1
|
Wang E, Jia Y, Cheng L, Mao C, Bao Y, Shen J, Zhang Y, Fan G. Convergent reductions in interhemispheric functional, structural and callosal connectivity in Parkinson's disease. Front Aging Neurosci 2025; 17:1512130. [PMID: 40018517 PMCID: PMC11865091 DOI: 10.3389/fnagi.2025.1512130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
Background Abnormal interhemispheric functional connectivity is frequently reported in Parkinson's disease (PD), but its structural basis remains unclear. This study aimed to investigate changes in interhemispheric functional, structural, and callosal connectivity, as well as their interrelationships, in PD patients. Methods The study included 57 PD patients and 50 healthy controls (HCs). Interhemispheric functional connectivity was evaluated using voxel mirrored homotopic connectivity (VMHC) derived from resting-state functional MRI, while structural connectivity was measured through homotopic cortical thickness covariance from T1-weighted MRI. The corpus callosum (CC), connecting bilateral regions with VMHC differences, was assessed using fractional anisotropy (FA) from diffusion MRI. Pearson's correlation was used to evaluate the interrelationships among imaging data and their clinical relevance. Results Compared to HCs, PD patients showed reduced VMHC and interhemispheric structural connectivity in similar brain regions, displaying a positive correlation trend between these measures. The affected regions encompassed the bilateral sensorimotor cortices (precentral gyrus, postcentral gyrus, and paracentral lobule) and posterior cortical areas, including the superior parietal lobule, supramarginal gyrus, precuneus, middle occipital gyrus, fusiform gyrus, as well as the superior and middle temporal gyri. FA in the CC, connecting regions with reduced VMHC, was also lower in PD patients. Additionally, interhemispheric structural, functional, and callosal connectivity reductions were, respectively, related to cognitive impairment, motor dysfunctions, and disease duration in PD. Conclusion The study identified convergent reductions in interhemispheric functional, structural and callosal connectivity in PD patients, emphasizing the strong link between structural and functional brain abnormalities. Our findings may provide new insights into the pathophysiology of PD.
Collapse
Affiliation(s)
- Erlei Wang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yujing Jia
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Luqi Cheng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, China
| | - Chengjie Mao
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiqing Bao
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junkang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuanchao Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- College of Health Solutions, Arizona State University, Tempe, AZ, United States
| | - Guohua Fan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Yuan M, Long X, Zhang Z, Rong M, Lian S, Peng Y, Fang Y. Longitudinal trajectory effects of different MCI subtypes on general cognitive and daily functions in a population-based cohort of older adults. J Psychiatr Res 2024; 171:296-305. [PMID: 38335640 DOI: 10.1016/j.jpsychires.2024.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVES To identify different mild cognitive impairment (MCI) phenotypes based on substantial relative impairment in specific cognitive domains and then characterize the complex process of general cognitive and daily functions over time in older adults with these MCI subtypes. METHODS A total of 1020 participants with MCI at baseline from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were recruited. MCI subtypes were obtained based on neuropsychological tests in five cognitive domains: memory (M), visuospatial function (V), language (L), processing speed (P), and executive function (E). General cognitive function and daily function were measured by the Mini-Mental State Examination (MMSE) and the Functional Assessment Questionnaire (FAQ), respectively. Linear mixed models were fitted to curve their trajectories across different MCI subtypes. RESULTS Considering visuospatial function, subtypes were MO (memory impaired only), M&V (memory and visuospatial function impaired) and M&nV (memory impaired and visuospatial function non-impaired). Similar subtypes and naming rules were obtained based on language, executive function, and processing speed. Further, depending on the number of relative impaired cognitive domains M&S and M&M were obtained. Participants with MO had the highest prevalence in the sample (53.4 %), followed by M&nV (31.1 %). Participants with M&V had the highest mean age (74.69 years) at baseline and the greatest dementia conversion rate (53.2 %). The MMSE and FAQ score trajectories changed most slowly in participants with MO while fastest in those with M&V. Obvious different trajectories of both MMSE and FAQ scores were observed across different subtypes based on visuospatial function and executive function. CONCLUSION Compared to MO, individuals with multi-dimensional cognitive impairment have worse general cognitive and daily functions, especially for those with M&V.
Collapse
Affiliation(s)
- Manqiong Yuan
- Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China; Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Xianxian Long
- Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China; Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Zeyun Zhang
- Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China; Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Meng Rong
- Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China; Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Shuli Lian
- Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China; Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Yingxue Peng
- School of Public Health, Xiamen University, Xiamen, China
| | - Ya Fang
- Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China; Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China.
| |
Collapse
|
3
|
Cui L, Zhang Z, Huang YL, Xie F, Guan YH, Lo CYZ, Guo YH, Jiang JH, Guo QH. Brain amyloid-β deposition associated functional connectivity changes of ultra-large structural scale in mild cognitive impairment. Brain Imaging Behav 2023; 17:494-506. [PMID: 37188840 DOI: 10.1007/s11682-023-00780-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
In preclinical Alzheimer's disease, neuro-functional changes due to amyloid-β (Aβ) deposition are not synchronized in different brain lobes and subcortical nuclei. This study aimed to explore the correlation between brain Aβ burden, connectivity changes in an ultra-large structural scale, and cognitive function in mild cognitive impairment. Participants with mild cognitive impairment were recruited and underwent florbetapir (F18-AV45) PET, resting-state functional MRI, and multidomain neuropsychological tests. AV-45 standardized uptake value ratio (SUVR) and functional connectivity of all participants were calculated. Of the total 144 participants, 72 were put in the low Aβ burden group and 72 in the high Aβ burden group. In the low Aβ burden group, all connectivities between lobes and nuclei had no correlation with SUVR. In the high Aβ burden group, SUVR showed negative correlations with the Subcortical-Occipital connectivity (r=-0.36, P = 0.02) and Subcortical-Parietal connectivity (r=-0.26, P = 0.026). Meanwhile, in the high Aβ burden group, SUVR showed positive correlations with the Temporal-Prefrontal connectivity (r = 0.27, P = 0.023), Temporal-Occipital connectivity (r = 0.24, P = 0.038), and Temporal-Parietal connectivity (r = 0.32, P = 0.006). Subcortical to Occipital and Parietal connectivities had positive correlations with general cognition, language, memory, and executive function. Temporal to Prefrontal, Occipital, and Parietal connectivities had negative correlations with memory function, executive function, and visuospatial function, and a positive correlation with language function. In conclusion, Individuals with mild cognitive impairment with high Aβ burden have Aβ-related bidirectional functional connectivity changes between lobes and subcortical nuclei that are associated with cognitive decline in multiple domains. These connectivity changes reflect neurological impairment and failed compensation.
Collapse
Affiliation(s)
- Liang Cui
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhen Zhang
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yan-Lu Huang
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200040, China
| | - Yi-Hui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200040, China
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Yi-Han Guo
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jie-Hui Jiang
- Institute of Biomedical Engineering, School of Life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Qi-Hao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
4
|
Cheng Y, Chen XL, Shi L, Li SY, Huang H, Zhong PP, Wu XR. Abnormal Functional Connectivity Between Cerebral Hemispheres in Patients With High Myopia: A Resting FMRI Study Based on Voxel-Mirrored Homotopic Connectivity. Front Hum Neurosci 2022; 16:910846. [PMID: 35814958 PMCID: PMC9259881 DOI: 10.3389/fnhum.2022.910846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeTo study the changes in functional connections between the left and right hemispheres of patients with high myopia (HM) and healthy controls (HCs) by resting functional magnetic resonance imaging (fMRI) based on voxel-mirrored homotopic connectivity (VMHC). To study the changes in resting-state functional connectivity (rsFC) between the left and right hemispheres of patients with HM and healthy controls (HCS) at rest by using resting functional magnetic resonance imaging (fMRI) based on voxel-mirror homotopy connectivity (VMHC).Patients and MethodsA total of 89 patients with HM (41 men and 48 women) and 59 HCs (24 men and 35 women) were collected and matched according to gender, age, and education level. The VMHC method was used to evaluate the changes in rsFC between cerebral hemispheres, and a correlation analysis was carried out to understand the differences in brain functional activities between the patients with HM and the HCs.ResultsCompared with the HCs, the VMHC values of the putamen and fusiform in the HM group were significantly lower (voxel-level p < 0.01, Gaussian random field correction cluster level p < 0.05).ConclusionThis study preliminarily confirmed the destruction of interhemispheric functional connection in some brain regions of the patients with HM and provided effective information for clarifying the neural mechanism of patients with HM.
Collapse
|
5
|
The pupil constriction to light is associated with cognitive measures in middle-aged and older adults. Aging Clin Exp Res 2022; 34:1655-1662. [PMID: 35267180 DOI: 10.1007/s40520-022-02097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/16/2022] [Indexed: 11/01/2022]
Abstract
AIMS The evidence relating the pupil light reflex (PLR) and cognition have been inconsistent. In this cross-sectional study, we evaluated the association between the PLR and cognition in community-dwelling middle-aged and older individuals. METHODS Pupil reactivity was recorded in a subgroup of 403 participants (mean age 60.7 years, 57.3% females) in an epidemiologic study of aging. Ten pupil parameters were calculated to describe pupil constriction to light stimuli. A principal component analysis (PCA) score was used to calculate an overall performance over four cognitive testings. Linear regression was used to assess the association between pupil parameters and PCA scores, adjusting for age, sex, education, medications, health-related quality of life questionnaire, and systemic and ocular comorbidities. RESULTS The PCA scores decreased by 0.039 [95% CI (- 0.050, - 0.028)] per year increase in age and were lower in males than females by 0.76 [95% CI (- 0.96, - 0.55)] (p < 0.001). Pupil constriction amplitude in millimeters and the duration from stimulus onset to maximal constriction velocity were significantly associated with cognition after adjusting for (1) age and sex and (2) age, sex, and multiple covariates (p < 0.05). CONCLUSIONS In this study, we provided moderate evidence suggesting the association between PLR and neuropsychological cognitive measures. The findings suggest the potential of pupil reactivity to serve as a biomarker of brain aging and warrant further longitudinal study to assess if changes in the PLR can predict cognitive decline over time.
Collapse
|
6
|
Population-specific brain [ 18F]-FDG PET templates of Chinese subjects for statistical parametric mapping. Sci Data 2021; 8:305. [PMID: 34836985 PMCID: PMC8626451 DOI: 10.1038/s41597-021-01089-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/06/2021] [Indexed: 11/14/2022] Open
Abstract
Statistical Parametric Mapping (SPM) is a computational approach for analysing functional brain images like Positron Emission Tomography (PET). When performing SPM analysis for different patient populations, brain PET template images representing population-specific brain morphometry and metabolism features are helpful. However, most currently available brain PET templates were constructed using the Caucasian data. To enrich the family of publicly available brain PET templates, we created Chinese-specific template images based on 116 [18F]-fluorodeoxyglucose ([18F]-FDG) PET images of normal participants. These images were warped into a common averaged space, in which the mean and standard deviation templates were both computed. We also developed the SPM analysis programmes to facilitate easy use of the templates. Our templates were validated through the SPM analysis of Alzheimer’s and Parkinson’s patient images. The resultant SPM t-maps accurately depicted the disease-related brain regions with abnormal [18F]-FDG uptake, proving the templates’ effectiveness in brain function impairment analysis. Measurement(s) | brain metabolism measurement | Technology Type(s) | FDG-Positron Emission Tomography | Factor Type(s) | age • sex | Sample Characteristic - Organism | Homo sapiens | Sample Characteristic - Location | China |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.16382418
Collapse
|
7
|
Jin Z, Huyang S, Jiang L, Yan Y, Xu M, Wang J, Li Q, Wu D. Increased Resting-State Interhemispheric Functional Connectivity of Posterior Superior Temporal Gyrus and Posterior Cingulate Cortex in Congenital Amusia. Front Neurosci 2021; 15:653325. [PMID: 33994929 PMCID: PMC8120159 DOI: 10.3389/fnins.2021.653325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/06/2021] [Indexed: 11/26/2022] Open
Abstract
Interhemispheric connectivity of the two cerebral hemispheres is crucial for a broad repertoire of cognitive functions including music and language. Congenital amusia has been reported as a neurodevelopment disorder characterized by impaired music perception and production. However, little is known about the characteristics of the interhemispheric functional connectivity (FC) in amusia. In the present study, we used a newly developed voxel-mirrored homotopic connectivity (VMHC) method to investigate the interhemispheric FC of the whole brain in amusia at resting-state. Thirty amusics and 29 matched participants underwent a resting-state functional magnetic resonance imaging (fMRI) scanning. An automated VMHC approach was used to analyze the fMRI data. Compared to the control group, amusics showed increased VMHC within the posterior part of the default mode network (DMN) mainly in the posterior superior temporal gyrus (pSTG) and posterior cingulate cortex (PCC). Correlation analyses revealed negative correlations between the VMHC value in pSTG/PCC and the music perception ability among amusics. Further ROC analyses showed that the VMHC value of pSTG/PCC showed a good sensibility/specificity to differentiate the amusics from the controls. These findings provide a new perspective for understanding the neural basis of congenital amusia and imply the immature state of DMN may be a credible neural marker of amusia.
Collapse
Affiliation(s)
- Zhishuai Jin
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sizhu Huyang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lichen Jiang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yajun Yan
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Xu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinyu Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qixiong Li
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Daxing Wu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| |
Collapse
|
8
|
Jin X, Liang X, Gong G. Functional Integration Between the Two Brain Hemispheres: Evidence From the Homotopic Functional Connectivity Under Resting State. Front Neurosci 2020; 14:932. [PMID: 33122984 PMCID: PMC7566168 DOI: 10.3389/fnins.2020.00932] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Functional integration among neural units is one of the fundamental principles in brain organization that could be examined using resting-state functional connectivity (rs-FC). Interhemispheric functional integration plays a critical role in human cognition. Homotopic functional connectivity (HoFC) under resting state provide an avenue to investigate functional integration between the two brain hemispheres, which can improve the present understanding of how interhemispheric interactions affect cognitive processing. In this review, we summarize the progress of HoFC studies under resting state and highlight how these findings have enhanced our understanding of interhemispheric functional organization of the human brain. Future studies are encouraged to address particular methodological issues and to further ascertain behavioral correlates, brain disease's modulation, task influence, and genetic basis of HoFC.
Collapse
Affiliation(s)
- Xinhu Jin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xinyu Liang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
9
|
Zhao J, Manza P, Wiers C, Song H, Zhuang P, Gu J, Shi Y, Wang GJ, He D. Age-Related Decreases in Interhemispheric Resting-State Functional Connectivity and Their Relationship With Executive Function. Front Aging Neurosci 2020; 12:20. [PMID: 32161532 PMCID: PMC7054233 DOI: 10.3389/fnagi.2020.00020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
Age-related alterations of functional brain networks contribute to cognitive decline. Current theories indicate that age-related intrinsic brain functional reorganization may be a critical marker of cognitive aging. Yet, little is known about how intrinsic interhemispheric functional connectivity changes with age in adults, and how this relates to critical executive functions. To address this, we examined voxel-mirrored homotopic connectivity (VMHC), a metric that quantifies interhemispheric communication, in 93 healthy volunteers (age range: 19-85) with executive function assessment using the Delis-Kaplan Executive Function System (D-KEFS) scales. Resting functional MRI data were analyzed to assess VMHC, and then a multiple linear regression model was employed to evaluate the relationship between age and the whole-brain VMHC. We observed age-related reductions in VMHC of ventromedial prefrontal cortex (vmPFC) and hippocampus in the medial temporal lobe subsystem, dorsal anterior cingulate cortex and insula in salience network, and inferior parietal lobule in frontoparietal control network. Performance on the color-word inhibition task was associated with VMHC of vmPFC and insula, and VMHC of vmPFC mediated the relationship between age and CWIT inhibition reaction times. The percent ratio of correct design scores in design fluency test correlated positively with VMHC of the inferior parietal lobule. The current study suggests that brain interhemispheric functional alterations may be a promising new avenue for understanding age-related cognitive decline.
Collapse
Affiliation(s)
- Jizheng Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling, China
- Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Corinde Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Huaibo Song
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling, China
- Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, China
| | - Puning Zhuang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling, China
- Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, China
| | - Jun Gu
- Department of Endocrinology, First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yinggang Shi
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Dongjian He
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling, China
- Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, China
| |
Collapse
|
10
|
Sun P, Lou W, Liu J, Shi L, Li K, Wang D, Mok VC, Liang P. Mapping the patterns of cortical thickness in single- and multiple-domain amnestic mild cognitive impairment patients: a pilot study. Aging (Albany NY) 2019; 11:10000-10015. [PMID: 31756169 PMCID: PMC6914405 DOI: 10.18632/aging.102362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/05/2019] [Indexed: 01/26/2023]
Abstract
Amnestic mild cognitive impairment (aMCI) is considered as a transitional stage between the expected cognitive decline of normal aging and Alzheimer’s disease (AD). Structural brain difference has shown the potential in cognitive related diagnosis, however cortical thickness patterns transferred from aMCI to AD, especially in the subtypes of aMCI, is still unclear. In this study, we investigated the cortical thickness discrepancies among AD, aMCI and normal control (NC) entities, especially for two subtypes of aMCI - multiple-domain aMCI (aMCI-m) and single-domain aMCI (aMCI-s). Both region of interest (ROI)-based and vertex-based statistical strategies were performed for group-level cortical thickness comparison. Spearman correlation was utilized to identify the correlation between cortical thickness and clinical neuropsychological scores. The result demonstrated that there was a significant cortical thickness decreasing tendency in fusiform gyrus from NC to aMCI-s to aMCI-m to finally AD in both left and right hemispheres. Meanwhile, the two subtypes of aMCI showed cortical thickness difference in middle temporal gyrus in left hemisphere. Spearman correlation indicated that neuropsychological scores had significant correlations with entorhinal, inferior temporal and middle temporal gyrus. The findings suggested that cortical thickness might serve as a potential imaging biomarker for the differential diagnosis of cognitive impairment.
Collapse
Affiliation(s)
- Pan Sun
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Wutao Lou
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianghong Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.,BrainNow Research Institute, Shenzhen, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Lab of MRI and Brain Informatics, Beijing, China
| | - Defeng Wang
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China
| | - Vincent Ct Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong, China
| | - Peipeng Liang
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| |
Collapse
|
11
|
Chen Y, Pinto AA, Paulsen AJ, Schubert CR, Hancock LM, Klein BE, Klein R, Cruickshanks KJ. The Post-illumination Pupil Response (PIPR) Is Associated With Cognitive Function in an Epidemiologic Cohort Study. Front Neurol 2019; 10:682. [PMID: 31297083 PMCID: PMC6607919 DOI: 10.3389/fneur.2019.00682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
We conducted a cross-sectional study on 403 participants in the 10-year follow-up examination of the Beaver Dam Offspring Study. The participants included 172 male and 231 female, with age ranging from 33 to 81 years (mean ± SD, 60.7 ± 9.3). The post-illumination pupil response (PIPR) was recorded using binocular infrared pupillometer (Neur-Optics, Inc., Irvine, CA). Cognitive testing consisted of Trail Making Test (TMT) Parts A and B, Rey Auditory Verbal Learning Test (AVLT), Digit Symbol Substitution Test (DSST), and Verbal Fluency Test (VFT) (F, A, and S). Principal component analysis (PCA) was used to calculate an overall cognitive function score. There was a significant reduction in the mean baseline pupil diameter by 0.21 mm for every 5-year increase in age (95% CI: -0.25, -0.17). There was also a significant increase in the PCA cognitive score by 0.20 (linear regression, 95% CI: 0.08, 0.32) for every 0.1 unit increase in the PIPR. The association remained significant after adjusting for age, sex, education, medications, systemic and ocular disease, and short form-12 physical and mental component score. The results of this study demonstrated a modest association between the PIPR and cognitive function, warranting longitudinal studies to evaluate the role of the PIPR in predicting cognitive function in the middle-aged and older adults.
Collapse
Affiliation(s)
- Yanjun Chen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Alex A. Pinto
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Adam J. Paulsen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Carla R. Schubert
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Laura M. Hancock
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Barbara E. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Ron Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Karen J. Cruickshanks
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
12
|
Li K, Luo X, Zeng Q, Huang P, Shen Z, Xu X, Xu J, Wang C, Zhou J, Zhang M. Gray matter structural covariance networks changes along the Alzheimer's disease continuum. Neuroimage Clin 2019; 23:101828. [PMID: 31029051 PMCID: PMC6484365 DOI: 10.1016/j.nicl.2019.101828] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/01/2019] [Accepted: 04/15/2019] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) has a long neuropathological accumulation phase before the onset of dementia. Such AD neuropathological deposition between neurons impairs the synaptic communication, resulting in networks disorganization. Our study aimed to explore the evolution patterns of gray matter structural covariance networks (SCNs) along AD continuum. Based on the AT(N) (i.e., Amyloid/Tau/Neurodegeneration) pathological classification system, we classified subjects into four groups using cerebrospinal fluid amyloid-beta1-42 (A) and phosphorylated tau protein181 (T). We identified 101 subjects with normal AD biomarkers (A-T-), 40 subjects with Alzheimer's pathologic change (A + T-), 101 subjects with biological AD (A + T+) and 91 AD with dementia (demented subjects with A + T+). We used four regions of interest to anchor default mode network (DMN, medial temporal subsystem and midline core subsystem), salience network (SN) and executive control network (ECN). Finally, we used a multi-regression model-based linear-interaction analysis to assess the SCN changes. Along the disease progression, DMN and SN showed increased structural association at the early stage while decreased structural association at the late stage. Moreover, ECN showed progressively increased structural association as AD neuropathological profiles progress. In conclusion, this study found the dynamic trajectory of SCNs changes along the AD continuum and support the network disconnection hypothesis underlying AD neuropathological progression. Further, SCN may potentially serve as an effective AD biomarker.
Collapse
Affiliation(s)
- Kaicheng Li
- Department of Radiology, School of Medicine, 2nd Affiliated Hospital of Zhejiang University, China
| | - Xiao Luo
- Department of Radiology, School of Medicine, 2nd Affiliated Hospital of Zhejiang University, China
| | - Qingze Zeng
- Department of Radiology, School of Medicine, 2nd Affiliated Hospital of Zhejiang University, China
| | - Peiyu Huang
- Department of Radiology, School of Medicine, 2nd Affiliated Hospital of Zhejiang University, China
| | - Zhujing Shen
- Department of Radiology, School of Medicine, 2nd Affiliated Hospital of Zhejiang University, China
| | - Xiaojun Xu
- Department of Radiology, School of Medicine, 2nd Affiliated Hospital of Zhejiang University, China
| | - Jingjing Xu
- Department of Radiology, School of Medicine, 2nd Affiliated Hospital of Zhejiang University, China
| | - Chao Wang
- Department of Radiology, School of Medicine, 2nd Affiliated Hospital of Zhejiang University, China
| | - Jiong Zhou
- Department of Neurology, School of Medicine, 2nd Affiliated Hospital of Zhejiang University, China
| | - Minming Zhang
- Department of Radiology, School of Medicine, 2nd Affiliated Hospital of Zhejiang University, China.
| |
Collapse
|