1
|
Arulchelvan E, Vanneste S. Pathological forgetting from a predictive processing perspective. Neurosci Biobehav Rev 2025; 172:106109. [PMID: 40132756 DOI: 10.1016/j.neubiorev.2025.106109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/11/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
Recent research suggests that natural forgetting is beneficial, allowing the brain to prioritize relevant information and disregard the irrelevant, thus aiding decision-making and mental health. Conversely, pathological conditions may arise from disruptions in these memory control processes. Without adequate memory control capacities, individuals can suffer from conditions like PTSD or addiction (where unwanted or addiction-related memories persist) on one end of the scale, to conditions such as dementia, Parkinson's disease or traumatic brain injury, which are characterised by heightened rates of forgetting on the other side. This review will explore the concept of predictive processing as a potential mechanism underlying pathological forgetting. It will summarise the neurobiological basis of predictive processing and how it influences what we remember or forget. As evident in the emerging literature, this has distinct implications for understanding pathological forgetting in psychological disorders. Finally, this review will highlight therapeutic interventions that have recently targeted predictive processes and consequently improved symptoms related to forgetting, suggesting translational applications for treatment approaches in these conditions.
Collapse
Affiliation(s)
- Elva Arulchelvan
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland; Global Brain Health Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Santi A, Moore S, Fogelson KA, Wang A, Lawlor J, Amato J, Burke K, Lauer AM, Kuchibhotla KV. Revealing hidden knowledge in amnestic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632026. [PMID: 39829851 PMCID: PMC11741257 DOI: 10.1101/2025.01.09.632026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Alzheimer's disease (AD) is a form of dementia in which memory and cognitive decline is thought to arise from underlying neurodegeneration. These cognitive impairments, however, are transient when they first appear and can fluctuate across disease progression. Here, we investigate the neural mechanisms underlying fluctuations of performance in amnestic mice. We trained APP/PS1+ mice on an auditory go/no-go task that dissociated learning of task contingencies (knowledge) from its more variable expression under reinforcement (performance). APP/PS1+ exhibited significant performance deficits compared to control mice. Using large-scale two-photon imaging of 6,216 excitatory neurons in 8 mice, we found that auditory cortical networks were more suppressed, less selective to the sensory cues, and exhibited aberrant higher-order encoding of reward prediction compared to control mice. A small sub-population of neurons, however, displayed the opposite phenotype, reflecting a potential compensatory mechanism. Volumetric analysis demonstrated that deficits were concentrated near Aβ plaques. Strikingly, we found that these cortical deficits were reversed almost instantaneously on probe (non-reinforced) trials when APP/PS1+ performed as well as control mice, providing neural evidence for intact stimulus-action knowledge despite variable ongoing performance. A biologically-plausible reinforcement learning model recapitulated these results and showed that synaptic weights from sensory-to-decision neurons were preserved (i.e. intact stimulus-action knowledge) despite poor performance that was due to inadequate contextual scaling (i.e. impaired performance). Our results suggest that the amnestic phenotype is transient, contextual, and endogenously reversible, with the underlying neural circuits retaining the underlying stimulus-action associations. Thus, memory deficits commonly observed in amnestic mouse models, and potentially at early stages of dementia in humans, relate more to contextual drivers of performance rather than degeneration of the underlying memory traces.
Collapse
|
3
|
Ehrhardt NM, Niehoff C, Oßwald AC, Antonenko D, Lucchese G, Fleischmann R. Comparison of dry and wet electroencephalography for the assessment of cognitive evoked potentials and sensor-level connectivity. Front Neurosci 2024; 18:1441799. [PMID: 39568665 PMCID: PMC11576458 DOI: 10.3389/fnins.2024.1441799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
Background Multipin dry electrodes (dry EEG) provide faster and more convenient application than wet EEG, enabling extensive data collection. This study aims to compare task-related time-frequency representations and resting-state connectivity between wet and dry EEG methods to establish a foundation for using dry EEG in investigations of brain activity in neuropsychiatric disorders. Methods In this counterbalanced cross-over study, we acquired wet and dry EEG in 33 healthy participants [n = 22 females, mean age (SD) = 24.3 (± 3.4) years] during resting-state and an auditory oddball paradigm. We computed mismatch negativity (MMN), theta power in task EEG, and connectivity measures from resting-state EEG using phase lag index (PLI) and minimum spanning tree (MST). Agreement between wet and dry EEG was assessed using Bland-Altman bias. Results MMN was detectable with both systems in time and frequency domains, but dry EEG underestimated MMN mean amplitude, peak latency, and theta power compared to wet EEG. Resting-state connectivity was reliably estimated with dry EEG using MST diameter in all except the very low frequencies (0.5-4 Hz). PLI showed larger differences between wet and dry EEG in all frequencies except theta. Conclusion Dry EEG reliably detected MMN and resting-state connectivity despite a lower signal-to-noise ratio. This study provides the methodological basis for using dry EEG in studies investigating the neural processes underlying psychiatric and neurological conditions.
Collapse
Affiliation(s)
- Nina M Ehrhardt
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Clara Niehoff
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Anna-Christina Oßwald
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Guglielmo Lucchese
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatry University Hospital Zurich, University of Zurich, Lengstrasse, Zurich, Switzerland
| | - Robert Fleischmann
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| |
Collapse
|
4
|
Falkenstein M. Recent Advances in Clinical Applications of P300 and MMN. NEUROMETHODS 2024:1-21. [DOI: 10.1007/978-1-0716-3545-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Herman D, Baker S, Chow R, Cazes J, Alain C, Rosenbaum RS. Mismatch negativity as a marker of auditory pattern separation. Cereb Cortex 2023; 33:10181-10193. [PMID: 37522256 DOI: 10.1093/cercor/bhad274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
To what extent does incidental encoding of auditory stimuli influence subsequent episodic memory for the same stimuli? We examined whether the mismatch negativity (MMN), an event-related potential generated by auditory change detection, is correlated with participants' ability to discriminate those stimuli (i.e. targets) from highly similar lures and from dissimilar foils. We measured the MMN in 30 young adults (18-32 years, 18 females) using a passive auditory oddball task with standard and deviant 5-tone sequences differing in pitch contour. After exposure, all participants completed an incidental memory test for old targets, lures, and foils. As expected, participants at test exhibited high sensitivity in recognizing target items relative to foils and lower sensitivity in recognizing target items relative to lures. Notably, we found a significant correlation between MMN amplitude and lure discrimination, but not foil discrimination. Our investigation shows that our capacity to discriminate sensory inputs at encoding, as measured by the MMN, translates into precision in memory for those inputs.
Collapse
Affiliation(s)
- Deena Herman
- Department of Psychology and Centre for Vision Research, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
- Rotman Research Institute, Baycrest Academy for Research and Education, 3560 Bathurst Street, Toronto, Ontario, M6A 2E1, Canada
| | - Stevenson Baker
- Department of Psychology and Centre for Vision Research, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
- Rotman Research Institute, Baycrest Academy for Research and Education, 3560 Bathurst Street, Toronto, Ontario, M6A 2E1, Canada
| | - Ricky Chow
- Department of Psychology and Centre for Vision Research, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
- Rotman Research Institute, Baycrest Academy for Research and Education, 3560 Bathurst Street, Toronto, Ontario, M6A 2E1, Canada
| | - Jaime Cazes
- Department of Psychology and Centre for Vision Research, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Claude Alain
- Rotman Research Institute, Baycrest Academy for Research and Education, 3560 Bathurst Street, Toronto, Ontario, M6A 2E1, Canada
- Department of Psychology, Institute of Medical Science, University of Toronto, Temerty Faculty of Medicine, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario, M5S 1A8, Canada
| | - R Shayna Rosenbaum
- Department of Psychology and Centre for Vision Research, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
- Rotman Research Institute, Baycrest Academy for Research and Education, 3560 Bathurst Street, Toronto, Ontario, M6A 2E1, Canada
| |
Collapse
|
6
|
Ulbl J, Rakusa M. The Importance of Subjective Cognitive Decline Recognition and the Potential of Molecular and Neurophysiological Biomarkers-A Systematic Review. Int J Mol Sci 2023; 24:10158. [PMID: 37373304 DOI: 10.3390/ijms241210158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Subjective cognitive decline (SCD) and mild cognitive impairment (MCI) are early stages of Alzheimer's disease (AD). Neurophysiological markers such as electroencephalography (EEG) and event-related potential (ERP) are emerging as alternatives to traditional molecular and imaging markers. This paper aimed to review the literature on EEG and ERP markers in individuals with SCD. We analysed 30 studies that met our criteria, with 17 focusing on resting-state or cognitive task EEG, 11 on ERPs, and two on both EEG and ERP parameters. Typical spectral changes were indicative of EEG rhythm slowing and were associated with faster clinical progression, lower education levels, and abnormal cerebrospinal fluid biomarkers profiles. Some studies found no difference in ERP components between SCD subjects, controls, or MCI, while others reported lower amplitudes in the SCD group compared to controls. Further research is needed to explore the prognostic value of EEG and ERP in relation to molecular markers in individuals with SCD.
Collapse
Affiliation(s)
- Janina Ulbl
- Division of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Martin Rakusa
- Division of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
7
|
Pérez-González D, Schreiner TG, Llano DA, Malmierca MS. Alzheimer's Disease, Hearing Loss, and Deviance Detection. Front Neurosci 2022; 16:879480. [PMID: 35720686 PMCID: PMC9201340 DOI: 10.3389/fnins.2022.879480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Age-related hearing loss is a widespread condition among the elderly, affecting communication and social participation. Given its high incidence, it is not unusual that individuals suffering from age-related hearing loss also suffer from other age-related neurodegenerative diseases, a scenario which severely impacts their quality of life. Furthermore, recent studies have identified hearing loss as a relevant risk factor for the development of dementia due to Alzheimer's disease, although the underlying associations are still unclear. In order to cope with the continuous flow of auditory information, the brain needs to separate repetitive sounds from rare, unexpected sounds, which may be relevant. This process, known as deviance detection, is a key component of the sensory perception theory of predictive coding. According to this framework, the brain would use the available incoming information to make predictions about the environment and signal the unexpected stimuli that break those predictions. Such a system can be easily impaired by the distortion of auditory information processing that accompanies hearing loss. Changes in cholinergic neuromodulation have been found to alter auditory deviance detection both in humans and animal models. Interestingly, some theories propose a role for acetylcholine in the development of Alzheimer's disease, the most common type of dementia. Acetylcholine is involved in multiple neurobiological processes such as attention, learning, memory, arousal, sleep and/or cognitive reinforcement, and has direct influence on the auditory system at the levels of the inferior colliculus and auditory cortex. Here we comment on the possible links between acetylcholine, hearing loss, and Alzheimer's disease, and association that is worth further investigation.
Collapse
Affiliation(s)
- David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Thomas G. Schreiner
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, “Gheorghe Asachi” Technical University of Iasi, Iaşi, Romania
- Department of Neurology, “Gr. T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
| | - Daniel A. Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- The Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
- Carle Neuroscience Institute, Urbana, IL, United States
| | - Manuel S. Malmierca
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
8
|
Multitask Versus Multicomponent Training on Cognitive and Motor Functions in Persons With Mild Cognitive Impairment: A Randomized Trial. J Aging Phys Act 2022; 30:1024-1037. [PMID: 35453122 DOI: 10.1123/japa.2021-0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022]
Abstract
This study aims to compare the effects of multitask (MTT; multiple tasks performed simultaneously) and multicomponent training (MCT; various types of exercise performed sequentially) on processing speed, cognitive functions, gait speed, and balance functions in persons with mild cognitive impairment. Forty-two persons with mild cognitive impairment were randomly allocated to MTT (n = 21) or MCT (n = 21). Outcome measures included processing speed, cognitive functions (attention and executive functions), single-task gait speed, dual-task gait speed (DTGS-Arithmetic and DTGS-Verbal), and balance functions. Processing speed (except inhibition), cognitive functions, gait speed, and balance functions improved in the MTT and MCT groups following training, with no significant differences between the groups in processing speed or cognitive functions. The MCT group improved more on single-task gait speed (F = 15.097; p = .000; r = .270) and DTGS (DTGS-Arithmetic; F = 10.594; p = .002; r = .214), while the MTT group improved more on balance functions (F = 4.366; p = .043; r = .101). MTT and MCT strategies can be used to improve cognitive and physical outcomes in persons with mild cognitive impairment.
Collapse
|
9
|
Nathan PJ, Millais SB, Godwood A, Dewit O, Cross DM, Liptrot J, Ruparelia B, Jones SP, Bakker G, Maruff PT, Light GA, Brown AJ, Weir MP, Congreve M, Tasker T. A phase 1b/2a multicenter study of the safety and preliminary pharmacodynamic effects of selective muscarinic M 1 receptor agonist HTL0018318 in patients with mild-to-moderate Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12273. [PMID: 35229025 PMCID: PMC8864442 DOI: 10.1002/trc2.12273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 12/03/2022]
Abstract
INTRODUCTION This study examined the safety and pharmacodynamic effects of selective muscarinic M1 receptor orthosteric agonist HTL0018318 in 60 patients with mild-to-moderate Alzheimer's disease (AD) on background donepezil 10 mg/day. METHODS A randomized, double-blind, placebo-controlled 4-week safety study of HTL0018318 with up-titration and maintenance phases, observing exploratory effects on electrophysiological biomarkers and cognition. RESULTS Treatment-emergent adverse events (TEAEs) were mild and less frequently reported during maintenance versus titration. Headache was most commonly reported (7-21%); 0 to 13% reported cholinergic TEAEs (abdominal pain, diarrhea, fatigue, nausea) and two patients discontinued due to TEAEs. At 1 to 2 hours post-dose, HTL0018318-related mean maximum elevations in systolic and diastolic blood pressure of 5 to 10 mmHg above placebo were observed during up-titration but not maintenance. Postive effects of HTL0018318 were found on specific attention and memory endpoints. DISCUSSION HTL0018318 was well tolerated in mild-to-moderate AD patients and showed positive effects on attention and episodic memory on top of therapeutic doses of donepezil.
Collapse
Affiliation(s)
- Pradeep J. Nathan
- Heptares Therapeutics LtdCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | | | | | | | | | | | | | | | | | | | - Gregory A. Light
- Departmentof PsychiatryUniversity of San DiegoSan DiegoCaliforniaUSA
| | | | | | | | | |
Collapse
|
10
|
Neurophysiological and Brain Structural Markers of Cognitive Frailty Differ from Alzheimer's Disease. J Neurosci 2022; 42:1362-1373. [PMID: 35012965 PMCID: PMC8883844 DOI: 10.1523/jneurosci.0697-21.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 02/02/2023] Open
Abstract
With increasing life span and prevalence of dementia, it is important to understand the mechanisms of cognitive aging. Here, we focus on a subgroup of the population we term "cognitively frail," defined by reduced cognitive function in the absence of subjective memory complaints, or a clinical diagnosis of dementia. Cognitive frailty is distinct from cognitive impairment caused by physical frailty. It has been proposed to be a precursor to Alzheimer's disease, but may alternatively represent one end of a nonpathologic spectrum of cognitive aging. We test these hypotheses in humans of both sexes, by comparing the structural and neurophysiological properties of a community-based cohort of cognitive frail adults, to people presenting clinically with diagnoses of Alzheimer's disease or mild cognitive impairment, and community-based cognitively typical older adults. Cognitive performance of the cognitively frail was similar to those with mild cognitive impairment. We used a novel cross-modal paired-associates task that presented images followed by sounds, to induce physiological responses of novelty and associative mismatch, recorded by EEG/MEG. Both controls and cognitively frail showed stronger mismatch responses and larger temporal gray matter volume, compared with people with mild cognitive impairment and Alzheimer's disease. Our results suggest that community-based cognitively frail represents a spectrum of normal aging rather than incipient Alzheimer's disease, despite similar cognitive function. Lower lifelong cognitive reserve, hearing impairment, and cardiovascular comorbidities might contribute to the etiology of the cognitive frailty. Critically, community-based cohorts of older adults with low cognitive performance should not be interpreted as representing undiagnosed Alzheimer's disease.SIGNIFICANCE STATEMENT The current study investigates the neural signatures of cognitive frailty in relation to healthy aging and Alzheimer's disease. We focus on the cognitive aspect of frailty and show that, despite performing similarly to the patients with mild cognitive impairment, a cohort of community-based adults with poor cognitive performance do not show structural atrophy or neurophysiological signatures of Alzheimer's disease. Our results call for caution before assuming that cognitive frailty represents latent Alzheimer's disease. Instead, the cognitive underperformance of cognitively frail adults could result in cumulative effects of multiple psychosocial risk factors over the lifespan, and medical comorbidities.
Collapse
|
11
|
Benhamou E, Zhao S, Sivasathiaseelan H, Johnson JCS, Requena-Komuro MC, Bond RL, van Leeuwen JEP, Russell LL, Greaves CV, Nelson A, Nicholas JM, Hardy CJD, Rohrer JD, Warren JD. Decoding expectation and surprise in dementia: the paradigm of music. Brain Commun 2021; 3:fcab173. [PMID: 34423301 PMCID: PMC8376684 DOI: 10.1093/braincomms/fcab173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
Making predictions about the world and responding appropriately to unexpected events are essential functions of the healthy brain. In neurodegenerative disorders, such as frontotemporal dementia and Alzheimer's disease, impaired processing of 'surprise' may underpin a diverse array of symptoms, particularly abnormalities of social and emotional behaviour, but is challenging to characterize. Here, we addressed this issue using a novel paradigm: music. We studied 62 patients (24 female; aged 53-88) representing major syndromes of frontotemporal dementia (behavioural variant, semantic variant primary progressive aphasia, non-fluent-agrammatic variant primary progressive aphasia) and typical amnestic Alzheimer's disease, in relation to 33 healthy controls (18 female; aged 54-78). Participants heard famous melodies containing no deviants or one of three types of deviant note-acoustic (white-noise burst), syntactic (key-violating pitch change) or semantic (key-preserving pitch change). Using a regression model that took elementary perceptual, executive and musical competence into account, we assessed accuracy detecting melodic deviants and simultaneously recorded pupillary responses and related these to deviant surprise value (information-content) and carrier melody predictability (entropy), calculated using an unsupervised machine learning model of music. Neuroanatomical associations of deviant detection accuracy and coupling of detection to deviant surprise value were assessed using voxel-based morphometry of patients' brain MRI. Whereas Alzheimer's disease was associated with normal deviant detection accuracy, behavioural and semantic variant frontotemporal dementia syndromes were associated with strikingly similar profiles of impaired syntactic and semantic deviant detection accuracy and impaired behavioural and autonomic sensitivity to deviant information-content (all P < 0.05). On the other hand, non-fluent-agrammatic primary progressive aphasia was associated with generalized impairment of deviant discriminability (P < 0.05) due to excessive false-alarms, despite retained behavioural and autonomic sensitivity to deviant information-content and melody predictability. Across the patient cohort, grey matter correlates of acoustic deviant detection accuracy were identified in precuneus, mid and mesial temporal regions; correlates of syntactic deviant detection accuracy and information-content processing, in inferior frontal and anterior temporal cortices, putamen and nucleus accumbens; and a common correlate of musical salience coding in supplementary motor area (all P < 0.05, corrected for multiple comparisons in pre-specified regions of interest). Our findings suggest that major dementias have distinct profiles of sensory 'surprise' processing, as instantiated in music. Music may be a useful and informative paradigm for probing the predictive decoding of complex sensory environments in neurodegenerative proteinopathies, with implications for understanding and measuring the core pathophysiology of these diseases.
Collapse
Affiliation(s)
- Elia Benhamou
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Sijia Zhao
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Harri Sivasathiaseelan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Jeremy C S Johnson
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Maï-Carmen Requena-Komuro
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Rebecca L Bond
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Janneke E P van Leeuwen
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Lucy L Russell
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Caroline V Greaves
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Annabel Nelson
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Jennifer M Nicholas
- Department of Medical Statistics, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris J D Hardy
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Jason D Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| |
Collapse
|
12
|
Kocagoncu E, Klimovich-Gray A, Hughes LE, Rowe JB. Evidence and implications of abnormal predictive coding in dementia. Brain 2021; 144:3311-3321. [PMID: 34240109 PMCID: PMC8677549 DOI: 10.1093/brain/awab254] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/15/2021] [Accepted: 06/17/2021] [Indexed: 11/14/2022] Open
Abstract
The diversity of cognitive deficits and neuropathological processes associated with dementias has encouraged divergence in pathophysiological explanations of disease. Here, we review an alternative framework that emphasizes convergent critical features of cognitive pathophysiology. Rather than the loss of ‘memory centres’ or ‘language centres’, or singular neurotransmitter systems, cognitive deficits are interpreted in terms of aberrant predictive coding in hierarchical neural networks. This builds on advances in normative accounts of brain function, specifically the Bayesian integration of beliefs and sensory evidence in which hierarchical predictions and prediction errors underlie memory, perception, speech and behaviour. We describe how analogous impairments in predictive coding in parallel neurocognitive systems can generate diverse clinical phenomena, including the characteristics of dementias. The review presents evidence from behavioural and neurophysiological studies of perception, language, memory and decision-making. The reformulation of cognitive deficits in terms of predictive coding has several advantages. It brings diverse clinical phenomena into a common framework; it aligns cognitive and movement disorders; and it makes specific predictions on cognitive physiology that support translational and experimental medicine studies. The insights into complex human cognitive disorders from the predictive coding framework may therefore also inform future therapeutic strategies.
Collapse
Affiliation(s)
- Ece Kocagoncu
- Cambridge Centre for Frontotemporal Dementia, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Laura E Hughes
- Cambridge Centre for Frontotemporal Dementia, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Cambridge Centre for Frontotemporal Dementia, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Cheng CH, Chang CC, Chao YP, Lu H, Peng SW, Wang PN. Altered mismatch response precedes gray matter atrophy in subjective cognitive decline. Psychophysiology 2021; 58:e13820. [PMID: 33792049 DOI: 10.1111/psyp.13820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 02/03/2023]
Abstract
The cross-sectional identification of subjective cognitive decline (SCD) in cognitively normal adults is particularly important for the early effective prevention or intervention of the future development of mild cognitive impairments (MCI) or Alzheimer's disease (AD). A pre-attentive neurophysiological signal that reflects the brain's ability to detect the changes of the environment is called mismatch negativity (MMN) or its magnetic counterpart (MMNm). It has been shown that patients with MCI or AD demonstrate reduced MMN/MMNm responses, while the exact profile of MMN/MMNm in SCD is substantially unknown. We applied magnetoencephalographic recordings to interrogate MMNm activities in healthy controls (HC, n = 29) and individuals with SCD (n = 26). Furthermore, we analyzed gray matter (GM) volumes in the MMNm-related regions through voxel-based morphometry and performed apolipoprotein E4 (APOE4) genotyping for all the participants. Our results showed that there were no significant differences in GM volume and proportions of APOE4 carriers between HC and SCD groups. However, individuals with SCD exhibited weakened z-corrected MMNm responses in the left inferior parietal lobule and right inferior frontal gyrus (IFG) as compared to HC. Based on the regions showing significant between-group differences, z-corrected MMNm amplitudes of the right IFG significantly correlated with the memory performance among the SCD participants. Our data suggest that neurophysiological changes of the brain, as indexed by MMNm, precede structural atrophy in the individuals with SCD compared to those without SCD.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology and Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Ping Chao
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hsinjie Lu
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Shih-Wei Peng
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Pei-Ning Wang
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| |
Collapse
|
14
|
Romano RR, Carter MA, Monroe TB. Narrative Review of Sensory Changes as a Biomarker for Alzheimer's Disease. Biol Res Nurs 2021; 23:223-230. [PMID: 32799655 PMCID: PMC8264859 DOI: 10.1177/1099800420947176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early recognition of Alzheimer's disease (AD) in the prodromal period has not been robust yet will be necessary if effective disease-modifying drugs are to be useful in preventing or delaying the condition. The objective of this narrative review was to describe the current, evidenced based understanding of alterations in sensory data as potential biomarkers for AD. Review of empirical studies that tested senses as biomarkers for AD and were published in English within the past 50 years was completed. Eighteen empirical studies were identified that met the strict criteria for inclusion, with 12 of these studies being related to the olfactory system. Two studies examined auditory, two examined vision, one examined proprioception, and one examined taste. Thus, only olfaction has been studied to any extent, leaving a clear gap in the literature for the use of other senses. A promising area of research has begun to be reported concerning differences in responses to pain stimuli in AD relative to cognitively normal subjects. Pain is not a single sense like the others but integrates several senses and may allow for use as an early biomarker for AD, as it integrates several brain areas and pathways. Unlike the other senses, simple devices can be used to measure changes in pain perception in cognitively normal adults with genetic predispositions for possible AD, making this potentially useful for clinicians in the future.
Collapse
Affiliation(s)
- Raymond R. Romano
- College of Nursing, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Michael A. Carter
- College of Nursing, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Todd B. Monroe
- College of Nursing, Ohio State
University, Columbus, OH, USA
| |
Collapse
|
15
|
Laptinskaya D, Küster OC, Fissler P, Thurm F, Von Arnim CAF, Kolassa IT. No Evidence That Cognitive and Physical Activities Are Related to Changes in EEG Markers of Cognition in Older Adults at Risk of Dementia. Front Aging Neurosci 2021; 13:610839. [PMID: 33815087 PMCID: PMC8017171 DOI: 10.3389/fnagi.2021.610839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
An active lifestyle as well as cognitive and physical training (PT) may benefit cognition by increasing cognitive reserve, but the underlying neurobiological mechanisms of this reserve capacity are not well understood. To investigate these mechanisms of cognitive reserve, we focused on electrophysiological correlates of cognitive performance, namely on an event-related measure of auditory memory and on a measure of global coherence. Both measures have shown to be sensitive markers for cognition and might therefore be suitable to investigate potential training- and lifestyle-related changes. Here, we report on the results of an electrophysiological sub-study that correspond to previously published behavioral findings. Altogether, 65 older adults with subjective or objective cognitive impairment and aged 60-88 years were assigned to a 10-week cognitive (n = 19) or a 10-week PT (n = 21) or to a passive control group (n = 25). In addition, self-reported lifestyle was assessed at baseline. We did not find an effect of both training groups on electroencephalography (EEG) measures of auditory memory decay or global coherence (ps ≥ 0.29) and a more active lifestyle was not associated with improved global coherence (p = 0.38). Results suggest that a 10-week unimodal cognitive or PT and an active lifestyle in older adults at risk for dementia are not strongly related to improvements in electrophysiological correlates of cognition.
Collapse
Affiliation(s)
- Daria Laptinskaya
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Olivia Caroline Küster
- Department of Neurology, Ulm University, Ulm, Germany
- Clinic for Neurogeriatrics and Neurological Rehabilitation, University- and Rehabilitation Hospital Ulm, Ulm, Germany
| | - Patrick Fissler
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
- Department of Neurology, Ulm University, Ulm, Germany
- Psychiatric Services of Thurgovia, Academic Teaching Hospital of Paracelsus Medical University Salzburg, Muensterlingen, Switzerland
| | - Franka Thurm
- Department of Psychology, University of Konstanz, Konstanz, Germany
- Faculty of Psychology, TU Dresden, Dresden, Germany
| | - Christine A. F. Von Arnim
- Department of Neurology, Ulm University, Ulm, Germany
- Division of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Iris-Tatjana Kolassa
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
- Department of Psychology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
16
|
Tarawneh HY, Mulders WH, Sohrabi HR, Martins RN, Jayakody DM. Investigating Auditory Electrophysiological Measures of Participants with Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review and Meta-Analysis of Event-Related Potential Studies. J Alzheimers Dis 2021; 84:419-448. [PMID: 34569950 PMCID: PMC8609695 DOI: 10.3233/jad-210556] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Objectively measuring auditory functions has been proposed as an avenue in differentiating normal age-related cognitive dysfunction from Alzheimer's disease (AD) and its prodromal states. Previous research has suggested auditory event-related potentials (AERPs) to be non-invasive, cost-effective, and efficient biomarkers for the diagnosis of AD. OBJECTIVE The objective of this paper is to review the published literature on AERPs measures in older adults diagnosed with AD and those at higher risk of developing AD, i.e., mild cognitive impairment (MCI) and subjective cognitive decline. METHODS The search was performed on six major electronic databases (Ovid MEDLINE, OVID EMBASE, PsycINFO, PubMed, Scopus, and CINAHL Plus). Articles identified prior to 7 May 2019 were considered for this review. A random effects meta-analysis and analysis of between study heterogeneity was conducted using the Comprehensive Meta-Analysis software. RESULTS The search identified 1,076 articles; 74 articles met the full inclusion criteria and were included in the systematic review, and 47 articles were included into the analyses. Pooled analysis suggests that AD participants can be differentiated from controls due to significant delays in ABR, N100, P200, N200, and P300 latencies. P300 amplitude was significantly smaller in AD participants compared to controls. P300 latencies differed significantly between MCI participants and controls based on the pooled analysis. CONCLUSION The findings of this review indicate that some AERPs may be valuable biomarkers of AD. In conjunction with currently available clinical and neuropsychological assessments, AERPs can aid in screening and diagnosis of prodromal AD.
Collapse
Affiliation(s)
- Hadeel Y. Tarawneh
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- Ear Science Institute Australia, Subiaco, WA, Australia
| | | | - Hamid R. Sohrabi
- Centre for Healthy Ageing, College of Science, Health, Engineering and Education, Murdoch University, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ralph N. Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Dona M.P. Jayakody
- Ear Science Institute Australia, Subiaco, WA, Australia
- Ear Science Centre, School of Surgery, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
17
|
Pei G, Yang R, Shi Z, Guo G, Wang S, Liu M, Qiu Y, Wu J, Go R, Han Y, Yan T. Enhancing Working Memory Based on Mismatch Negativity Neurofeedback in Subjective Cognitive Decline Patients: A Preliminary Study. Front Aging Neurosci 2020; 12:263. [PMID: 33132892 PMCID: PMC7550626 DOI: 10.3389/fnagi.2020.00263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/03/2020] [Indexed: 01/16/2023] Open
Abstract
Mismatch negativity (MMN) is suitable for studies of preattentive auditory discriminability and the auditory memory trace. Subjective cognitive decline (SCD) is an ideal target for early therapeutic intervention because SCD occurs at preclinical stages many years before the onset of Alzheimer’s disease (AD). According to a novel lifespan-based model of dementia risk, hearing loss is considered the greatest potentially modifiable risk factor of dementia among nine health and lifestyle factors, and hearing impairment is associated with cognitive decline. Therefore, we propose a neurofeedback training based on MMN, which is an objective index of auditory discriminability, to regulate sensory ability and memory as a non-pharmacological intervention (NPI) in SCD patients. Seventeen subjects meeting the standardized clinical evaluations for SCD received neurofeedback training. The auditory frequency discrimination test, the visual digital N-back (1-, 2-, and 3-back), auditory digital N-back (1-, 2-, and 3-back), and auditory tone N-back (1-, 2-, and 3-back) tasks were used pre- and post-training in all SCD patients. The intervention schedule comprised five 60-min training sessions over 2 weeks. The results indicate that the subjects who received neurofeedback training had successfully improved the amplitude of MMN at the parietal electrode (Pz). A slight decrease in the threshold of auditory frequency discrimination was observed after neurofeedback training. Notably, after neurofeedback training, the working memory (WM) performance was significantly enhanced in the auditory tone 3-back test. Moreover, improvements in the accuracy of all WM tests relative to the baseline were observed, although the changes were not significant. To the best of our knowledge, our preliminary study is the first to investigate the effects of MMN neurofeedback training on WM in SCD patients, and our results suggest that MMN neurofeedback may represent an effective treatment for intervention in SCD patients and the elderly with aging memory decline.
Collapse
Affiliation(s)
- Guangying Pei
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ruoshui Yang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Zhongyan Shi
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Guoxin Guo
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Shujie Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Miaomiao Liu
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yuxiang Qiu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jinglong Wu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China.,Faculty of Engineering, Okayama University, Okayama, Japan
| | - Ritsu Go
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
18
|
Laptinskaya D, Fissler P, Küster OC, Wischniowski J, Thurm F, Elbert T, von Arnim CAF, Kolassa IT. Global EEG coherence as a marker for cognition in older adults at risk for dementia. Psychophysiology 2019; 57:e13515. [PMID: 31840287 DOI: 10.1111/psyp.13515] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 11/30/2022]
Abstract
Quantitative electroencephalography (EEG) provides useful information about neurophysiological health of the aging brain. Current studies investigating EEG coherence and power for specific brain areas and frequency bands have yielded inconsistent results. This study assessed EEG coherence and power indices at rest measured over the whole skull and for a wide frequency range as global EEG markers for cognition in a sample at risk for dementia. Since global markers are more reliable and less error-prone than region- and frequency-specific indices they might help to overcome previous inconsistencies. Global EEG coherence (1-30 Hz) and an EEG slowing score were assessed. The EEG slowing score was calculated by low-frequency power (1-8 Hz) divided by high-frequency power (9-30 Hz). In addition, the prognostic value of the two EEG indices for cognition and cognitive decline was assessed in a 5-year follow-up pilot study. Baseline global coherence correlated positively with cognition at baseline, but not with cognitive decline or with cognition at the 5-year follow-up. The EEG slowing ratio showed no significant association, neither with cognition at baseline or follow-up, nor with cognitive decline over a period of 5 years. The results indicate that the resting state global EEG coherence might be a useful and easy to assess electrophysiological correlate for neurocognitive health in older adults at risk for dementia. Because of the small statistical power for the follow-up analyses, the prognostic value of global coherence could not be determined in the present study. Future studies should assess its prognostic value with larger sample sizes.
Collapse
Affiliation(s)
- Daria Laptinskaya
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.,Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Patrick Fissler
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.,Department of Neurology, Ulm University, Ulm, Germany
| | - Olivia Caroline Küster
- Department of Neurology, Ulm University, Ulm, Germany.,Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Jakob Wischniowski
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Franka Thurm
- Department of Psychology, University of Konstanz, Konstanz, Germany.,Faculty of Psychology, TU Dresden, Dresden, Germany
| | - Thomas Elbert
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Christine A F von Arnim
- Department of Neurology, Ulm University, Ulm, Germany.,Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Iris-Tatjana Kolassa
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.,Department of Psychology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
19
|
Auditory sensory memory span for duration is severely curtailed in females with Rett syndrome. Transl Psychiatry 2019; 9:130. [PMID: 30967526 PMCID: PMC6456588 DOI: 10.1038/s41398-019-0463-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/23/2019] [Indexed: 11/19/2022] Open
Abstract
Rett syndrome (RTT), a rare neurodevelopmental disorder caused by mutations in the MECP2 gene, is typified by profound cognitive impairment and severe language impairment, rendering it very difficult to accurately measure auditory processing capabilities behaviorally in this population. Here we leverage the mismatch negativity (MMN) component of the event-related potential to measure the ability of RTT patients to decode and store occasional duration deviations in a stream of auditory stimuli. Sensory memory for duration, crucial for speech comprehension, has not been studied in RTT.High-density electroencephalography was successfully recorded in 18 females with RTT and 27 age-matched typically developing (TD) controls (aged 6-22 years). Data from seven RTT and three TD participants were excluded for excessive noise. Stimuli were 1 kHz tones with a standard duration of 100 ms and deviant duration of 180 ms. To assess the sustainability of sensory memory, stimulus presentation rate was varied with stimulus onset asynchronies (SOAs) of 450, 900, and 1800 ms. MMNs with maximum negativity over fronto-central scalp and a latency of 220-230 ms were clearly evident for each presentation rate in the TD group, but only for the shortest SOA in the RTT group. Repeated-measures ANOVA revealed a significant group by SOA interaction. MMN amplitude correlated with age in the TD group only. MMN amplitude was not correlated with the Rett Syndrome Severity Scale. This study indicates that while RTT patients can decode deviations in auditory duration, the span of this sensory memory system is severely foreshortened, with likely implications for speech decoding abilities.
Collapse
|