1
|
Henderikx RJM, Mann D, Domanska A, Dong J, Shahzad S, Lak B, Filopoulou A, Ludig D, Grininger M, Momoh J, Laanto E, Oksanen HM, Bisikalo K, Williams PA, Butcher SJ, Peters PJ, Beulen BWAMM. VitroJet: new features and case studies. Acta Crystallogr D Struct Biol 2024; 80:232-246. [PMID: 38488730 PMCID: PMC10994172 DOI: 10.1107/s2059798324001852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Single-particle cryo-electron microscopy has become a widely adopted method in structural biology due to many recent technological advances in microscopes, detectors and image processing. Before being able to inspect a biological sample in an electron microscope, it needs to be deposited in a thin layer on a grid and rapidly frozen. The VitroJet was designed with this aim, as well as avoiding the delicate manual handling and transfer steps that occur during the conventional grid-preparation process. Since its creation, numerous technical developments have resulted in a device that is now widely utilized in multiple laboratories worldwide. It features plasma treatment, low-volume sample deposition through pin printing, optical ice-thickness measurement and cryofixation of pre-clipped Autogrids through jet vitrification. This paper presents recent technical improvements to the VitroJet and the benefits that it brings to the cryo-EM workflow. A wide variety of applications are shown: membrane proteins, nucleosomes, fatty-acid synthase, Tobacco mosaic virus, lipid nanoparticles, tick-borne encephalitis viruses and bacteriophages. These case studies illustrate the advancement of the VitroJet into an instrument that enables accurate control and reproducibility, demonstrating its suitability for time-efficient cryo-EM structure determination.
Collapse
Affiliation(s)
- Rene J. M. Henderikx
- CryoSol-World, Weert, The Netherlands
- Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, The Netherlands
| | - Daniel Mann
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Aušra Domanska
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Life Science Institute–Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Jing Dong
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Saba Shahzad
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Behnam Lak
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Life Science Institute–Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Aikaterini Filopoulou
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Damian Ludig
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jeffrey Momoh
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Elina Laanto
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Hanna M. Oksanen
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Kyrylo Bisikalo
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Life Science Institute–Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Pamela A. Williams
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Sarah J. Butcher
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Life Science Institute–Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Peter J. Peters
- Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
2
|
Mendez JH, Chua EYD, Paraan M, Potter CS, Carragher B. Automated pipelines for rapid evaluation during cryoEM data acquisition. Curr Opin Struct Biol 2023; 83:102729. [PMID: 37988815 DOI: 10.1016/j.sbi.2023.102729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023]
Abstract
Cryo-electron microscopy (cryoEM) has become a popular method for determining high-resolution structures of biomolecules. However, data processing can be time-consuming, particularly for new researchers entering the field. To improve data quality and increase data collection efficiency, several software packages have been developed for on-the-fly data processing with various degrees of automation. These software packages allow researchers to perform tasks such as motion correction, CTF estimation, 2D classification, and 3D reconstruction in real-time, with minimal human input. On-the-fly data processing can not only improve data collection efficiency but also increase the productivity of instrumentation in high demand. However, the various software packages available differ in their performance, computational requirements, and levels of automation. In this review, we describe the minimal metrics used to assess data quality during data collection, outline the features of an ideal on-the-fly data processing software systems, and provide results from using three of these systems.
Collapse
Affiliation(s)
- Joshua H Mendez
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Eugene Y D Chua
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Mohammadreza Paraan
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Clinton S Potter
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Balyschew N, Yushkevich A, Mikirtumov V, Sanchez RM, Sprink T, Kudryashev M. Streamlined structure determination by cryo-electron tomography and subtomogram averaging using TomoBEAR. Nat Commun 2023; 14:6543. [PMID: 37848413 PMCID: PMC10582028 DOI: 10.1038/s41467-023-42085-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
Structures of macromolecules in their native state provide unique unambiguous insights into their functions. Cryo-electron tomography combined with subtomogram averaging demonstrated the power to solve such structures in situ at resolutions in the range of 3 Angstrom for some macromolecules. In order to be applicable to the structural determination of the majority of macromolecules observable in cells in limited amounts, processing of tomographic data has to be performed in a high-throughput manner. Here we present TomoBEAR-a modular configurable workflow engine for streamlined processing of cryo-electron tomographic data for subtomogram averaging. TomoBEAR combines commonly used cryo-EM packages with reasonable presets to provide a transparent ("white box") approach for data management and processing. We demonstrate applications of TomoBEAR to two data sets of purified macromolecular targets, to an ion channel RyR1 in a membrane, and the tomograms of plasma FIB-milled lamellae and demonstrate the ability to produce high-resolution structures. TomoBEAR speeds up data processing, minimizes human interventions, and will help accelerate the adoption of in situ structural biology by cryo-ET. The source code and the documentation are freely available.
Collapse
Affiliation(s)
- Nikita Balyschew
- Max Planck Institute of Biophysics, Frankfurt on Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt on Main, Frankfurt, Germany
| | - Artsemi Yushkevich
- In Situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Vasilii Mikirtumov
- Max Planck Institute of Biophysics, Frankfurt on Main, Germany
- In Situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ricardo M Sanchez
- Max Planck Institute of Biophysics, Frankfurt on Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt on Main, Frankfurt, Germany
- EMBL Heidelberg, Heidelberg, Germany
| | - Thiemo Sprink
- Core Facility for Cryo-Electron Microscopy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cryo-EM Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mikhail Kudryashev
- Max Planck Institute of Biophysics, Frankfurt on Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt on Main, Frankfurt, Germany.
- In Situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|