1
|
Du W, Xia X, Gou Q, Qiu Y. Mendelian randomization and transcriptomic analysis reveal a positive cause-and-effect relationship between Alzheimer's disease and colorectal cancer. Transl Oncol 2025; 51:102169. [PMID: 39608211 PMCID: PMC11635780 DOI: 10.1016/j.tranon.2024.102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND This study addresses the complex multifactorial causes of Alzheimer's disease (AD) and colorectal cancer (CRC), two significant public health issues. Despite previous research, the precise relationship between AD and CRC remains unclear. This study aimed to explore the potential causal relationship between AD and CRC using Mendelian randomization (MR) and to identify risk genes through colocalization and transcriptomic analyses. METHOD The study used a two-sample Mendelian randomization (MR) approach to investigate the causal effect of AD on CRC. Genome-wide association study (GWAS) summary statistics for AD and CRC were utilized. Colocalization analysis was conducted to identify risk genes associated with AD, which were then validated through transcriptomic analysis in CRC samples. The study used GWAS data from a cohort of European patients and applied several MR methods, including MR Egger, weighted median, and inverse-variance weighted approaches, to ensure robust findings. RESULTS The MR analysis revealed a significant positive causal relationship between AD and CRC, indicating that an increased genetic predisposition to AD is associated with a elevated risk of developing CRC. The colocalization analysis identified COLEC11 as a significant risk gene for AD, which also showed a strong positive correlation with clinical features and survival outcomes in CRC. Elevated COLEC11 expression was linked to advanced clinical stages, increased tumor mutational burden, microsatellite instability, and poorer overall survival in CRC patients. CONCLUSIONS This study provides evidence of a causal relationship between AD and CRC, suggesting that shared genetic and inflammatory pathways may underlie both conditions. The identification of COLEC11 as a potential link between AD and CRC offers new avenues for research and therapeutic interventions. These findings contribute to a deeper understanding of the interplay between neurodegenerative and oncologic diseases, highlighting the importance of exploring common pathogenic mechanisms.
Collapse
Affiliation(s)
- Wei Du
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xueming Xia
- Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiheng Gou
- Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Qiu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Kang J, Lee M, Park M, Lee J, Lee S, Park J, Koyanagi A, Smith L, Nehs CJ, Yon DK, Kim T. Slow gut transit increases the risk of Alzheimer's disease: An integrated study of the bi-national cohort in South Korea and Japan and Alzheimer's disease model mice. J Adv Res 2024; 65:283-295. [PMID: 38097171 PMCID: PMC11518944 DOI: 10.1016/j.jare.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 01/02/2024] Open
Abstract
INTRODUCTION Although the association between Alzheimer's disease (AD) and constipation is controversial, its causality and underlying mechanisms remain unknown. OBJECTIVES To investigate the potential association between slow gut transit and AD using epidemiological data and a murine model. METHODS We conducted a bi-national cohort study in South Korea (discovery cohort, N=3,130,193) and Japan (validation cohort, N=4,379,285) during the pre-observation period to determine the previous diagnostic history (2009-2010) and the follow-up period (2011-2021). To evaluate the causality, we induced slow gut transit using loperamide in 5xFAD transgenic mice. Changes in amyloid-beta (Aβ) and other markers were examined using ELISA, qRT-PCR, RNA-seq, and behavioral tests. RESULTS Constipation was associated with an increased risk of AD in the discovery cohort (hazard ratio, 2.04; 95% confidence interval [CI], 2.01-2.07) and the validation cohort (hazard ratio; 2.82; 95% CI, 2.61-3.05). We found that loperamide induced slower gut transit in 5xFAD mice, increased Aβ and microglia levels in the brain, increased transcription of genes related to norepinephrine secretion and immune responses, and decreased the transcription of defense against bacteria in the colonic tissue. CONCLUSION Impaired gut transit may contribute to AD pathogenesis via the gut-brain axis, thus suggesting a cyclical relationship between intestinal barrier disruption and Aβ accumulation in the brain. We propose that gut transit or motility may be a modifiable lifestyle factor in the prevention of AD, and further clinical investigations are warranted.
Collapse
Affiliation(s)
- Jiseung Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Myeongcheol Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea; Department of Regulatory Science, Kyung Hee University, Seoul, Republic of Korea
| | - Mincheol Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jibeom Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jaeyu Park
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea; Department of Regulatory Science, Kyung Hee University, Seoul, Republic of Korea
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Deu, Barcelona, Spain
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Christa J Nehs
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea; Department of Regulatory Science, Kyung Hee University, Seoul, Republic of Korea; Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea.
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| |
Collapse
|
3
|
Di Salvo C, D'Antongiovanni V, Benvenuti L, d'Amati A, Ippolito C, Segnani C, Pierucci C, Bellini G, Annese T, Virgintino D, Colucci R, Antonioli L, Fornai M, Errede M, Bernardini N, Pellegrini C. Lactiplantibacillus plantarum HEAL9 attenuates cognitive impairment and progression of Alzheimer's disease and related bowel symptoms in SAMP8 mice by modulating microbiota-gut-inflammasome-brain axis. Food Funct 2024; 15:10323-10338. [PMID: 39302233 DOI: 10.1039/d4fo02075h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background: Growing evidence highlights the relevance of the microbiota-gut-brain axis in Alzheimer's disease (AD). AD patients display gut dysbiosis, altered intestinal barrier and enteric inflammation that, besides bowel symptoms, can contribute to brain pathology. In this context, the modulation of gut microbiota is emerging as a therapeutical option to halt or slow down central pathology. Herein, we examined the effects of Lactiplantibacillus plantarum HEAL9 in a spontaneous mouse model of AD. Methods: Senescence-accelerated mouse prone 8 (SAMP8) mice and control SAMR1 mice were treated orally with HEAL9 1 × 109 CFU per mouse per day or placebo for two months to evaluate the effects of the probiotic during the earliest stages of AD, before the development of brain pathology. Cognitive impairment, in vivo and in vitro colonic motility, astrocyte and microglia reactive response, brain and colonic amyloid-β1-42 (Aβ1-42) levels, and inflammasome components activation (NLRP3, ASC, caspase-1 and interleukin-1β) were assessed. In addition, gut barrier alterations [circulating lipopolysaccharide-binding protein (LBP) levels] and acidic mucus were evaluated. Results: HEAL9 administration significantly attenuated cognitive impairment and counteracted colonic dysmotility in SAMP8 mice. Moreover, HEAL9 decreased astrogliosis and microgliosis, Aβ1-42 accumulation and inflammasome activation in colon and brain and normalized plasma LBP levels and colonic acidic mucus content. Conclusion: HEAL9 intake alleviated cognitive decline and normalized colonic motility in the prodromal phases of AD via the modulation of microbiota-gut-inflammasome-brain signalling. Thus, dietary supplementation with HEAL9 could be considered as a suitable therapeutical option for the treatment of AD and related intestinal symptoms in the early stages of the disease.
Collapse
Affiliation(s)
- C Di Salvo
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - V D'Antongiovanni
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - L Benvenuti
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A d'Amati
- Human Anatomy and Histology Unit, Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy.
| | - C Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - C Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - C Pierucci
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - G Bellini
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - T Annese
- Human Anatomy and Histology Unit, Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy.
- Department of Medicine and Surgery, University LUM Giuseppe Degennaro, Casamassima, Bari, Italy
| | - D Virgintino
- Human Anatomy and Histology Unit, Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy.
| | - R Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - L Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - M Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - M Errede
- Human Anatomy and Histology Unit, Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy.
| | - N Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - C Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
4
|
Xu W, Yu P, Shao S, Xie Z, Wu Y, Liu J, Xu T, Cai G, Yang H. Oligosaccharides from black ginseng innovatively prepared by low-temperature steam-heating process ameliorate cognitive impairment in Alzheimer's disease mice via the Keap-1/Nrf2 pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5625-5638. [PMID: 38372395 DOI: 10.1002/jsfa.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/04/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Our objective in this study was to evaluate the effectiveness of oligosaccharides extracted from black ginseng (OSBG), innovatively prepared by a low-temperature steam-heating process, in the improvement of learning and memory impairment in mice, as well as the mechanism(s). RESULTS Eight carbohydrates involving isomaltose and maltotetraose were detected in black gensing; monosaccharide residues including mannose and rhamnose were also discovered. OSBG-treated mice showed significant amelioration in recognition and spatial memory deficits compared to the scopolamine group. OSBG could decrease acetylcholinesterase activity in a tissue-dependent fashion but not in a dose-dependent manner. Furthermore, in contrast, OSBG administration resulted in significant upregulation superoxide dismutase, glutathione, glutathione peroxidase (GPx), and Kelch-like ECH-associated protein 1, downregulation of malondialdehyde and nuclear factor erythroid 2-related factor 2 in the tissues. Finally, at the genus level, we observed that the OSBG interventions increased the relative abundance of probiotics (e.g., Barnesiella, Staphylococcus, Clostridium_XlVb) and decreased pernicious bacteria such as Eisenbergiella and Intestinimonas, compared to the Alzheimer's disease mouse model group. Herein, our results demonstrate that OSBG restores the composition of the scopolamine-induced intestinal microbiota in mice, providing homeostasis of gut microbiota and providing evidence for microbiota-regulated therapeutic potential. CONCLUSION Our results showed for the first time a clear role for OSBG in improving scopolamine-induced memory impairment by inhibiting cholinergic dysfunction in a tissue-dependent manner. Additionally, OSBG administration relieved oxidative stress by activating the Keap-1/Nrf2 pathway and modulating the gut microbiota. Collectively, OSBG may be a promising target for neuroprotective antioxidants for improving memory and cognition in Alzheimer's disease patients. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiyin Xu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Yu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Simeng Shao
- The Public Experimental Center, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaoyang Xie
- The Public Experimental Center, Changchun University of Chinese Medicine, Changchun, China
| | - Yi Wu
- The Public Experimental Center, Changchun University of Chinese Medicine, Changchun, China
| | - Jianing Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Tianyang Xu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, China
| | - Guangzhi Cai
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Hongmei Yang
- The Public Experimental Center, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
5
|
Suo J, Shen X, He J, Sun H, Shi Y, He R, Zhang X, Wang X, Xi Y, Liang W. Exploring cognitive trajectories and their association with physical performance: evidence from the China Health and Retirement Longitudinal Study. Epidemiol Health 2023; 45:e2023064. [PMID: 37448124 PMCID: PMC10667582 DOI: 10.4178/epih.e2023064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVES The long-term trends of cognitive function and its associations with physical performance remain unclear, particularly in Asian populations. The study objectives were to determine cognitive trajectories in middle-aged and elderly Chinese individuals, as well as to examine differences in physical performance across cognitive trajectory groups. METHODS Data were extracted from the China Health and Retirement Longitudinal Study. A total of 5,701 participants (47.7% male) with a mean age of 57.8 (standard deviation, 8.4) years at enrollment were included. A group-based trajectory model was used to identify cognitive trajectory groups for each sex. Grip strength, repeated chair stand, and standing balance tests were used to evaluate physical performance. An ordered logistic regression model was employed to analyze differences in physical performance across cognitive trajectory groups. RESULTS Three cognitive trajectory groups were identified for each sex: low, middle, and high. For both sexes, higher cognitive trajectory groups exhibited smaller declines with age. In the fully adjusted model, relative to the low trajectory group, the odds ratios (ORs) of better physical performance in the middle cognitive group were 1.37 (95% confidence interval [CI], 1.17 to 1.59; p<0.001) during follow-up and 1.40 (95% CI, 1.20 to 1.64; p<0.001) at the endpoint. The ORs in the high trajectory group were 1.94 (95% CI, 1.61 to 2.32; p<0.001) during follow-up and 2.04 (95% CI, 1.69 to 2.45; p<0.001) at the endpoint. CONCLUSIONS Cognitive function was better preserved in male participants and individuals with higher baseline cognitive function. A higher cognitive trajectory was associated with better physical performance over time.
Collapse
Affiliation(s)
- Jingdong Suo
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Xianlei Shen
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Jinyu He
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Haoran Sun
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Yu Shi
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Rongxin He
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Xiao Zhang
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Xijie Wang
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Yuandi Xi
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Wannian Liang
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Song J, Zhao X, Park KY, Suo H. Editorial: Probiotics and constipation. Front Nutr 2023; 9:1114149. [PMID: 36687708 PMCID: PMC9848490 DOI: 10.3389/fnut.2022.1114149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Kun-young Park
- Department of Food Science and Biotechnology, Cha University, Seongnam-si, Republic of Korea
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China,*Correspondence: Huayi Suo ✉
| |
Collapse
|
7
|
Yelleswarapu NK, Masino M, Henderson S, Fernandes R, Swain G, Galligan JJ, Xu H. 5xFAD mice do not have myenteric amyloidosis, dysregulation of neuromuscular transmission or gastrointestinal dysmotility. Neurogastroenterol Motil 2022; 34:e14439. [PMID: 36458522 PMCID: PMC9718934 DOI: 10.1111/nmo.14439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alterations in gastrointestinal (GI) function and the gut-brain axis are associated with progression and pathology of Alzheimer's Disease (AD). Studies in AD animal models show that changes in the gut microbiome and inflammatory markers can contribute to AD development in the central nervous system (CNS). Amyloid-beta (Aβ) accumulation is a major AD pathology causing synaptic dysfunction and neuronal death. Current knowledge of the pathophysiology of AD in enteric neurons is limited, and whether Aβ accumulation directly disrupts enteric neuron function is unknown. METHODS In 6-month-old 5xFAD (transgenic AD) and wildtype (WT) male and female mice, GI function was assessed by colonic transit in vivo; propulsive motility and GI smooth muscle contractions ex vivo; electrochemical detection of enteric nitric oxide release in vitro, and changes in myenteric neuromuscular transmission using smooth muscle intracellular recordings. Expression of Aβ in the brain and colonic myenteric plexus in these mice was determined by immunohistochemistry staining and ELISA assay. KEY RESULTS At 6 months, 5xFAD mice did not show significant changes in GI motility or synaptic neurotransmission in the small intestine or colon. 5xFAD mice, but not WT mice, showed abundant Aβ accumulation in the brain. Aβ accumulation was undetectable in the colonic myenteric plexus of 5xFAD mice. CONCLUSIONS 5xFAD AD mice are not a robust model to study amyloidosis in the gut as these mice do not mimic myenteric neuronal dysfunction in AD patients with GI dysmotility. An AD animal model with enteric amyloidosis is required for further study.
Collapse
Affiliation(s)
| | - Marlene Masino
- The Neuroscience ProgramMichigan State UniversityEast LansingMichiganUSA
| | - Skye Henderson
- Department of ChemistryMichigan State UniversityEast LansingMichiganUSA
| | - Roxanne Fernandes
- Department of Pharmacology & ToxicologyMichigan State UniversityEast LansingMichiganUSA
| | - Greg Swain
- The Neuroscience ProgramMichigan State UniversityEast LansingMichiganUSA
- Department of ChemistryMichigan State UniversityEast LansingMichiganUSA
| | - James J. Galligan
- The Neuroscience ProgramMichigan State UniversityEast LansingMichiganUSA
- Department of Pharmacology & ToxicologyMichigan State UniversityEast LansingMichiganUSA
| | - Hui Xu
- The Neuroscience ProgramMichigan State UniversityEast LansingMichiganUSA
- Department of Pharmacology & ToxicologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
8
|
Nakase T, Tatewaki Y, Thyreau B, Mutoh T, Tomita N, Yamamoto S, Takano Y, Muranaka M, Taki Y. Impact of constipation on progression of Alzheimer's disease: A retrospective study. CNS Neurosci Ther 2022; 28:1964-1973. [PMID: 35934956 PMCID: PMC9627372 DOI: 10.1111/cns.13940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE In terms of the gut-brain axis, constipation has been considered to be an important factor of neurodegenerative diseases, although the exact mechanism is still controversial. Herein, we aimed to investigate the contribution of constipation to the progression of dementia in a retrospective study. METHODS Patients of Alzheimer's disease(AD) and amnestic mild cognitive impairment were consecutively screened between January 2015 and December 2020, and those of whom brain MRI and neuropsychological tests were performed twice were enrolled in this study. Participants were classified into with constipation (Cons[+], n = 20) and without constipation (Cons[-], n = 64) groups. Laboratory data at the first visit were used. Regression analysis was performed in MMSE, ADAS-Cog, and the volumes of hippocampus on MRI-MPRAGE images and deep white matter lesions (DWMLs) on MRI-FLAIR images obtained at two different time points. RESULTS The main finding was that the Cons[+] group showed 2.7 times faster decline in cognitive impairment compared with the Cons[-] group, that is, the liner coefficients of ADAS-Cog were 2.3544 points/year in the Cons[+] and 0.8592 points/year in the Cons[-] groups. Ancillary, changes of DWMLs showed significant correlation with the time span (p < 0.01), and the liner coefficients of DWMLs were 24.48 ml/year in the Cons[+] and 14.83 ml/year in the Cons[-] group, although annual rate of hippocampal atrophy was not different between the two groups. Moreover, serum homocysteine level at baseline was significantly higher in the Cons[+] group than Cons[-] group (14.6 ± 6.4 and 11.5 ± 4.2 nmol/ml, respectively: p = 0.03). CONCLUSION There is a significant correlation between constipation and faster progression of AD symptoms along with expansion of DWMLs.
Collapse
Affiliation(s)
- Taizen Nakase
- Smart Aging Research CenterTohoku UniversitySendaiJapan,Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Yasuko Tatewaki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | | | - Tatsushi Mutoh
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Naoki Tomita
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Shuzo Yamamoto
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Yumi Takano
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Michiho Muranaka
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Yasuyuki Taki
- Smart Aging Research CenterTohoku UniversitySendaiJapan,Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| |
Collapse
|
9
|
Xia Y, Prokop S, Bell BM, Gorion KMM, Croft CL, Nasif L, Xu G, Riffe CJ, Manaois AN, Strang KH, Quintin SS, Paterno G, Tansey MG, Borchelt DR, Golde TE, Giasson BI. Pathogenic tau recruits wild-type tau into brain inclusions and induces gut degeneration in transgenic SPAM mice. Commun Biol 2022; 5:446. [PMID: 35550593 PMCID: PMC9098443 DOI: 10.1038/s42003-022-03373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/14/2022] [Indexed: 01/04/2023] Open
Abstract
Pathological tau inclusions are neuropathologic hallmarks of many neurodegenerative diseases. We generated and characterized a transgenic mouse model expressing pathogenic human tau with S320F and P301S aggregating mutations (SPAM) at transgene levels below endogenous mouse tau protein levels. This mouse model develops a predictable temporal progression of tau pathology in the brain with biochemical and ultrastructural properties akin to authentic tau inclusions. Surprisingly, pathogenic human tau extensively recruited endogenous mouse tau into insoluble aggregates. Despite the early onset and rapid progressive nature of tau pathology, major neuroinflammatory and transcriptional changes were only detectable at later time points. Moreover, tau SPAM mice are the first model to develop loss of enteric neurons due to tau accumulation resulting in a lethal phenotype. With moderate transgene expression, rapidly progressing tau pathology, and a highly predictable lethal phenotype, the tau SPAM model reveals new associations of tau neurotoxicity in the brain and intestinal tract.
Collapse
Affiliation(s)
- Yuxing Xia
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Stefan Prokop
- grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Brach M. Bell
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Kimberly-Marie M. Gorion
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Cara L. Croft
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Lith Nasif
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Guilian Xu
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Cara J. Riffe
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Alyssa N. Manaois
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Kevin H. Strang
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Stephan S. Quintin
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Giavanna Paterno
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Malú Gámez Tansey
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - David R. Borchelt
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Todd E. Golde
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Benoit I. Giasson
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|
10
|
Wang F, Fei M, Hu WZ, Wang XD, Liu S, Zeng Y, Zhang JH, Lv Y, Niu JP, Meng XL, Cai P, Li Y, Gang BZ, You Y, Lv Y, Ji Y. Prevalence of Constipation in Elderly and Its Association With Dementia and Mild Cognitive Impairment: A Cross-Sectional Study. Front Neurosci 2022; 15:821654. [PMID: 35140587 PMCID: PMC8819140 DOI: 10.3389/fnins.2021.821654] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Background Constipation and dementia have similar epidemiological characteristics. Changes in intestinal flora and characteristics of the brain-gut axis play roles in the pathogeneses of the two diseases, suggesting that there may be a close connection between the two. Most of the studies on constipation in dementia patients have focused on the population with α-synucleinopathies [Parkinson’s disease dementia (PDD), dementia with Lewy bodies (DLB)]. Few studies have reported the prevalence of constipation in all-cause dementia and mild cognitive impairment (MCI) populations. Objective To assess the prevalence of constipation in patients with all-cause dementia and MCI subtypes and to explore the association between constipation with dementia and MCI subtypes. Methods From May 2019 to December 2019, we conducted a population-based cross-sectional survey. A total of 11,743 participants aged 65 or older from nine cities in China were surveyed. Participants underwent a series of clinical examinations and neuropsychological measurements. Constipation, dementia, MCI and MCI subtype were diagnosed according to established criteria through standard diagnostic procedures. Results The overall age- and sex-adjusted prevalence of constipation in individuals aged 65 years and older was 14.8% (95% CI, 14.6–15.0). The prevalence rates of constipation were19.2% (95% CI, 17.3–21.0), 19.1% (95% CI, 16.8–21.5), 14.4% (95% CI, 12.8–15.9), and 13.8% (95% CI, 13.0–14.6) in the dementia, non-amnestic (na)-MCI, amnestic (a)-MCI and normal cognition populations, respectively. Multivariate logistic regression analysis showed that higher prevalence of constipation was associated with dementia (p = 0.0.032, OR = 1.18, 95% CI: 1.02–1.38) and na-MCI (p = 0.003, OR = 1.30, 95% CI: 1.09–1.54). Conclusion The present study found a high prevalence of constipation in elderly individuals in China, and higher in patients with dementia and na-MCI.
Collapse
Affiliation(s)
- Fei Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, China
| | - Min Fei
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, China
| | - Wen-Zheng Hu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiao-Dan Wang
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Department of Neurology, Tianjin Dementia Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Shuai Liu
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Department of Neurology, Tianjin Dementia Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Jin-Hong Zhang
- Department of Neurology, Cangzhou People’s Hospital, Cangzhou, China
| | - Yang Lv
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-ping Niu
- Department of Neurology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Xin-ling Meng
- Department of Neurology, Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, China
| | - Pan Cai
- Dementia Clinic, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yang Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bao-zhi Gang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong You
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yan Lv
- Department of Neurology, Hainan General Hospital, Haikou, China
| | - Yong Ji
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Department of Neurology, Tianjin Dementia Institute, Tianjin Huanhu Hospital, Tianjin, China
- *Correspondence: Yong Ji,
| |
Collapse
|
11
|
MicroRNA-Target Interaction Regulatory Network in Alzheimer's Disease. J Pers Med 2021; 11:jpm11121275. [PMID: 34945753 PMCID: PMC8708198 DOI: 10.3390/jpm11121275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia; however, early diagnosis of the disease is challenging. Research suggests that biomarkers found in blood, such as microRNAs (miRNA), may be promising for AD diagnostics. Experimental data on miRNA–target interactions (MTI) associated with AD are scattered across databases and publications, thus making the identification of promising miRNA biomarkers for AD difficult. In response to this, a list of experimentally validated AD-associated MTIs was obtained from miRTarBase. Cytoscape was used to create a visual MTI network. STRING software was used for protein–protein interaction analysis and mirPath was used for pathway enrichment analysis. Several targets regulated by multiple miRNAs were identified, including: BACE1, APP, NCSTN, SP1, SIRT1, and PTEN. The miRNA with the highest numbers of interactions in the network were: miR-9, miR-16, miR-34a, miR-106a, miR-107, miR-125b, miR-146, and miR-181c. The analysis revealed seven subnetworks, representing disease modules which have a potential for further biomarker development. The obtained MTI network is not yet complete, and additional studies are needed for the comprehensive understanding of the AD-associated miRNA targetome.
Collapse
|
12
|
Raj K, Gupta GD, Singh S. Spermine protects aluminium chloride and iron-induced neurotoxicity in rat model of Alzheimer's disease via attenuation of tau phosphorylation, Amyloid-β (1-42) and NF-κB pathway. Inflammopharmacology 2021; 29:1777-1793. [PMID: 34727278 DOI: 10.1007/s10787-021-00883-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia, characterized by a gradual decline in cognitive and memory functions of the aged peoples. Long-term exposure to heavy metals (aluminium and iron) cause neurotoxicity by amyloid plaques accumulation, tau phosphorylation, increased oxidative stress, neuroinflammation, and cholinergic neurons degeneration, contributes to the development of AD-like symptoms. The present research work is designed to investigate the neuroprotective effect of spermine in aluminium chloride (AlCl3), and iron (Fe) induced AD-like symptoms in rats. Rats were administered of AlCl3 (100 mg/kg p.o.) alone and in combination with iron (120 μg/g, p.o.) for 28 days. Spermine (5 and 10 mg/kg) through intraperitoneal (i.p.) route was given for 14 days. The recognition and spatial memory impairment were tasted using Morris water maze (MWM), actophotometer, and Novel Object Recognition test (NORT). All the rats were sacrificed on day 29, brains were isolated, and tissue homogenate was used for neuroinflammatory, biochemical, neurotransmitters, metals concentration, and nuclear factor-kappa B (NF-κB) analysis. In the present study, AlCl3 and iron administration elevated oxidative stress, cytokines release, dysbalanced neurotransmitters concentration, and biochemical changes. Rats treated with spermine dose-dependently improved the recognition and spatial memory, attenuated proinflammatory cytokine release, and restored neurotransmitters concentration and antioxidant enzymes. Spermine also mitigated the increased beta-amyloid (Aβ42), with downregulation of tau phosphorylation. Furthermore, spermine augmented the hippocampal levels of B cell leukaemia/lymphoma-2 (Bcl-2), diminished nuclear factor-kappa B (NF-κB) and caspase-3 (casp-3) expression. Moreover, spermine exhibited the neuroprotective effect through anti-inflammatory, antioxidant, neurotransmitters restoration, anti-apoptotic Aβ42 concentration.
Collapse
Affiliation(s)
- Khadga Raj
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
13
|
He XF, Li LL, Xian WB, Li MY, Zhang LY, Xu JH, Pei Z, Zheng HQ, Hu XQ. Chronic colitis exacerbates NLRP3-dependent neuroinflammation and cognitive impairment in middle-aged brain. J Neuroinflammation 2021; 18:153. [PMID: 34229722 PMCID: PMC8262017 DOI: 10.1186/s12974-021-02199-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Neuroinflammation is a major driver of age-related brain degeneration and concomitant functional impairment. In patients with Alzheimer's disease, the most common form of age-related dementia, factors that enhance neuroinflammation may exacerbate disease progression, in part by impairing the glymphatic system responsible for clearance of pathogenic beta-amyloid. Inflammatory bowel diseases (IBDs) induce neuroinflammation and exacerbate cognitive impairment in the elderly. The NACHT-LRR and pyrin (PYD) domain-containing protein 3 (NLRP3) inflammasome has been implicated in neuroinflammation. Therefore, we examined if the NLRP3 inflammasome contributes to glymphatic dysfunction and cognitive impairment in an aging mouse model of IBD. METHODS Sixteen-month-old C57BL/6J and NLRP3 knockout (KO) mice received 1% wt/vol dextran sodium sulfate (DSS) in drinking water to model IBD. Colitis induction was confirmed by histopathology. Exploratory behavior was examined in the open field, associative memory by the novel-object recognition and Morris water maze tests, glymphatic clearance by in vivo two-photon imaging, and neuroinflammation by immunofluorescence and western blotting detection of inflammatory markers. RESULTS Administration of DSS induced colitis, impaired spatial and recognition memory, activated microglia, and increased A1-like astrocyte numbers. In addition, DSS treatment impaired glymphatic clearance, aggravated amyloid plaque accumulation, and induced neuronal loss in the cortex and hippocampus. These neurodegenerative responses were associated with increased NLRP3 inflammasome expression and accumulation of gut-derived T lymphocytes along meningeal lymphatic vessels. Conversely, NLRP3 depletion protected against cognitive dysfunction, neuroinflammation, and neurological damage induced by DSS. CONCLUSIONS Colitis can exacerbate age-related neuropathology, while suppression of NLRP3 inflammasome activity may protect against these deleterious effects of colitis.
Collapse
Affiliation(s)
- Xiao-Fei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Li-Li Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Wen-Biao Xian
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ming-Yue Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | | | - Jing-Hui Xu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Hai-Qing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Xi-Quan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
14
|
Griñán-Ferré C, Bellver-Sanchis A, Izquierdo V, Corpas R, Roig-Soriano J, Chillón M, Andres-Lacueva C, Somogyvári M, Sőti C, Sanfeliu C, Pallàs M. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer's disease pathology: From antioxidant to epigenetic therapy. Ageing Res Rev 2021; 67:101271. [PMID: 33571701 DOI: 10.1016/j.arr.2021.101271] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
While the elderly segment of the population continues growing in importance, neurodegenerative diseases increase exponentially. Lifestyle factors such as nutrition, exercise, and education, among others, influence ageing progression, throughout life. Notably, the Central Nervous System (CNS) can benefit from nutritional strategies and dietary interventions that prevent signs of senescence, such as cognitive decline or neurodegenerative diseases such as Alzheimer's disease and Parkinson's Disease. The dietary polyphenol Resveratrol (RV) possesses antioxidant and cytoprotective effects, producing neuroprotection in several organisms. The oxidative stress (OS) occurs because of Reactive oxygen species (ROS) accumulation that has been proposed to explain the cause of the ageing. One of the most harmful effects of ROS in the cell is DNA damage. Nevertheless, there is also evidence demonstrating that OS can produce other molecular changes such as mitochondrial dysfunction, inflammation, apoptosis, and epigenetic modifications, among others. Interestingly, the dietary polyphenol RV is a potent antioxidant and possesses pleiotropic actions, exerting its activity through various molecular pathways. In addition, recent evidence has shown that RV mediates epigenetic changes involved in ageing and the function of the CNS that persists across generations. Furthermore, it has been demonstrated that RV interacts with gut microbiota, showing modifications in bacterial composition associated with beneficial effects. In this review, we give a comprehensive overview of the main mechanisms of action of RV in different experimental models, including clinical trials and discuss how the interconnection of these molecular events could explain the neuroprotective effects induced by RV.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain.
| | - Aina Bellver-Sanchis
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Vanessa Izquierdo
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Joan Roig-Soriano
- Department of Biochemistry and Molecular Biology, Universitat Autònoma Barcelona, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Miguel Chillón
- Department of Biochemistry and Molecular Biology, Universitat Autònoma Barcelona, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), Research Group on Gene Therapy at Nervous System, Passeig de la Vall d'Hebron, Barcelona, Spain; Unitat producció de Vectors (UPV), Universitat Autònoma Barcelona, Bellaterra, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Xarta, INSA, Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salut Carlos III, Barcelona, Spain
| | - Milán Somogyvári
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Csaba Sőti
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| |
Collapse
|
15
|
Chen CL, Liang TM, Chen HH, Lee YY, Chuang YC, Chen NC. Constipation and Its Associated Factors among Patients with Dementia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17239006. [PMID: 33287267 PMCID: PMC7730313 DOI: 10.3390/ijerph17239006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Constipation is one of the most frequent non-motor problems in older adults. As constipation is commonly ignored by dementia patients, it is not usually reported on time. Constipation has a serious impact on the activity of daily living and quality of life in dementia patients. The relationships between constipation, demographic variables, and the nutritional status of patients with dementia remain unknown. This study aimed to assess the possible factors associated with constipation. This cross-sectional study was conducted at the Kaohsiung Chang Gung Memorial Hospital from January to November 2019. This hospital is a medical center and the main referral hospital of southern Taiwan, serving 3 million inhabitants. In total, 119 patients with dementia were evaluated using the Rome III diagnostic criteria for functional constipation. There were 30 patients with dementia included in the constipation group and 89 patients with dementia included in the no constipation group. Mini-Nutritional Assessment and 3-day diet diary records were employed. The clinical dementia rating score was used to evaluate the severity of dementia in patients of the outpatient clinic. Approximately 25.2% of dementia patients had constipation. Patients in the dementia with constipation group were older, had severer dementia, and displayed a lower water intake. After multivariable adjustment, low liquid consumption was the predictor of constipation among patients with dementia. The findings support the clinical recommendations to treat constipation with an increased liquid intake, but not exercise, in dementia patients.
Collapse
Affiliation(s)
- Chien-Liang Chen
- Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei 112, Taiwan
| | - Tzu-Ming Liang
- Nutrition Therapy Department, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 813, Taiwan;
| | - Hsiu-Hui Chen
- Physical Education, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan;
| | - Yan-Yuh Lee
- Department of Physical Medicine and Rehabilitation, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Nai-Ching Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Correspondence: ; Tel.: +886-7731-7123 (ext. 3304); Fax: +886-7-7318762
| |
Collapse
|
16
|
Chen J, Zheng Y, Wang H, Zhang D, Zhao L, Yu D, Lin Z, Zhang T. Cause of death among patients with colorectal cancer: a population-based study in the United States. Aging (Albany NY) 2020; 12:22927-22948. [PMID: 33289707 PMCID: PMC7746372 DOI: 10.18632/aging.104022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022]
Abstract
CRC (Colorectal cancer) is one of the most common causes of death worldwide and in the US (United States). In this study, we aim to perform a population-based analysis on the cause of death among patients with CRC in the US. A total of 834,510 CRC patients diagnosed between 1975 and 2016 in the US were selected from the SEER (Surveillance, Epidemiology, and End Results) program. Causes of death among CRC patients were characterized and SMRs (standardized mortality ratios) of death from non-cancer causes were calculated. Among all CRC patients included in this study, a total of 531,507 deaths were recorded, of which 51.3% were due to CRC, 10.3% were due to other cancers, and 38.4% were due to non-cancer causes. Recently, there has been a relative decrease in index-cancer deaths and an increase in non-cancer causes among CRC patients. The mortality risk from non-cancer rises with accumulating age and longer follow-up time. Cardiovascular diseases are the most prevalent non-cancer causes, accounting for 20.3% of all deaths among CRC patients. Compared with the general population, the mortality rate of non-cancer deaths among CRC patients is doubled (SMR, 2.02; 95% confidence interval, 2.01-2.03).
Collapse
Affiliation(s)
- Jiayuan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongqiang Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Haihong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dejun Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dandan Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
17
|
Paley EL. Discovery of Gut Bacteria Specific to Alzheimer's Associated Diseases is a Clue to Understanding Disease Etiology: Meta-Analysis of Population-Based Data on Human Gut Metagenomics and Metabolomics. J Alzheimers Dis 2020; 72:319-355. [PMID: 31561379 DOI: 10.3233/jad-190873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD)-associated sequence (ADAS) of cultured fecal bacteria was discovered in human gut targeted screening. This study provides important information to expand our current understanding of the structure/activity relationship of ADAS and putative inhibitors/activators that are potentially involved in ADAS appearance/disappearance. The NCBI database analysis revealed that ADAS presents at a large proportion in American Indian Oklahoman (C&A) with a high prevalence of obesity/diabetes and in colorectal cancer (CRC) patients from the US and China. An Oklahoman non-native group (NNI) showed no ADAS. Comparison of two large US populations reveals that ADAS is more frequent in individuals aged ≥66 and in females. Prevalence and levels of fecal metabolites are altered in the C&A and CRC groups versus controls. Biogenic amines (histamine, tryptamine, tyramine, phenylethylamine, cadaverine, putrescine, agmatine, spermidine) that present in food and are produced by gut microbiota are significantly higher in C&A (e.g., histamine/histidine 95-fold) versus NNI (histamine/histidine 16-fold). The majority of these bio-amines are cytotoxic at concentrations found in food. Inositol phosphate signaling implicated in AD is altered in C&A and CRC. Tryptamine stimulated accumulation of inositol phosphate. The seizure-eliciting tryptamine induced cytoplasmic vacuolization and vesiculation with cell fragmentation. Present additions of ADAS-carriers at different ages including infants led to an ADAS-comprising human sample size of 2,830 from 27 studies from four continents (North America, Australia, Asia, Europe). Levels of food-derived monoamine oxidase inhibitors and anti-bacterial compounds, the potential modulators of ADAS-bacteria growth and biogenic amine production, were altered in C&A versus NNI. ADAS is attributable to potentially modifiable risk factors of AD associated diseases.
Collapse
Affiliation(s)
- Elena L Paley
- Expert Biomed, Inc., Miami, FL, USA.,Stop Alzheimers Corp, Miami, FL, USA
| |
Collapse
|
18
|
Smach MA, Zarrouk A, Hafsa J, Gaffrej H, Ben Abdallah J, Charfeddine B, Limem K. Maillard Reaction Products and Phenolic Compounds from Roasted Peanut Flour Extracts Prevent Scopolamine-Induced Amnesia Via Cholinergic Modulation and Antioxidative Effects in Mice. J Med Food 2020; 24:645-652. [PMID: 33035147 DOI: 10.1089/jmf.2020.0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Research on the beneficial effects of Maillard reaction products (MRPs) and phenolic compounds derived from roasted peanut flour on the nervous system remains insufficient. This study aimed to evaluate the effect of a 28-day oral administration of defatted peanut extract rich in MPRs and polyphenolic compounds on the cognitive impairments and oxidative injury induced by scopolamine in a mouse model. Light and dark extracts from peanut flour were prepared by heating peanuts at 187°C for two different times (8.6 and 12.7 min) and defatted using soxhlet apparatus. The mice were orally pretreated with either roasted defatted peanuts extracts (100 mg/kg) or donepezil (3 mg/kg) for 21 days. On day 19 and until day 28, mice were injected subcutaneously with water or scopolamine (1 mg/kg body weight) 15 min after roasted defatted peanuts extracts/water feeding. Mice were subsequently subjected to a battery of behavioral tests including open field locomotor activity assay, and Morris water maze test. Brain tissues were collected to measure acetylcholine, acetylcholinesterase, and oxidative parameters (glutathione and malondialdehyde). Roasted defatted peanuts (light and dark) (100 mg/kg) treatment significantly ameliorated cognitive performance and reversed the oxidative damage when compared with the scopolamine group. These data demonstrate the defatted peanuts extracts exert potent anti-amnesic effects via the modulation of cholinergic and antioxidant activities.
Collapse
Affiliation(s)
- Mohamed Ali Smach
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse, Sousse, Tunisia
| | - Amira Zarrouk
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse, Sousse, Tunisia.,Laboratory 'Nutrition, Functional Aliments and vascular Health', UR12ES05 Monastir University, Monastir, Tunisia
| | - Jawhar Hafsa
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse, Sousse, Tunisia.,AgroBiosciences Research Division, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Henda Gaffrej
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse, Sousse, Tunisia
| | - Jihen Ben Abdallah
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse, Sousse, Tunisia
| | - Bassem Charfeddine
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse, Sousse, Tunisia
| | - Khalifa Limem
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse, Sousse, Tunisia
| |
Collapse
|
19
|
Inactive bowel movement and stroke are associated with increased risks of mild cognitive impairment among community-living Singapore elderly. Aging (Albany NY) 2020; 12:17257-17270. [PMID: 32903214 PMCID: PMC7521501 DOI: 10.18632/aging.103674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Mild cognitive impairment (MCI), as a preclinical phase of dementia, provides an invaluable time window for intervention. Besides several proposed modifiable risk factors, the associations of MCI with dietary habits and bowel movement are not well clarified. We thus conducted a cross-sectional study of community-living Singapore elderly and focused on the relationship of clinically diagnosed MCI with dietary habits and bowel movement frequencies. The multiple logistic regression results showed that frequent (≥4 days per week) fruit consumption (P = 0.004), active (≥4 days per week) bowel movement within 10 minutes (P = 0.027), and years of schooling were negatively associated with MCI occurrence. In contrast, medical comorbidities including hypertension, stroke, and cataract/glaucoma were found to be risk factors. Furthermore, a Bayesian network model of causal inference detected five hypothesized causal-association paths leading to MCI, namely bowel movement, stroke, years of schooling via fruit consumption, hypertension via stroke and hypertension via cataract/glaucoma. The combination of the two direct factors (inactive bowel movement and stroke) reached a maximum conditional probability of 60.00% for MCI occurrence. Taken together, this study was the first to link bowel movement with MCI occurrence. In addition, it suggested five modifiable hypothesized causal-association paths to MCI.
Collapse
|
20
|
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur J Pharm Biopharm 2020; 149:192-217. [PMID: 31982574 DOI: 10.1016/j.ejpb.2020.01.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) is vulnerable to pathologic processes that lead to the development of neurodegenerative disorders like Alzheimer's, Parkinson's and Huntington's diseases, Multiple sclerosis or Amyotrophic lateral sclerosis. These are chronic and progressive pathologies characterized by the loss of neurons and the formation of misfolded proteins. Additionally, neurodegenerative diseases are accompanied by a structural and functional dysfunction of the blood-brain barrier (BBB). Although serving as a protection for the CNS, the existence of physiological barriers, especially the BBB, limits the access of several therapeutic agents to the brain, constituting a major hindrance in neurotherapeutics advancement. In this regard, nanotechnology-based approaches have arisen as a promising strategy to not only improve drug targeting to the brain, but also to increase bioavailability. Lipid nanocarriers such as liposomes, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), microemulsions and nanoemulsions, have already proven their potential for enhancing brain transport, crossing more easily into the CNS and allowing the administration of medicines that could benefit the treatment of neurological pathologies. Given the socioeconomic impact of such conditions and the advent of nanotechnology that inevitably leads to more effective and superior therapeutics for their management, it is imperative to constantly update on the current knowledge of these topics. Herein, we provide insight on the BBB and the pathophysiology of the main neurodegenerative disorders. Moreover, this review seeks to highlight the several approaches that can be used to improve the delivery of therapeutic agents to the CNS, while also offering an extensive overview of the latest efforts regarding the use of lipid-based nanocarriers in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- M I Teixeira
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - C M Lopes
- FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Centre, Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - P C Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
21
|
Khan S, Barve KH, Kumar MS. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:1106-1125. [PMID: 32484110 PMCID: PMC7709159 DOI: 10.2174/1570159x18666200528142429] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/06/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The only conclusive way to diagnose Alzheimer's is to carry out brain autopsy of the patient's brain tissue and ascertain whether the subject had Alzheimer's or any other form of dementia. However, due to the non-feasibility of such methods, to diagnose and conclude the conditions, medical practitioners use tests that examine a patient's mental ability. OBJECTIVE Accurate diagnosis at an early stage is the need of the hour for initiation of therapy. The cause for most Alzheimer's cases still remains unknown except where genetic distinctions have been observed. Thus, a standard drug regimen ensues in every Alzheimer's patient, irrespective of the cause, which may not always be beneficial in halting or reversing the disease progression. To provide a better life to such patients by suppressing existing symptoms, early diagnosis, curative therapy, site-specific delivery of drugs, and application of hyphenated methods like artificial intelligence need to be brought into the main field of Alzheimer's therapeutics. METHODS In this review, we have compiled existing hypotheses to explain the cause of the disease, and highlighted gene therapy, immunotherapy, peptidomimetics, metal chelators, probiotics and quantum dots as advancements in the existing strategies to manage Alzheimer's. CONCLUSION Biomarkers, brain-imaging, and theranostics, along with artificial intelligence, are understood to be the future of the management of Alzheimer's.
Collapse
Affiliation(s)
- Sahil Khan
- SVKM’S NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle West, Mumbai-400056, India
| | - Kalyani H. Barve
- SVKM’S NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle West, Mumbai-400056, India
| | - Maushmi S. Kumar
- SVKM’S NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle West, Mumbai-400056, India
| |
Collapse
|
22
|
Candido S, Lupo G, Pennisi M, Basile MS, Anfuso CD, Petralia MC, Gattuso G, Vivarelli S, Spandidos DA, Libra M, Falzone L. The analysis of miRNA expression profiling datasets reveals inverse microRNA patterns in glioblastoma and Alzheimer's disease. Oncol Rep 2019; 42:911-922. [PMID: 31322245 PMCID: PMC6682788 DOI: 10.3892/or.2019.7215] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
There is recent evidence to indicate the existence of an inverse association between the incidence of neurological disorders and cancer development. Concurrently, the transcriptional pathways responsible for the onset of glioblastoma multiforme (GBM) and Alzheimer's disease (AD) have been found to be mutually exclusive between the two pathologies. Despite advancements being made concerning the knowledge of the molecular mechanisms responsible for the development of GBM and AD, little is known about the identity of the microRNA (miRNAs or miRs) involved in the development and progression of these two pathologies and their possible inverse expression patterns. On these bases, the aim of the present study was to identify a set of miRNAs significantly de-regulated in both GBM and AD, and hence to determine whether the identified miRNAs exhibit an inverse association within the two pathologies. For this purpose, miRNA expression profiling datasets derived from the Gene Expression Omnibus (GEO) DataSets and relative to GBM and AD were used. Once the miRNAs significantly de-regulated in both pathologies were identified, DIANA-mirPath pathway prediction and STRING Gene Ontology enrichment analyses were performed to establish their functional roles in each of the pathologies. The results allowed the identification of a set of miRNAs found de-regulated in both GBM and AD, whose expression levels were inversely associated in the two pathologies. In particular, a strong negative association was observed between the expression levels of miRNAs in GBM compared to AD, suggesting that although the molecular pathways behind the development of these two pathologies are the same, they appear to be inversely regulated by miRNAs. Despite the identification of this set of miRNAs which may be used for diagnostic, prognostic and therapeutic purposes, further functional in vitro and in vivo evaluations are warranted in order to validate the diagnostic and therapeutic potential of the identified miRNAs, as well as their involvement in the development of GBM and AD.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Maria S Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Carmelina D Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Maria C Petralia
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|
23
|
Ambrosini YM, Borcherding D, Kanthasamy A, Kim HJ, Willette AA, Jergens A, Allenspach K, Mochel JP. The Gut-Brain Axis in Neurodegenerative Diseases and Relevance of the Canine Model: A Review. Front Aging Neurosci 2019; 11:130. [PMID: 31275138 PMCID: PMC6591269 DOI: 10.3389/fnagi.2019.00130] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022] Open
Abstract
Identifying appropriate animal models is critical in developing translatable in vitro and in vivo systems for therapeutic drug development and investigating disease pathophysiology. These animal models should have direct biological and translational relevance to the underlying disease they are supposed to mimic. Aging dogs not only naturally develop a cognitive decline in many aspects including learning and memory deficits, but they also exhibit human-like individual variability in the aging process. Neurodegenerative processes that can be observed in both human and canine brains include the progressive accumulation of β-amyloid (Aβ) found as diffuse plaques in the prefrontal cortex (PFC), including the gyrus proreus (i.e., medial orbital PFC), as well as the hippocampus and the cerebral vasculature. Tau pathology, a marker of neurodegeneration and dementia progression, was also found in canine hippocampal synapses. Various epidemiological data show that human patients with neurodegenerative diseases have concurrent intestinal lesions, and histopathological changes in the gastrointestinal (GI) tract occurs decades before neurodegenerative changes. Gut microbiome alterations have also been reported in many neurodegenerative diseases including Alzheimer's (AD) and Parkinson's diseases, as well as inflammatory central nervous system (CNS) diseases. Interestingly, the dog gut microbiome more closely resembles human gut microbiome in composition and functional overlap compared to rodent models. This article reviews the physiology of the gut-brain axis (GBA) and its involvement with neurodegenerative diseases in humans. Additionally, we outline the advantages and weaknesses of current in vitro and in vivo models and discuss future research directions investigating major human neurodegenerative diseases such as AD and Parkinson's diseases using dogs.
Collapse
Affiliation(s)
- Yoko M. Ambrosini
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Dana Borcherding
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Anumantha Kanthasamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Hyun Jung Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Auriel A. Willette
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- Department of Food Science and Human Nutrition, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, United States
| | - Albert Jergens
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
| | - Karin Allenspach
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
| | - Jonathan P. Mochel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|