1
|
Karperien AL, Jelinek HF. Morphology and Fractal-Based Classifications of Neurons and Microglia in Two and Three Dimensions. ADVANCES IN NEUROBIOLOGY 2024; 36:149-172. [PMID: 38468031 DOI: 10.1007/978-3-031-47606-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Microglia and neurons live physically intertwined, intimately related structurally and functionally in a dynamic relationship in which microglia change continuously over a much shorter timescale than do neurons. Although microglia may unwind and depart from the neurons they attend under certain circumstances, in general, together both contribute to the fractal topology of the brain that defines its computational capabilities. Both neuronal and microglial morphologies are well-described using fractal analysis complementary to more traditional measures. For neurons, the fractal dimension has proved valuable for classifying dendritic branching and other neuronal features relevant to pathology and development. For microglia, fractal geometry has substantially contributed to classifying functional categories, where, in general, the more pathological the biological status, the lower the fractal dimension for individual cells, with some exceptions, including hyper-ramification. This chapter provides a review of the intimate relationships between neurons and microglia, by introducing 2D and 3D fractal analysis methodology and its applications in neuron-microglia function in health and disease.
Collapse
Affiliation(s)
- Audrey L Karperien
- School of Community Health, Charles Sturt University, Albury, NSW, Australia
| | - Herbert F Jelinek
- Department of Medical Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, UAE
| |
Collapse
|
2
|
Zueva MV, Neroeva NV, Zhuravleva AN, Bogolepova AN, Kotelin VV, Fadeev DV, Tsapenko IV. Fractal Phototherapy in Maximizing Retina and Brain Plasticity. ADVANCES IN NEUROBIOLOGY 2024; 36:585-637. [PMID: 38468055 DOI: 10.1007/978-3-031-47606-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The neuroplasticity potential is reduced with aging and impairs during neurodegenerative diseases and brain and visual system injuries. This limits the brain's capacity to repair the structure and dynamics of its activity after lesions. Maximization of neuroplasticity is necessary to provide the maximal CNS response to therapeutic intervention and adaptive reorganization of neuronal networks in patients with degenerative pathology and traumatic injury to restore the functional activity of the brain and retina.Considering the fractal geometry and dynamics of the healthy brain and the loss of fractality in neurodegenerative pathology, we suggest that the application of self-similar visual signals with a fractal temporal structure in the stimulation therapy can reactivate the adaptive neuroplasticity and enhance the effectiveness of neurorehabilitation. This proposition was tested in the recent studies. Patients with glaucoma had a statistically significant positive effect of fractal photic therapy on light sensitivity and the perimetric MD index, which shows that methods of fractal stimulation can be a novel nonpharmacological approach to neuroprotective therapy and neurorehabilitation. In healthy rabbits, it was demonstrated that a long-term course of photostimulation with fractal signals does not harm the electroretinogram (ERG) and retina structure. Rabbits with modeled retinal atrophy showed better dynamics of the ERG restoration during daily stimulation therapy for a week in comparison with the controls. Positive changes in the retinal function can indirectly suggest the activation of its adaptive plasticity and the high potential of stimulation therapy with fractal visual stimuli in a nonpharmacological neurorehabilitation, which requires further study.
Collapse
Affiliation(s)
- Marina V Zueva
- Department of Clinical Physiology of Vision, Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - Natalia V Neroeva
- Department of Pathology of the Retina and Optic Nerve, Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - Anastasia N Zhuravleva
- Department of Glaucoma, Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - Anna N Bogolepova
- Department of neurology, neurosurgery and medical genetics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vladislav V Kotelin
- Department of Clinical Physiology of Vision, Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - Denis V Fadeev
- Scientific Experimental Center Department, Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - Irina V Tsapenko
- Department of Clinical Physiology of Vision, Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| |
Collapse
|
3
|
Kovalevskaya MA, Antonyan VB, Muntianova EV, Zueva MV. Risk factors as glaucoma predictors in myopic students. RUSSIAN OPHTHALMOLOGICAL JOURNAL 2022. [DOI: 10.21516/2072-0076-2022-15-4-30-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose: identification of early risk factors — predictors of POAG development in students with myopic refraction based on questionnaire and functional test data and the effects of fractal photostimulation (FS). Material and methods. The study involved two clinical groups: the main group of 24 students (48 eyes) with mild to moderate myopia, averagely aged 21.3 ± 0.7 years, and the comparison group (according to FS effects) of 29 patients (58 eyes) with an established diagnosis of stage I–III POAG, averagely aged 58 ± 18 years, and a control group consisting of 66 people (132 eyes, mean age 21.2 ± 1.3 years). The case history of patients and typical complaints were found in questionnaire data. For the two clinical groups, the impact of 10 low-intensity FS sessions was evaluated. Results. A set of features viewed as risk factors for POAG development was determined using the data of the questionaries filled in by the main and comparison groups. The changes in mean IOP values measured before and after an FS course were found to be greater in POAG patients than in myopic students. FS was shown to contribute to IOP stabilization in patients with pre-existing morphological and functional glaucoma changes and the occurrence of accompanying pathologies such as vasospasm, blood pressure fluctuations, and migraine-like pain. After a course of FS, overall photosensitivity increased significantly as compared with the baseline in students with mild and moderate myopia (p < 0.05). Also, a positive effect of an FS course on MD indices in patients with stages IIa and IIIa POAG was confirmed. Conclusion. The research results confirm the need to identify clinical and functional predictors of POAG with a progressive glaucomatous process in students with myopic refraction.
Collapse
Affiliation(s)
| | | | | | - M. V. Zueva
- Helmholtz National Medical Research Center of Eye Diseases
| |
Collapse
|
4
|
Brito H, Pham T, Vicente B. Effect of sensorimotor rehabilitation based on an immersive virtual reality model on mental health. Int J Geriatr Psychiatry 2021; 37. [PMID: 33797806 DOI: 10.1002/gps.5541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of this study was to determine the immersive virtual reality-based sensorimotor rehabilitation (IVR-SRB) effect on mental health (global mental health, depression, anxiety and well-being) in older adults. METHODS This study was experimental, with a sample of 111 older adults (control-experimental), considering an application of IVR-SRB in four different virtual settings with exteroceptive synchronization, proprioceptive and vestibular stimuli, for 6 weeks. OUTCOME VARIABLES symptoms associated with depression and anxiety; positive mental health (psychological well-being). A descriptive and inferential approach was used to analyze the data, and the ANCOVA test was used to compare the post-intervention groups, controlled by the baseline; In case of baseline moderation, a linear regression model was applied to identify the level of moderation and a region of significance analysis. RESULTS An IVR-SRB positive net effect was found in the reduction of symptoms of global mental health (p < 0.0001) and depression (p < 0.0001), without baseline moderation. The anxiety scores showed moderation at the beginning (p < 0.0001; b = -0.53), identifying that the greater the presence of anxiety symptoms, the greater the effect of IVR-SRB in reducing these symptoms; its effect is present from scores of 2.9 (Goldberg-12). There were no changes in well-being. CONCLUSION IVR-SRB is recognized as a great intervention tool among elderly population, showing its multidimensional approach capacity, properly responding to the reduction of symptoms associated with mental disorders.
Collapse
Affiliation(s)
- Héctor Brito
- Department of Psychiatry and Mental Health, Faculty of Medicine, Universidad de Concepción, Concepcion, Chile
- Physiotherapy Department, Faculty of Health Sciences, Health Rehabilitation Sciences Research Unit (I-CIRESA), Universidad Autónoma de Chile, Chile
| | - Trung Pham
- Department of Computer Sciences & Cyberworx, US Air Force Academy, Colorado, USA
| | - Benjamín Vicente
- Department of Psychiatry and Mental Health, Faculty of Medicine, Universidad de Concepción, Concepcion, Chile
| |
Collapse
|
5
|
Cieri F, Zhuang X, Caldwell JZK, Cordes D. Brain Entropy During Aging Through a Free Energy Principle Approach. Front Hum Neurosci 2021; 15:647513. [PMID: 33828471 PMCID: PMC8019811 DOI: 10.3389/fnhum.2021.647513] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/25/2021] [Indexed: 02/01/2023] Open
Abstract
Neural complexity and brain entropy (BEN) have gained greater interest in recent years. The dynamics of neural signals and their relations with information processing continue to be investigated through different measures in a variety of noteworthy studies. The BEN of spontaneous neural activity decreases during states of reduced consciousness. This evidence has been showed in primary consciousness states, such as psychedelic states, under the name of "the entropic brain hypothesis." In this manuscript we propose an extension of this hypothesis to physiological and pathological aging. We review this particular facet of the complexity of the brain, mentioning studies that have investigated BEN in primary consciousness states, and extending this view to the field of neuroaging with a focus on resting-state functional Magnetic Resonance Imaging. We first introduce historic and conceptual ideas about entropy and neural complexity, treating the mindbrain as a complex nonlinear dynamic adaptive system, in light of the free energy principle. Then, we review the studies in this field, analyzing the idea that the aim of the neurocognitive system is to maintain a dynamic state of balance between order and chaos, both in terms of dynamics of neural signals and functional connectivity. In our exploration we will review studies both on acute psychedelic states and more chronic psychotic states and traits, such as those in schizophrenia, in order to show the increase of entropy in those states. Then we extend our exploration to physiological and pathological aging, where BEN is reduced. Finally, we propose an interpretation of these results, defining a general trend of BEN in primary states and cognitive aging.
Collapse
Affiliation(s)
- Filippo Cieri
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
| | | | | | | |
Collapse
|
6
|
Lin CH, Chiu CC, Huang CH, Yang HT, Lane HY. pLG72 levels increase in early phase of Alzheimer's disease but decrease in late phase. Sci Rep 2019; 9:13221. [PMID: 31520071 PMCID: PMC6744481 DOI: 10.1038/s41598-019-49522-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/22/2019] [Indexed: 12/17/2022] Open
Abstract
pLG72, named as D-amino acid oxidase activator (although it is not an activator of D-amino acid oxidase demonstrated by later studies), in mitochondria has been regarded as an important modulator of D-amino acid oxidase that can regulate the N-methyl-D-aspartate receptor (NMDAR). Both oxidative stress in mitochondria and NMDAR neurotransmission play essential roles in the process of neurodegenerative dementia. The aim of the study was to investigate whether pLG72 levels changed with the severity of neurodegenerative dementia. We enrolled 376 individuals as the overall cohort, consisting of five groups: healthy elderly, amnestic mild cognitive impairment [MCI], mild Alzheimer's disease [AD], moderate AD, and severe AD. pLG72 levels in plasma were measured using Western blotting. The severity of cognitive deficit was principally evaluated by Clinical Dementia Rating Scale. A gender- and age- matched cohort was selected to elucidate the effects of gender and age. pLG72 levels increased in the MCI and mild AD groups when compared to the healthy group. However, pLG72 levels in the moderate and severe AD groups were lower than those in the mild AD group. D-serine level and D- to total serine ratio were significantly different among the five groups. L-serine levels were correlated with the pLG72 levels. The results in the gender- and age- matched cohort were similar to those of the overall cohort. The finding supports the hypothesis of NMDAR hypofunction in early-phase dementia and NMDAR hyperfunction in late-phase dementia. Further studies are warranted to test whether pLG72 could reflect the function of NMDAR.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Chiang Chiu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiung-Hsien Huang
- Department of Medicine Research, China Medical University Hospital, Taichung, Taiwan
| | - Hui-Ting Yang
- Department of Psychiatry, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan.
| |
Collapse
|
7
|
Croce P, Quercia A, Costa S, Zappasodi F. Circadian Rhythms in Fractal Features of EEG Signals. Front Physiol 2018; 9:1567. [PMID: 30483146 PMCID: PMC6240683 DOI: 10.3389/fphys.2018.01567] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022] Open
Abstract
Time-of-day modulations affect both performance on a wide range of cognitive tasks and electrical activity of the brain, as recorded by electroencephalography (EEG). The aim of this work was to identify fluctuations of fractal properties of EEG time series due to circadian rhythms. In twenty-one healthy volunteers (all males, age between 20 and 30 years, chronotype: neutral type) high density EEG recordings at rest in open and closed eyes conditions were acquired in 4 times of the day (8.00 a.m., 11.30 a.m., 2.30 p.m., 7.00 p.m.). A vigilance task (Psychomotor Vigilance Test, PVT) was also performed. Detrended fluctuation Analysis (DFA) of envelope of alpha, beta and theta rhythms was performed, as well as Highuchi fractal dimension (HFD) of the whole band EEG. Our results evidenced circadian fluctuations of fractal features of EEG at rest in both eyes closed and eyes open conditions. Lower values of DFA exponent were found in the time T1 in closed eyes condition, likely effect of the sleep inertia. An alpha DFA exponent reduction was found also in central sensory-motor areas at time T3, the day time in which the sleepiness can be present. In eyes open condition, HFD lowered during the day. In eyes closed condition, an HFD increase was observed in central and frontal regions at time T2, the time in which alertness reaches its maximum and homeostatic sleep pressure is low. Complexity and the persistence of temporal correlations of brain rhythms change during daytime, parallel to changes in alertness and performance.
Collapse
Affiliation(s)
- Pierpaolo Croce
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University, Chieti, Italy
| | - Angelica Quercia
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University, Chieti, Italy
| | - Sergio Costa
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University, Chieti, Italy
| | - Filippo Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University, Chieti, Italy.,Institute for Advanced Biomedical Imaging, G. d'Annunzio University, Chieti, Italy
| |
Collapse
|
8
|
Geerts H, Dacks PA, Devanarayan V, Haas M, Khachaturian ZS, Gordon MF, Maudsley S, Romero K, Stephenson D. Big data to smart data in Alzheimer's disease: The brain health modeling initiative to foster actionable knowledge. Alzheimers Dement 2016; 12:1014-1021. [PMID: 27238630 DOI: 10.1016/j.jalz.2016.04.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/25/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023]
Abstract
Massive investment and technological advances in the collection of extensive and longitudinal information on thousands of Alzheimer patients results in large amounts of data. These "big-data" databases can potentially advance CNS research and drug development. However, although necessary, they are not sufficient, and we posit that they must be matched with analytical methods that go beyond retrospective data-driven associations with various clinical phenotypes. Although these empirically derived associations can generate novel and useful hypotheses, they need to be organically integrated in a quantitative understanding of the pathology that can be actionable for drug discovery and development. We argue that mechanism-based modeling and simulation approaches, where existing domain knowledge is formally integrated using complexity science and quantitative systems pharmacology can be combined with data-driven analytics to generate predictive actionable knowledge for drug discovery programs, target validation, and optimization of clinical development.
Collapse
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences, Inc., Berwyn, PA, USA.
| | - Penny A Dacks
- Alzheimer's Drug Discovery Foundation, New York, NY, USA
| | | | | | | | | | - Stuart Maudsley
- VIB Department of Molecular Genetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | | | | | | |
Collapse
|