1
|
Arrué P, Laksari K, Russo M, La Placa T, Smith M, Toosizadeh N. Associating frailty and dynamic dysregulation between motor and cardiac autonomic systems. FRONTIERS IN AGING 2024; 5:1396636. [PMID: 38803576 PMCID: PMC11128670 DOI: 10.3389/fragi.2024.1396636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Frailty is a geriatric syndrome associated with the lack of physiological reserve and consequent adverse outcomes (therapy complications and death) in older adults. Recent research has shown associations between heart rate (HR) dynamics (HR changes during physical activity) with frailty. The goal of the present study was to determine the effect of frailty on the interconnection between motor and cardiac systems during a localized upper-extremity function (UEF) test. Fifty-six individuals aged 65 or above were recruited and performed the previously developed UEF test consisting of 20-s rapid elbow flexion with the right arm. Frailty was assessed using the Fried phenotype. Wearable gyroscopes and electrocardiography were used to measure motor function and HR dynamics. In this study, the interconnection between motor (angular displacement) and cardiac (HR) performance was assessed, using convergent cross-mapping (CCM). A significantly weaker interconnection was observed among pre-frail and frail participants compared to non-frail individuals (p < 0.01, effect size = 0.81 ± 0.08). Using logistic models, pre-frailty and frailty were identified with sensitivity and specificity of 82%-89%, using motor, HR dynamics, and interconnection parameters. Findings suggested a strong association between cardiac-motor interconnection and frailty. Adding CCM parameters in a multimodal model may provide a promising measure of frailty.
Collapse
Affiliation(s)
- Patricio Arrué
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Kaveh Laksari
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, United States
| | - Mark Russo
- Department of Surgery, Division of Cardiac Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Tana La Placa
- Department of Surgery, Division of Cardiac Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Meghan Smith
- Department of Surgery, Division of Cardiac Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Nima Toosizadeh
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
- Arizona Center on Aging (ACOA), Department of Medicine, University of Arizona, Tucson, AZ, United States
- Division of Geriatrics, General Internal Medicine and Palliative Medicine, Department of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
2
|
Grotle AK, Langlo JV, Holsbrekken E, Stone AJ, Tanaka H, Fadel PJ. Age-related alterations in the cardiovascular responses to acute exercise in males and females: role of the exercise pressor reflex. Front Physiol 2023; 14:1287392. [PMID: 38028783 PMCID: PMC10652405 DOI: 10.3389/fphys.2023.1287392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Autonomic adjustments of the cardiovascular system are critical for initiating and sustaining exercise by facilitating the redistribution of blood flow and oxygen delivery to meet the metabolic demands of the active skeletal muscle. Afferent feedback from active skeletal muscles evokes reflex increases in sympathetic nerve activity and blood pressure (BP) (i.e., exercise pressor reflex) and contributes importantly to these primary neurovascular adjustments to exercise. When altered, this reflex contributes significantly to the exaggerated sympathetic and BP response to exercise observed in many cardiovascular-related diseases, highlighting the importance of examining the reflex and its underlying mechanism(s). A leading risk factor for the pathogenesis of cardiovascular disease in both males and females is aging. Although regular exercise is an effective strategy for mitigating the health burden of aging, older adults face a greater risk of experiencing an exaggerated cardiovascular response to exercise. However, the role of aging in mediating the exercise pressor reflex remains highly controversial, as conflicting findings have been reported. This review aims to provide a brief overview of the current understanding of the influence of aging on cardiovascular responses to exercise, focusing on the role of the exercise pressor reflex and proposing future directions for research. We reason that this review will serve as a resource for health professionals and researchers to stimulate a renewed interest in this critical area.
Collapse
Affiliation(s)
- A. K. Grotle
- Department of Sports, Food and Natural Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - J. V. Langlo
- Department of Sports, Food and Natural Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - E. Holsbrekken
- Department of Sports, Food and Natural Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - A. J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - H. Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - P. J. Fadel
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
3
|
Teixeira AL, Vianna LC. The exercise pressor reflex: An update. Clin Auton Res 2022; 32:271-290. [PMID: 35727398 DOI: 10.1007/s10286-022-00872-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
The exercise pressor reflex is a feedback mechanism engaged upon stimulation of mechano- and metabosensitive skeletal muscle afferents. Activation of these afferents elicits a reflex increase in heart rate, blood pressure, and ventilation in an intensity-dependent manner. Consequently, the exercise pressor reflex has been postulated to be one of the principal mediators of the cardiorespiratory responses to exercise. In this updated review, we will discuss classical and recent advancements in our understating of the exercise pressor reflex function in both human and animal models. Particular attention will be paid to the afferent mechanisms and pathways involved during its activation, its effects on different target organs, its potential role in the abnormal cardiovascular response to exercise in diseased states, and the impact of age and biological sex on these responses. Finally, we will highlight some unanswered questions in the literature that may inspire future investigations in the field.
Collapse
Affiliation(s)
- André L Teixeira
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Lauro C Vianna
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil.
| |
Collapse
|
4
|
Gama G, Farinatti P, Rangel MVDS, Mira PADC, Laterza MC, Crisafulli A, Borges JP. Muscle metaboreflex adaptations to exercise training in health and disease. Eur J Appl Physiol 2021; 121:2943-2955. [PMID: 34189604 DOI: 10.1007/s00421-021-04756-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022]
Abstract
Abnormalities in the muscle metaboreflex concur to exercise intolerance and greater cardiovascular risk. Exercise training benefits neurocardiovascular function at rest and during exercise, but its role in favoring muscle metaboreflex in health and disease remains controversial. While some authors demonstrated that exercise training enhanced the sensitization of muscle metabolically afferents and improved neurocardiovascular responses to muscle metaboreflex activation, others reported unaltered responses. This narrative review aimed to: (a) highlight the current evidence on the effects of exercise training upon cardiovascular and autonomic responses to muscle metaboreflex activation; (b) analyze the role of training components and indicate potential mechanisms of metaboreflex adaptations; and (c) address key methodological features for future research. Though limited, accumulated evidence suggests that muscle metaboreflex adaptations depend on the individual clinical status, exercise modality, and training duration. In healthy populations, most trials negated the hypothesis of metaboreflex improvement due to chronic exercise, irrespective of the training duration. Favorable changes in patients with impaired metaboreflex, particularly chronic heart failure, mostly resulted from long-term interventions (> 16 weeks) including aerobic exercise of moderate to high intensity, performed in isolation or within multimodal training. Potential mechanisms of metaboreflex improvements include enhanced sensitivity of channels and receptors, greater antioxidant capacity, lower metabolite accumulation, increased functional sympatholysis, and muscle perfusion. Future research should investigate: (1) the dose-response relationship of training components within different exercise modalities to elicit improvements in individuals showing intact or impaired muscle metaboreflex; and (2) potential and specific underlying mechanisms of metaboreflex improvements in individuals with different medical conditions.
Collapse
Affiliation(s)
- Gabriel Gama
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rua São Francisco Xavier, 524, sala 8133F, Maracanã, Rio de Janeiro, RJ, CEP, 20550-013, Brazil
- Graduate Program in Exercise and Sports Sciences, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil
| | - Paulo Farinatti
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rua São Francisco Xavier, 524, sala 8133F, Maracanã, Rio de Janeiro, RJ, CEP, 20550-013, Brazil
- Graduate Program in Exercise and Sports Sciences, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil
- Graduate Program in Physical Activity Sciences, Salgado de Oliveira University, Niteroi, RJ, Brazil
| | - Marcus Vinicius Dos Santos Rangel
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rua São Francisco Xavier, 524, sala 8133F, Maracanã, Rio de Janeiro, RJ, CEP, 20550-013, Brazil
- Graduate Program in Exercise and Sports Sciences, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil
| | - Pedro Augusto de Carvalho Mira
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, RJ, Brazil
- Cardiovascular Research Unit and Exercise Physiology - InCFEx, University Hospital and Faculty of Physical Education and Sports, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Mateus Camaroti Laterza
- Cardiovascular Research Unit and Exercise Physiology - InCFEx, University Hospital and Faculty of Physical Education and Sports, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Antonio Crisafulli
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Juliana Pereira Borges
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rua São Francisco Xavier, 524, sala 8133F, Maracanã, Rio de Janeiro, RJ, CEP, 20550-013, Brazil.
- Graduate Program in Exercise and Sports Sciences, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
5
|
Hernández-Álvarez D, Mena-Montes B, Toledo-Pérez R, Pedraza-Vázquez G, López-Cervantes SP, Morales-Salazar A, Hernández-Cruz E, Lazzarini-Lechuga R, Vázquez-Cárdenas RR, Vilchis-DeLaRosa S, Posadas-Rodríguez P, Santín-Márquez R, Rosas-Carrasco O, Ibañez-Contreras A, Alarcón-Aguilar A, López-Díazguerrero NE, Luna-López A, Königsberg M. Long-Term Moderate Exercise Combined with Metformin Treatment Induces an Hormetic Response That Prevents Strength and Muscle Mass Loss in Old Female Wistar Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3428543. [PMID: 31814870 PMCID: PMC6877950 DOI: 10.1155/2019/3428543] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/18/2019] [Indexed: 12/18/2022]
Abstract
Sarcopenia is a syndrome characterized by a progressive and generalized skeletal muscle mass and strength loss, as well as a poor physical performance, which as strongly been associated with aging. Sedentary lifestyle in the elderly contributes to this condition; however, physical activity improves health, reducing morbidity and mortality. Recent studies have shown that metformin (MTF) can also prevent muscle damage promoting muscular performance. To date, there is great controversy if MTF treatment combined with exercise training improves or nullifies the benefits provided by physical activity. This study is aimed at evaluating the effect of long-term moderate exercise combined with MTF treatment on body composition, strength, redox state, and survival rate during the life of female Wistar rats. In this study, rats performed moderate exercise during 20 of their 24 months of life and were treated with MTF for one year or for 6 months, i.e., from 12 to 24 months old and 18 to 24 months old. The body composition (percentage of fat, bone, and lean mass) was determined using a dual-energy X-ray absorption scanner (DXA), and grip strength was determined using a dynamometer. Likewise, medial and tibial nerve somatosensory evoked potentials were evaluated and the redox state was measured by HPLC, calculating the GSH/GSSG ratio in the gastrocnemius muscle. Our results suggest- that the MTF administration, both in the sedentary and the exercise groups, might activate a mechanism that is directly related to the induction of the hormetic response through the redox state modulation. MTF treatment does not eliminate the beneficial effects of exercise throughout life, and although MTF does not increase muscle mass, it increases longevity.
Collapse
Affiliation(s)
- David Hernández-Álvarez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
- Posgrado en Ciencias Biológicas, Universidad Autónoma Metropolitana, Ciudad de México 09340, Mexico
| | - Beatriz Mena-Montes
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
- Instituto Nacional de Geriatría, SSA, Ciudad de México 10200, Mexico
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
| | - Rafael Toledo-Pérez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
| | - Gibrán Pedraza-Vázquez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
| | - Stefanie Paola López-Cervantes
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
| | - Alfredo Morales-Salazar
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
| | - Edith Hernández-Cruz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
| | - Roberto Lazzarini-Lechuga
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
| | - Roman Royer Vázquez-Cárdenas
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
| | - Silvia Vilchis-DeLaRosa
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
| | - Pedro Posadas-Rodríguez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
| | - Roberto Santín-Márquez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
| | | | | | - Adriana Alarcón-Aguilar
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
| | | | | | - Mina Königsberg
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
| |
Collapse
|