1
|
Chen LY, Singha Roy SJ, Jadhav AM, Wang WW, Chen PH, Bishop T, Erb MA, Parker CG. Functional Investigations of p53 Acetylation Enabled by Heterobifunctional Molecules. ACS Chem Biol 2024; 19:1918-1929. [PMID: 39250704 PMCID: PMC11421428 DOI: 10.1021/acschembio.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Post-translational modifications (PTMs) dynamically regulate the critical stress response and tumor suppressive functions of p53. Among these, acetylation events mediated by multiple acetyltransferases lead to differential target gene activation and subsequent cell fate. However, our understanding of these events is incomplete due to, in part, the inability to selectively and dynamically control p53 acetylation. We recently developed a heterobifunctional small molecule system, AceTAG, to direct the acetyltransferase p300/CBP for targeted protein acetylation in cells. Here, we expand AceTAG to leverage the acetyltransferase PCAF/GCN5 and apply these tools to investigate the functional consequences of targeted p53 acetylation in human cancer cells. We demonstrate that the recruitment of p300/CBP or PCAF/GCN5 to p53 results in distinct acetylation events and differentiated transcriptional activities. Further, we show that chemically induced acetylation of multiple hotspot p53 mutants results in increased stabilization and enhancement of transcriptional activity. Collectively, these studies demonstrate the utility of AceTAG for functional investigations of protein acetylation.
Collapse
Affiliation(s)
- Li-Yun Chen
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Soumya Jyoti Singha Roy
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Appaso M. Jadhav
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Wesley W. Wang
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Timothy Bishop
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Michael A. Erb
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Christopher G. Parker
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Nishitsuji K, Mito R, Ikezaki M, Yano H, Fujiwara Y, Matsubara E, Nishikawa T, Ihara Y, Uchimura K, Iwahashi N, Sakagami T, Suzuki M, Komohara Y. Impacts of cytoplasmic p53 aggregates on the prognosis and the transcriptome in lung squamous cell carcinoma. Cancer Sci 2024; 115:2947-2960. [PMID: 39031627 PMCID: PMC11462941 DOI: 10.1111/cas.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/22/2024] Open
Abstract
The tumor suppressor TP53 gene, the most frequently mutated gene in human cancers, produces the product tumor protein p53, which plays an essential role in DNA damage. p53 protein mutations may contribute to tumorigenesis by loss of tumor suppressive functions and malignancy of cancer cells via gain-of-oncogenic functions. We previously reported that mutant p53 proteins form aggregates and that cytoplasmic p53 aggregates were associated with poor prognosis in human ovarian cancer. However, the prognostic impact of p53 aggregation in other tumors including lung squamous cell carcinoma (SCC) is poorly understood. Here, we demonstrated that lung SCC cases with cytoplasmic p53 aggregates had a significantly poor clinical prognosis. Analysis via patient-derived tumor organoids (PDOs) established from lung SCC patients and possessing cytoplasmic p53 aggregates showed that eliminating cytoplasmic p53 aggregates suppressed cell proliferation. RNA sequencing and transcriptome analysis of p53 aggregate-harboring PDOs indicated multiple candidate pathways involved in p53 aggregate oncogenic functions. With lung SCC-derived cell lines, we found that cytoplasmic p53 aggregates contributed to cisplatin resistance. This study thus shows that p53 aggregates are a predictor of poor prognosis in lung SCC and suggests that detecting p53 aggregates via p53 conventional immunohistochemical analysis may aid patient selection for platinum-based therapy.
Collapse
Affiliation(s)
- Kazuchika Nishitsuji
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
- Unité de Glycobiologie Structurale et FonctionnelleUMR 8576 CNRS, Université de LilleVilleneuve d'AscqFrance
| | - Remi Mito
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Respiratory Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Midori Ikezaki
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Eri Matsubara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Thoracic and Breast Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Taro Nishikawa
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yoshito Ihara
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kenji Uchimura
- Unité de Glycobiologie Structurale et FonctionnelleUMR 8576 CNRS, Université de LilleVilleneuve d'AscqFrance
| | - Naoyuki Iwahashi
- Department of Obstetrics and Gynecology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Makoto Suzuki
- Department of Thoracic and Breast Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy AgingKumamoto UniversityKumamotoJapan
| |
Collapse
|
3
|
Shukla P, Bera AK, Ghosh A, Kiranmai G, Pati F. Assessment and process optimization of high throughput biofabrication of immunocompetent breast cancer model for drug screening applications. Biofabrication 2024; 16:035030. [PMID: 38876096 DOI: 10.1088/1758-5090/ad586b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Recent advancements in 3D cancer modeling have significantly enhanced our ability to delve into the intricacies of carcinogenesis. Despite the pharmaceutical industry's substantial investment of both capital and time in the drug screening and development pipeline, a concerning trend persists: drug candidates screened on conventional cancer models exhibit a dismal success rate in clinical trials. One pivotal factor contributing to this discrepancy is the absence of drug testing on pathophysiologically biomimetic 3D cancer models during pre-clinical stages. Unfortunately, current manual methods of 3D cancer modeling, such as spheroids and organoids, suffer from limitations in reproducibility and scalability. In our study, we have meticulously developed 3D bioprinted breast cancer model utilizing decellularized adipose tissue-based hydrogel obtained via a detergent-free decellularization method. Our innovative printing techniques allows for rapid, high-throughput fabrication of 3D cancer models in a 96-well plate format, demonstrating unmatched scalability and reproducibility. Moreover, we have conducted extensive validation, showcasing the efficacy of our platform through drug screening assays involving two potent anti-cancer drugs, 5-Fluorouracil and PRIMA-1Met. Notably, our platform facilitates effortless imaging and gene expression analysis, streamlining the evaluation process. In a bid to enhance the relevance of our cancer model, we have introduced a heterogeneous cell population into the DAT-based bioink. Through meticulous optimization and characterization, we have successfully developed a biomimetic immunocompetent breast cancer model, complete with microenvironmental cues and diverse cell populations. This breakthrough paves the way for rapid multiplex drug screening and the development of personalized cancer models, marking a paradigm shift in cancer research and pharmaceutical development.
Collapse
Affiliation(s)
- Priyanshu Shukla
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Ashis Kumar Bera
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Amit Ghosh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Gaddam Kiranmai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
4
|
da Gama Oliveira V, Muxfeldt M, Muniz da Paz M, Silva Coutinho M, Eduardo dos Santos R, Diniz da Silva Ferretti G, Ferraz da Costa DC, Fonseca Regufe P, Lelis Gama I, da Costa Santos Boechat F, Silva Lima E, Ferreira VF, de Moraes MC, Bastos Vieira de Souza MC, Netto Batalha P, Pereira Rangel L. Naphthoquinone-Quinolone Hybrids with Antitumor Effects on Breast Cancer Cell Lines-From the Synthesis to 3D-Cell Culture Effects. Int J Mol Sci 2024; 25:6490. [PMID: 38928197 PMCID: PMC11203957 DOI: 10.3390/ijms25126490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer stands as one of the foremost cause of cancer-related deaths globally, characterized by its varied molecular subtypes. Each subtype requires a distinct therapeutic strategy. Although advancements in treatment have enhanced patient outcomes, significant hurdles remain, including treatment toxicity and restricted effectiveness. Here, we explore the anticancer potential of novel 1,4-naphthoquinone/4-quinolone hybrids on breast cancer cell lines. The synthesized compounds demonstrated selective cytotoxicity against Luminal and triple-negative breast cancer (TNBC) cells, which represent the two main molecular types of breast cancer that depend most on cytotoxic chemotherapy, with potency comparable to doxorubicin, a standard chemotherapeutic widely used in breast cancer treatment. Notably, these derivatives exhibited superior selectivity indices (SI) when compared to doxorubicin, indicating lower toxicity towards non-tumor MCF10A cells. Compounds 11a and 11b displayed an improvement in IC50 values when compared to their precursor, 1,4-naphthoquinone, for both MCF-7 and MDA-MB-231 and a comparable value to doxorubicin for MCF-7 cells. Also, their SI values were superior to those seen for the two reference compounds for both cell lines tested. Mechanistic studies revealed the ability of the compounds to induce apoptosis and inhibit clonogenic potential. Additionally, the irreversibility of their effects on cell viability underscores their promising therapeutic utility. In 3D-cell culture models, the compounds induced morphological changes indicative of reduced viability, supporting their efficacy in a more physiologically relevant model of study. The pharmacokinetics of the synthesized compounds were predicted using the SwissADME webserver, indicating that these compounds exhibit favorable drug-likeness properties and potential as antitumor agents. Overall, our findings underscore the promise of these hybrid compounds as potential candidates for breast cancer chemotherapy, emphasizing their selectivity and efficacy.
Collapse
Affiliation(s)
- Vanessa da Gama Oliveira
- Instituto Nacional de Infectologia, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil;
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Marcelly Muxfeldt
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (M.M.); (M.M.d.P.); (R.E.d.S.)
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil;
| | - Mariana Muniz da Paz
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (M.M.); (M.M.d.P.); (R.E.d.S.)
| | - Mayra Silva Coutinho
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Raissa Eduardo dos Santos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (M.M.); (M.M.d.P.); (R.E.d.S.)
| | - Giulia Diniz da Silva Ferretti
- Instituto de Bioquimica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | | | - Pedro Fonseca Regufe
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Ivson Lelis Gama
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
- Faculdade da Amazônia Legal, Colider 78500-000, MT, Brazil
| | - Fernanda da Costa Santos Boechat
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Emersom Silva Lima
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil;
| | | | - Marcela Cristina de Moraes
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Maria Cecília Bastos Vieira de Souza
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Pedro Netto Batalha
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Luciana Pereira Rangel
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (M.M.); (M.M.d.P.); (R.E.d.S.)
| |
Collapse
|
5
|
Chasov V, Davletshin D, Gilyazova E, Mirgayazova R, Kudriaeva A, Khadiullina R, Yuan Y, Bulatov E. Anticancer therapeutic strategies for targeting mutant p53-Y220C. J Biomed Res 2024; 38:222-232. [PMID: 38738269 PMCID: PMC11144932 DOI: 10.7555/jbr.37.20230093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 05/14/2024] Open
Abstract
The tumor suppressor p53 is a transcription factor with a powerful antitumor activity that is controlled by its negative regulator murine double minute 2 (MDM2, also termed HDM2 in humans) through a feedback mechanism. At the same time, TP53 is the most frequently mutated gene in human cancers. Mutant p53 proteins lose wild-type p53 tumor suppression functions but acquire new oncogenic properties, among which are deregulating cell proliferation, increasing chemoresistance, disrupting tissue architecture, and promoting migration, invasion and metastasis as well as several other pro-oncogenic activities. The oncogenic p53 mutation Y220C creates an extended surface crevice in the DNA-binding domain destabilizing p53 and causing its denaturation and aggregation. This cavity accommodates stabilizing small molecules that have therapeutic values. The development of suitable small-molecule stabilizers is one of the therapeutic strategies for reactivating the Y220C mutant protein. In this review, we summarize approaches that target p53-Y220C, including reactivating this mutation with small molecules that bind Y220C to the hydrophobic pocket and developing immunotherapies as the goal for the near future, which target tumor cells that express the p53-Y220C neoantigen.
Collapse
Affiliation(s)
- Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Damir Davletshin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Elvina Gilyazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Regina Mirgayazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Raniya Khadiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Youyong Yuan
- Institute of Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
6
|
Li J, Guo M, Chen L, Chen Z, Fu Y, Chen Y. Amyloid aggregates induced by the p53-R280T mutation lead to loss of p53 function in nasopharyngeal carcinoma. Cell Death Dis 2024; 15:35. [PMID: 38212344 PMCID: PMC10784298 DOI: 10.1038/s41419-024-06429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor that is highly prevalent in Southeast Asia, especially in South China. The pathogenesis of NPC is complex, and genetic alterations of tumor suppressors and proto-oncogenes play important roles in NPC carcinogenesis. p53 is unexpectedly highly expressed in NPC and possesses an uncommon mutation of R280T, which is different from a high frequency of hotspot mutations or low expression in other tumors. However, the mechanism of p53 loss of function and its correlation with R280T in NPC are still unclear. In this study, p53 amyloid aggregates were found to be widespread in NPC and can be mainly induced by the R280T mutation. Aggregated p53-R280T impeded its entry into the nucleus and was unable to initiate the transcription of downstream target genes, resulting in decreased NPC cell cycle arrest and apoptosis. In addition, NPC cells with p53-R280T amyloid aggregates also contributed aggressively to tumor growth in vivo. Transcriptome analysis suggested that p53 amyloid aggregation dysregulated major signaling pathways associated with the cell cycle, proliferation, apoptosis, and unfolded protein response (UPR). Further studies revealed that Hsp90, as a key molecular chaperone in p53 folding, was upregulated in NPC cells with p53-R280T aggregation, and the upregulated Hsp90 facilitated p53 aggregation in turn, forming positive feedback. Therefore, Hsp90 inhibitors could dissociate p53-R280T aggregation and restore the suppressor function of p53 in vitro and in vivo. In conclusion, our study demonstrated that p53-R280T may misfold to form aggregates with the help of Hsp90, resulting in the inability of sequestered p53 to initiate the transcription of downstream target genes. These results revealed a new mechanism for the loss of p53 function in NPC and provided novel mechanistic insight into NPC pathogenesis.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lin Chen
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California, Los Angeles, CAL, 90089, USA
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|