1
|
Osawa T, Nomura K, Shimamoto K, Fujikawa K. Synthesis of a fluorescent analog for exploring the functions of the bacterial glycopyrophospholipid MPIase. Carbohydr Res 2025; 553:109483. [PMID: 40253890 DOI: 10.1016/j.carres.2025.109483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/17/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Recent studies have revealed that a glycolipid known as membrane protein integrase (MPIase) plays critical roles in the membrane protein integration and membrane permeabilization in Escherichia coli inner membranes. MPIase constitutes approximately 0.5 % of the inner membrane and is composed of a long glycan, a pyrophosphate linker, and a lipid anchor. However, its low abundance and structural heterogeneity have presented significant challenges in elucidating its mechanisms of action in membrane protein integration and permeabilization. To address these limitations, we have synthesized structurally defined MPIase analogs that retain membrane protein integration activity and uncovered aspects of its mechanism of action. In this study, we have developed a synthetic method for fluorescently labeled MPIase analogs, enabling dynamic studies of MPIase and its interactions with membrane proteins. By exploring various strategies for incorporating amino linkers into the previously synthesized MPIase intermediates, we successfully introduced a fluorescent group into the minimal active structure of MPIase for the first time. This approach provides a versatile platform for synthesizing fluorescent or photoreactive MPIase analogs, offering a powerful tool to advance understanding the functions and roles of MPIase in membrane biology.
Collapse
Affiliation(s)
- Tsukiho Osawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Kaoru Nomura
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Keiko Shimamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kohki Fujikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan.
| |
Collapse
|
2
|
Osawa T, Fujikawa K, Shimamoto K. Structures, functions, and syntheses of glycero-glycophospholipids. Front Chem 2024; 12:1353688. [PMID: 38389730 PMCID: PMC10881803 DOI: 10.3389/fchem.2024.1353688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Biological membranes consist of integral and peripheral protein-associated lipid bilayers. Although constituent lipids vary among cells, membrane lipids are mainly classified as phospholipids, glycolipids, and sterols. Phospholipids are further divided into glycerophospholipids and sphingophospholipids, whereas glycolipids are further classified as glyceroglycolipids and sphingoglycolipids. Both glycerophospholipids and glyceroglycolipids contain diacylglycerol as the common backbone, but their head groups differ. Most glycerolipids have polar head groups containing phosphate esters or sugar moieties. However, trace components termed glycero-glycophospholipids, each possessing both a phosphate ester and a sugar moiety, exist in membranes. Recently, the unique biological activities of glycero-glycophospholipids have attracted considerable attention. In this review, we describe the structure, distribution, function, biosynthesis, and chemical synthetic approaches of representative glycero-glycophospholipids-phosphatidylglucoside (PtdGlc) and enterobacterial common antigen (ECA). In addition, we introduce our recent studies on the rare glycero-glyco"pyrophospho"lipid, membrane protein integrase (MPIase), which is involved in protein translocation across biomembranes.
Collapse
Affiliation(s)
- Tsukiho Osawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Kohki Fujikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Keiko Shimamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Shimamoto K, Fujikawa K, Osawa T, Mori S, Nomura K, Nishiyama KI. Key contributions of a glycolipid to membrane protein integration. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:387-413. [PMID: 39085064 DOI: 10.2183/pjab.100.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Regulation of membrane protein integration involves molecular devices such as Sec-translocons or the insertase YidC. We have identified an integration-promoting factor in the inner membrane of Escherichia coli called membrane protein integrase (MPIase). Structural analysis revealed that, despite its enzyme-like name, MPIase is a glycolipid with a long glycan comprising N-acetyl amino sugars, a pyrophosphate linker, and a diacylglycerol (DAG) anchor. Additionally, we found that DAG, a minor membrane component, blocks spontaneous integration. In this review, we demonstrate how they contribute to Sec-independent membrane protein integration in bacteria using a comprehensive approach including synthetic chemistry and biophysical analyses. DAG blocks unfavorable spontaneous integrations by suppressing mobility in the membrane core, whereas MPIase compensates for this. Moreover, MPIase plays critical roles in capturing a substrate protein to prevent its aggregation, attracting it to the membrane surface, facilitating its insertion into the membrane, and delivering it to other factors. The combination of DAG and MPIase efficiently regulates the integration of membrane proteins.
Collapse
Affiliation(s)
- Keiko Shimamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kohki Fujikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Tsukiho Osawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Shoko Mori
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Kaoru Nomura
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Ken-Ichi Nishiyama
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
4
|
Phosphatidylglycerol Is the Lipid Donor for Synthesis of Phospholipid-Linked Enterobacterial Common Antigen. J Bacteriol 2023; 205:e0040322. [PMID: 36622229 PMCID: PMC9879101 DOI: 10.1128/jb.00403-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Gram-negative outer membrane (OM) is an asymmetric bilayer with phospholipids in its inner leaflet and mainly lipopolysaccharide (LPS) in its outer leaflet and is largely impermeable to many antibiotics. In Enterobacterales (e.g., Escherichia, Salmonella, Klebsiella, and Yersinia), the outer leaflet of the OM also contains phosphoglyceride-linked enterobacterial common antigen (ECAPG). This molecule consists of the conserved ECA carbohydrate linked to diacylglycerol-phosphate (DAG-P) through a phosphodiester bond. ECAPG contributes to the OM permeability barrier and modeling suggests that it may alter the packing of LPS molecules in the OM. Here, we investigate, in Escherichia coli K-12, the reaction synthesizing ECAPG from ECA precursor linked to an isoprenoid carrier to identify the lipid donor that provides the DAG-P moiety to ECAPG. Through overexpression of phospholipid biosynthesis genes, we observed alterations expected to increase levels of phosphatidylglycerol (PG) increased the synthesis of ECAPG, whereas alterations expected to decrease levels of PG decreased the synthesis of ECAPG. We discovered depletion of PG levels in strains that could synthesize ECAPG, but not other forms of ECA, causes additional growth defects, likely due to the buildup of ECA precursor on the isoprenoid carrier inhibiting peptidoglycan biosynthesis. Our results demonstrate ECAPG can be synthesized in the absence of the other major phospholipids (phosphatidylethanolamine and cardiolipin). Overall, these results conclusively demonstrate PG is the lipid donor for the synthesis of ECAPG and provide a key insight into the reaction producing ECAPG. In addition, these results provide an interesting parallel to lipoprotein acylation, which also uses PG as its DAG donor. IMPORTANCE The Gram-negative outer membrane is a permeability barrier preventing cellular entry of antibiotics. However, outer membrane biogenesis pathways are targets for small molecule development. Here, we investigate the synthesis of a form of enterobacterial common antigen (ECA), ECAPG, found in the outer membrane of Enterobacterales (e.g., Escherichia, Salmonella, and Klebsiella). ECAPG consists of the conserved ECA carbohydrate unit linked to diacylglycerol-phosphate-ECA is a phospholipid headgroup. The details of the reaction forming this molecule from polymerized ECA precursor are unknown. We determined the lipid donor providing the phospholipid moiety is phosphatidylglycerol. Understanding the synthesis of outer membrane constituents such as ECAPG provides the opportunity for development of molecules to increase outer membrane permeability, expanding the antibiotics available to treat Gram-negative infections.
Collapse
|
5
|
Kamemoto Y, Hikage R, Han Y, Sekiya Y, Sawasato K, Nishiyama KI. Coordinated upregulation of two CDP-diacylglycerol synthases, YnbB and CdsA, is essential for cell growth and membrane protein export in the cold. FEMS Microbiol Lett 2023; 370:fnad131. [PMID: 38070879 DOI: 10.1093/femsle/fnad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023] Open
Abstract
YnbB is a paralogue of CdsA, a CDP-diacylglycerol synthase. While the cdsA gene is essential, the ynbB gene is dispensable. So far, no phenotype of ynbB knockout has been observed. We found that a ynbB knockout strain acquired cold-sensitivity on growth under CdsA-limited conditions. We found that MPIase, a glycolipid involved in protein export, is cold-upregulated to facilitate protein export in the cold, by increasing the mRNA levels of not only CdsA but also that of YnbB. Under non-permissive conditions, phospholipid biosynthesis proceeded normally, however, MPIase upregulation was inhibited with accumulation of precursors of membrane and secretory proteins such as M13 procoat and proOmpA, indicating that YnbB is dedicated to MPIase biosynthesis, complementing the CdsA function.
Collapse
Affiliation(s)
- Yuki Kamemoto
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Runa Hikage
- Department of Applied Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Youjung Han
- Department of Applied Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Yusei Sekiya
- Department of Applied Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Katsuhiro Sawasato
- Department of Applied Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Ken-Ichi Nishiyama
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
- Department of Applied Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|