1
|
Newell FN, McKenna E, Seveso MA, Devine I, Alahmad F, Hirst RJ, O'Dowd A. Multisensory perception constrains the formation of object categories: a review of evidence from sensory-driven and predictive processes on categorical decisions. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220342. [PMID: 37545304 PMCID: PMC10404931 DOI: 10.1098/rstb.2022.0342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
Although object categorization is a fundamental cognitive ability, it is also a complex process going beyond the perception and organization of sensory stimulation. Here we review existing evidence about how the human brain acquires and organizes multisensory inputs into object representations that may lead to conceptual knowledge in memory. We first focus on evidence for two processes on object perception, multisensory integration of redundant information (e.g. seeing and feeling a shape) and crossmodal, statistical learning of complementary information (e.g. the 'moo' sound of a cow and its visual shape). For both processes, the importance attributed to each sensory input in constructing a multisensory representation of an object depends on the working range of the specific sensory modality, the relative reliability or distinctiveness of the encoded information and top-down predictions. Moreover, apart from sensory-driven influences on perception, the acquisition of featural information across modalities can affect semantic memory and, in turn, influence category decisions. In sum, we argue that both multisensory processes independently constrain the formation of object categories across the lifespan, possibly through early and late integration mechanisms, respectively, to allow us to efficiently achieve the everyday, but remarkable, ability of recognizing objects. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- F. N. Newell
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
| | - E. McKenna
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
| | - M. A. Seveso
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
| | - I. Devine
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
| | - F. Alahmad
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
| | - R. J. Hirst
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
| | - A. O'Dowd
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
| |
Collapse
|
2
|
Cacciamani L, Skocypec RM, Flowers CS, Perez DC, Peterson MA. BOLD activation on the groundside of figures: More suppression of grounds that competed more for figural status. Cortex 2023; 158:96-109. [PMID: 36495732 DOI: 10.1016/j.cortex.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 09/01/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
Abstract
A fundamental aspect of object detection is assigning a border to one (figure) side but not the other (ground) side. Figures are shaped; grounds appear shapeless near the figure border. Accumulating evidence supports the view that the mechanism of figure assignment is inhibitory competition with the figure perceived on the winning side. Suppression has been observed on the groundside of figure borders. One prediction is that more suppression will be observed when the groundside competes more for figural status. We tested this prediction by assessing BOLD activation on the groundside of two types of stimuli with articulated borders: AEnov and AEfam stimuli. In both stimulus types, multiple image-based priors (symmetry, closure, small area, enclosure by a larger region) favored the inside as the figure. In AEfam but not AEnov stimuli, the figural prior of familiar configuration present on the outside competes for figural status. Observers perceived the insides of both types of stimuli as novel figures and the outsides as shapeless grounds. Previously, we observed lower BOLD activation in early visual areas representing the grounds of AEfam than AEnov stimuli, although unexpectedly, activation was above baseline. With articulated borders, it can be difficult to exclude figure activation from ground ROIs. Here, our ground ROIs better excluded figure activation; we also added straight-edge (SE) control stimuli and increased the sample size. In early visual areas representing the grounds, we observed lower BOLD activation on the groundside of AEfam than AEnov stimuli and below-baseline BOLD activation on the groundside of SE and AEfam stimuli. These results, indicating that greater suppression is applied to groundsides that competed more for figural status but lost the competition, support a Bayesian model of figure assignment in which proto-objects activated at both low and high levels where image features and familiar configurations are represented, respectively, compete for figural status.
Collapse
Affiliation(s)
- Laura Cacciamani
- Department of Psychology & Child Development, California Polytechnic State University, San Luis Obispo, CA, USA.
| | | | - Colin S Flowers
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Diana C Perez
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Mary A Peterson
- Department of Psychology, University of Arizona, Tucson, AZ, USA; Cognitive Science Program, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Task set and instructions influence the weight of figural priors: A psychophysical study with extremal edges and familiar configuration. Atten Percept Psychophys 2021; 83:2709-2727. [PMID: 33880711 PMCID: PMC8302519 DOI: 10.3758/s13414-021-02282-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 11/08/2022]
Abstract
In figure-ground organization, the figure is defined as a region that is both "shaped" and "nearer." Here we test whether changes in task set and instructions can alter the outcome of the cross-border competition between figural priors that underlies figure assignment. Extremal edge (EE), a relative distance prior, has been established as a strong figural prior when the task is to report "which side is nearer?" In three experiments using bipartite stimuli, EEs competed and cooperated with familiar configuration, a shape prior for figure assignment in a "which side is shaped?" task." Experiment 1 showed small but significant effects of familiar configuration for displays sketching upright familiar objects, although "shaped-side" responses were predominantly determined by EEs. In Experiment 2, instructions regarding the possibility of perceiving familiar shapes were added. Now, although EE remained the dominant prior, the figure was perceived on the familiar-configuration side of the border on a significantly larger percentage of trials across all display types. In Experiment 3, both task set (nearer/shaped) and the presence versus absence of instructions emphasizing that familiar objects might be present were manipulated within subjects. With familiarity thus "primed," effects of task set emerged when EE and familiar configuration favored opposite sides as figure. Thus, changing instructions can modulate the weighing of figural priors for shape versus distance in figure assignment in a manner that interacts with task set. Moreover, we show that the influence of familiar parts emerges in participants without medial temporal lobe/ perirhinal cortex brain damage when instructions emphasize that familiar objects might be present.
Collapse
|
4
|
Sasia B, Cacciamani L. High-definition transcranial direct current stimulation of the lateral occipital cortex influences figure-ground perception. Neuropsychologia 2021; 155:107792. [PMID: 33610616 DOI: 10.1016/j.neuropsychologia.2021.107792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/11/2021] [Accepted: 02/14/2021] [Indexed: 01/28/2023]
Abstract
Prior work has shown that the lateral occipital cortex (LO) is involved in recognition of objects and their parts, as well as segregation of that object (or "figure") from its background. No studies, though, have examined how LO's functioning is influenced by non-invasive brain stimulation, particularly during a figure-ground perception task. The present study tested whether high-definition transcranial direct current stimulation (HD-tDCS) to right LO influences the effects of familiarity on figure-ground perception. Following 20 min of offline anodal stimulation (or sham), participants viewed masked stimuli consisting of two regions separated by a vertical border and were asked to report which region they perceived as figure. One region was the "critical" region, which either depicted a portion of a familiar object ("Familiar" stimuli), or a familiar object with its parts rearranged into a novel configuration ("Part-rearranged" stimuli). Previous research using these stimuli has found higher reports of the critical region as figure for Familiar vs. Part-rearranged displays, demonstrating the effect of familiarity on figure assignment. The results of the current study showed that HD-tDCS to right LO significantly influenced this typical behavioral pattern. Specifically, stimulation (vs. sham) increased reports of the critical region as figure for Part-rearranged stimuli, bringing perception of these displays up to the level of the Familiar stimuli. We interpret this finding as evidence that stimulation of right LO increased participants' reliance on the familiarity of the parts in their figure-ground judgements-a finding consistent with and extending previous research showing that LO is indeed sensitive to object parts. This is the first study showing that HD-tDCS to LO can influence the effects of familiarity on figure-ground perception.
Collapse
Affiliation(s)
- Brooke Sasia
- California Polytechnic State University, San Luis Obispo, CA, USA.
| | - Laura Cacciamani
- California Polytechnic State University, San Luis Obispo, CA, USA
| |
Collapse
|
5
|
Flowers CS, Orsten-Hooge KD, Jannuzi BGL, Peterson MA. Normative data for an expanded set of stimuli for testing high-level influences on object perception: OMEFA-II. PLoS One 2020; 15:e0224471. [PMID: 32797090 PMCID: PMC7428090 DOI: 10.1371/journal.pone.0224471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/28/2020] [Indexed: 11/18/2022] Open
Abstract
We present normative data for an expanded set of stimuli designed to investigate past experience effects on object detection. The stimuli are vertically-elongated “bipartite” displays comprising two equal-area regions meeting at an articulated central border. When the central border is assigned to one side, a shaped figure (i.e., an object) is detected on that side. Participants viewing brief masked exposures typically detect figures more often on the critical side of Intact displays where a common (“familiar”) object is depicted than on a matched critical side of Part-Rearranged (PR) displays comprising the same parts arranged in novel configurations. This pattern of results showed that past experience in the form of familiar configuration rather than familiar parts is a prior for figure assignment. Spurred by research implicating a network involving the perirhinal cortex of the medial temporal lobe in these familiar configuration effects, we enlarged the stimulus set from 24 to 48 base stimuli to increase its usefulness for behavioral, neuropsychological, and neuroimaging experiments. We measured the percentage of participants who agreed on a single interpretation for each side of Intact, Upright PR, and Inverted PR displays (144 displays; 288 sides) under long exposure conditions. High inter-subject agreement is taken to operationally define a familiar configuration. This new stimulus set is well-suited to investigate questions concerning how parts and wholes are integrated and how high- and low-level brain areas interact in object detection. This set also allows tests of predictions regarding cross-border competition in figure assignment and assessments of individual differences. The displays, their image statistics, and normative data are available online (https://osf.io/j9kz2/).
Collapse
Affiliation(s)
- Colin S. Flowers
- Department of Psychology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| | - Kimberley D. Orsten-Hooge
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas, United States of America
| | - Barnes G. L. Jannuzi
- Neuroscience and Cognitive Science Program, University of Arizona, Tucson, Arizona, United States of America
| | - Mary A. Peterson
- Department of Psychology, University of Arizona, Tucson, Arizona, United States of America
- Cognitive Science Program, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
6
|
Prior Experience Alters the Appearance of Blurry Object Borders. Sci Rep 2020; 10:5821. [PMID: 32242057 PMCID: PMC7118174 DOI: 10.1038/s41598-020-62728-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/17/2020] [Indexed: 01/02/2023] Open
Abstract
Object memories activated by borders serve as priors for figure assignment: figures are more likely to be perceived on the side of a border where a well-known object is sketched. Do object memories also affect the appearance of object borders? Memories represent past experience with objects; memories of well-known objects include many with sharp borders because they are often fixated. We investigated whether object memories affect appearance by testing whether blurry borders appear sharper when they are contours of well-known objects versus matched novel objects. Participants viewed blurry versions of one familiar and one novel stimulus simultaneously for 180 ms; then made comparative (Exp. 1) or equality judgments regarding perceived blur (Exps. 2–4). For equivalent levels of blur, the borders of well-known objects appeared sharper than those of novel objects. These results extend evidence for the influence of past experience to object appearance, consistent with dynamic interactive models of perception.
Collapse
|
7
|
Liang JC, Erez J, Zhang F, Cusack R, Barense MD. Experience Transforms Conjunctive Object Representations: Neural Evidence for Unitization After Visual Expertise. Cereb Cortex 2020; 30:2721-2739. [DOI: 10.1093/cercor/bhz250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Abstract
Certain transformations must occur within the brain to allow rapid processing of familiar experiences. Complex objects are thought to become unitized, whereby multifeature conjunctions are retrieved as rapidly as a single feature. Behavioral studies strongly support unitization theory, but a compelling neural mechanism is lacking. Here, we examined how unitization transforms conjunctive representations to become more “feature-like” by recruiting posterior regions of the ventral visual stream (VVS) whose architecture is specialized for processing single features. We used functional magnetic resonance imaging to scan humans before and after visual training with novel objects. We implemented a novel multivoxel pattern analysis to measure a conjunctive code, which represented a conjunction of object features above and beyond the sum of the parts. Importantly, a multivoxel searchlight showed that the strength of conjunctive coding in posterior VVS increased posttraining. Furthermore, multidimensional scaling revealed representational separation at the level of individual features in parallel to the changes at the level of feature conjunctions. Finally, functional connectivity between anterior and posterior VVS was higher for novel objects than for trained objects, consistent with early involvement of anterior VVS in unitizing feature conjunctions in response to novelty. These data demonstrate that the brain implements unitization as a mechanism to refine complex object representations over the course of multiple learning experiences.
Collapse
Affiliation(s)
- Jackson C Liang
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Jonathan Erez
- Department of Psychology, Brain and Mind Institute, Western Interdisciplinary Research Building, Western University, London, ON N6A 5B7, Canada
| | - Felicia Zhang
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA
| | - Rhodri Cusack
- School of Psychology, Trinity College Dublin, Dublin, Ireland amd
| | - Morgan D Barense
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
- Rotman Research Institute, Toronto, ON M6A 2E1, Canada
| |
Collapse
|
8
|
Peterson MA. Past experience and meaning affect object detection: A hierarchical Bayesian approach. PSYCHOLOGY OF LEARNING AND MOTIVATION 2019. [DOI: 10.1016/bs.plm.2019.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|