circRNA/miRNA and m1A/m5C/m6A modifications in HCC. Most were significantly linked with most immune cell compositions within the immune microenvironment, and contributed to undesirable clinical outcomes. NUDCD1 was up-regulated in HCC cells, and its loss facilitated the ferroptosis of HCC cells. Conclusions Overall, our findings determined ferroptosis-related genes post-transcriptionally regulated by circRNA/miRNA and m1A/m5C/m6A RNA modifications, and experiments demonstrated that loss of NUDCD1 may facilitate the ferroptosis of HCC cells, which provides novel insights into the regulatory mechanisms of ferroptosis in HCC.
Collapse
Affiliation(s)
- Renfei Zhu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China;,Department of Hepatobiliary, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Cheng Gao
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, China
| | - Qiuqi Feng
- Department of Hepatobiliary, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Haitao Guan
- Department of Ultrasound, Suzhou Science & Technology Town Hospital, Suzhou, China
| | - Jianjun Wu
- Department of Hepatobiliary, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Hrishikesh Samant
- Division of Gastroenterology and Hepatology, LSU Health Science Center, Shreveport, LA, USA
| | - Fan Yang
- Department of ICU, Affiliated Nantong Hospital of Shanghai University, Nantong, China;,Department of ICU, The Sixth People’s Hospital of Nantong, Nantong, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| |
Collapse
|
14
|
Zhao C, Zhang Z, Tao J. A Novel Ferroptosis-Related Signature for Prediction of Prognosis, Immune Profiles and Drug Sensitivity in Hepatocellular Carcinoma Patients. Curr Oncol 2022; 29:6992-7011. [PMID: 36290827 PMCID: PMC9601138 DOI: 10.3390/curroncol29100550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/05/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant disease with an increasing incidence and a high mortality rate. Ferroptosis, a novel type of cell death, has been reported to be closely associated with the progression of HCC. The aim of our study was to construct a novel ferroptosis-related signature (nFRGs) for prediction of prognosis, immune features and drug sensitivity of HCC patients. Data were obtained from the TCGA, ICGC, GSE104580, CCLE and IMvigor210 datasets, and the least absolute shrinkage and selection operator (LASSO) was used to construct nFRGs. In addition, the analyses involved in prognoses, molecular function, stemness indices, somatic mutation, responses to immunologic therapy, efficacy of transcatheter arterial chemoembolization (TACE) therapy and drug sensitivity were performed using diverse packages of R 4.1.3 between the low- and high-risk groups. The nFRGs included seven ferroptosis-related genes. Our results showed that nFRGs was an independent risk factor for prognoses of HCC patients, and HCC patients in the high-risk group presented with worse prognosis. Compared with the results of other studies, nFRGs was superior to other promising signatures in predicting prognoses of patients with HCC. In addition, most of the enriched pathways of differentially expressed genes (DEGs) between these subgroups were related to immune features. The molecular functions, genetic mutation and mRNAsi were varied between the high- and low-risk groups. Moreover, we observed significant immunosuppression state in the high-risk group. Patients in the high-risk group might benefit from immunotherapy, whereas patients in the low-risk group may be susceptible to TACE therapy. Finally, five sensitive drugs and four sensitive drugs were screened for patients in the high- and low-risk groups, respectively. nFRGs may served as a novel biomarker of prognosis and aid in personalized therapeutic strategies for patients with HCC.
Collapse
Affiliation(s)
| | | | - Jing Tao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430061, China
| |
Collapse
|
15
|
Zhao C, Zhang Z, Jing T. A novel signature of combing cuproptosis- with ferroptosis-related genes for prediction of prognosis, immunologic therapy responses and drug sensitivity in hepatocellular carcinoma. Front Oncol 2022; 12:1000993. [PMID: 36249031 PMCID: PMC9562991 DOI: 10.3389/fonc.2022.1000993] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Our study aimed to construct a novel signature (CRFs) of combing cuproptosis-related genes with ferroptosis-related genes for the prediction of the prognosis, responses of immunological therapy, and drug sensitivity of hepatocellular carcinoma (HCC) patients. METHODS The RNA sequencing and corresponding clinical data of patients with HCC were downloaded from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), GSE76427, GSE144269, GSE140580, Cancer Cell Line Encyclopedia (CCLE), and IMvigor210 cohorts. CRFs was constructed using the least absolute shrinkage and selection operator (LASSO) algorithm. The analyses involved in the prognosis, response to immunologic therapy, efficacy of transcatheter arterial chemoembolization (TACE) therapy, and drug sensitivity were performed. Furthermore, the molecular function, somatic mutation, and stemness analyses were further performed between the low- and high-risk groups, respectively. In this study, the statistical analyses were performed by using the diverse packages of R 4.1.3 software and Cytoscape 3.8.0. RESULTS CRFs included seven genes (G6PD, NRAS, RRM2, SQSTM1, SRXN1, TXNRD1, and ZFP69B). Multivariate Cox regression analyses demonstrated that CRFs were an independent risk factor for prognosis. In addition, these patients in the high-risk group presented with worse prognoses and a significant state of immunosuppression. Moreover, patients in the high-risk group might achieve greater outcomes after receiving immunologic therapy, while patients in the low-risk group are sensitive to TACE. Furthermore, we discovered that patients in the high-risk group may benefit from the administration of sunitinib. In addition, enhanced mRANsi and tumor mutation burden (TMB) yielded in the high-risk group. Additionally, the functions enriched in the low-risk group differed from those in the other group. CONCLUSION In summary, CRFs may be regarded not only as a novel biomarker of worse prognosis, but also as an excellent predictor of immunotherapy response, efficacy of TACE and drug sensitivity in HCC, which is worthy of clinical promotion.
Collapse
|