1
|
Zhu C, Arunogiri S, Li Q, Thomas EHX, Gurvich C. Cognitive Training During Midlife: A Systematic Review and Meta-Analysis. Neuropsychol Rev 2024:10.1007/s11065-024-09649-z. [PMID: 39235660 DOI: 10.1007/s11065-024-09649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Midlife has been suggested to be a crucial time to introduce interventions for improving cognitive functions. The effects of cognitive training (CT) in healthy middle-aged populations and more specifically during the menopausal transition have not been systematically investigated. To investigate the effects of CT on cognition in healthy middle-aged adults and specifically in females during the menopause transition, literature was searched inception to July 2023 and studies were included that examined the effects of CT on a defined cognitive outcome. The improvement on cognitive performance following CT was the main outcome measured as mean difference (from baseline to immediate post) estimates with corresponding 95% confidence intervals (CI) in meta-analysis and was discussed with the support of subgroup analysis based on outcome type (i.e., far or near-transfer) and cluster tabulations. Nineteen articles were included in the qualitative synthesis with a total of 7765 individuals, and eight articles were included in the meta-analyses. CT was categorized into six type clusters: Game-based CT, General CT, Speed of Processing Training, Working Memory Training, Strategy-based CT, and Cognitive Remediation. Cognitive outcome was divided into six clusters: working memory, verbal memory, language, executive function, attention/processing speed, and visual memory. Meta-analysis reported significant improvement in the domain of executive function (0.48, 95% CI 0.08-0.87), verbal memory (0.22, 95% CI 0.11-0.33), and working memory (0.16, 95% CI 0.05-0.26). CT confers benefits on various cognitive domains, suggesting a potential role of CT to promote optimal cognitive functioning in the midlife and specifically in women during the menopause transition.
Collapse
Affiliation(s)
- Chen Zhu
- HER Centre Australia, Department of Psychiatry, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Shalini Arunogiri
- Eastern Health Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Turning Point, Melbourne, Australia
| | - Qi Li
- HER Centre Australia, Department of Psychiatry, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Elizabeth H X Thomas
- HER Centre Australia, Department of Psychiatry, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Caroline Gurvich
- HER Centre Australia, Department of Psychiatry, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
2
|
Kerver GA, Engel SG, Gunstad J, Crosby RD, Steffen KJ. Deficits in cognitive control during alcohol consumption after bariatric surgery. Surg Obes Relat Dis 2023; 19:344-349. [PMID: 36443210 PMCID: PMC10040420 DOI: 10.1016/j.soard.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND While bariatric surgery results in substantial weight loss, one negative side effect of surgery is that patients often experience more rapid and intense intoxication effects after consuming alcohol. OBJECTIVES Given that alcohol use has been associated with impaired cognitive functioning in the general population, this study examined whether acute alcohol consumption after bariatric surgery immediately led to impaired cognitive control, and whether this effect was impacted by baseline levels of cognitive control. SETTING Nonprofit teaching hospital, United States. METHODS Participants were 34 adults who attended a laboratory visit before and 1 year after Roux-en-Y gastric bypass surgery, wherein they consumed a weight-based dose of alcohol and completed cognitive testing over the course of 3 hours. RESULTS A series of generalized mixed-effect models demonstrated that performance on the cognitive task generally improved over time, likely due to practice effects. However, following bariatric surgery, individuals with impaired cognitive control before consuming alcohol experienced greater commission errors immediately afterward. CONCLUSIONS These findings suggest that alcohol use after bariatric surgery may produce immediate deficits in inhibitory control among individuals who are already vulnerable to impaired cognitive control. Clinicians should seek to educate bariatric surgery candidates on this possible effect, as deficits in inhibitory control may ultimately lead to risky behaviors and poor adherence with postsurgical medical recommendations.
Collapse
Affiliation(s)
- Gail A Kerver
- Sanford Center for Biobehavioral Research, Fargo, North Dakota; Department of Psychiatry and Behavioral Science, School of Medicine and Health Sciences, University of North Dakota, Fargo, North Dakota.
| | - Scott G Engel
- Sanford Center for Biobehavioral Research, Fargo, North Dakota; Department of Psychiatry and Behavioral Science, School of Medicine and Health Sciences, University of North Dakota, Fargo, North Dakota
| | - John Gunstad
- Department of Psychological Sciences, Kent State University, Kent, Ohio
| | - Ross D Crosby
- Sanford Center for Biobehavioral Research, Fargo, North Dakota; Department of Psychiatry and Behavioral Science, School of Medicine and Health Sciences, University of North Dakota, Fargo, North Dakota
| | - Kristine J Steffen
- Sanford Center for Biobehavioral Research, Fargo, North Dakota; Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
3
|
Ripp I, Emch M, Wu Q, Lizarraga A, Udale R, von Bastian CC, Koch K, Yakushev I. Adaptive working memory training does not produce transfer effects in cognition and neuroimaging. Transl Psychiatry 2022; 12:512. [PMID: 36513642 PMCID: PMC9747798 DOI: 10.1038/s41398-022-02272-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Despite growing interest in cognitive interventions from academia and industry, it remains unclear if working memory (WM) training, one of the most popular cognitive interventions, produces transfer effects. Transfer effects are training-induced gains in performance in untrained cognitive tasks, while practice effects are improvements in trained task. The goal of this study was to evaluate potential transfer effects by comprehensive cognitive testing and neuroimaging. In this prospective, randomized-controlled, and single-blind study, we administered an 8-week n-back training to 55 healthy middle-aged (50-64 years) participants. State-of-the-art multimodal neuroimaging was used to examine potential anatomic and functional changes. Relative to control subjects, who performed non-adaptive WM training, no near or far transfer effects were detected in experimental subjects, who performed adaptive WM training. Equivalently, no training-related changes were observed in white matter integrity, amplitude of low frequency fluctuations, glucose metabolism, functional and metabolic connectivity. Exploratory within-group comparisons revealed some gains in transfer tasks, which, however, cannot be attributed to an increased WM capacity. In conclusion, WM training produces transfer effects neither at the cognitive level nor in terms of neural structure or function. These results speak against a common view that training-related gains reflect an increase in underlying WM capacity. Instead, the presently observed practice effects may be a result of optimized task processing strategies, which do not necessarily engage neural plasticity.
Collapse
Affiliation(s)
- Isabelle Ripp
- grid.6936.a0000000123222966Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany ,grid.6936.a0000000123222966TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany
| | - Mónica Emch
- grid.6936.a0000000123222966TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany ,grid.6936.a0000000123222966Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Qiong Wu
- grid.6936.a0000000123222966TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany ,grid.6936.a0000000123222966Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany ,grid.5252.00000 0004 1936 973XInstitute of Medical Psychology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Aldana Lizarraga
- grid.6936.a0000000123222966Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Robert Udale
- grid.11835.3e0000 0004 1936 9262Department of Psychology, University of Sheffield, Sheffield, UK
| | | | - Kathrin Koch
- grid.6936.a0000000123222966TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany ,grid.6936.a0000000123222966Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany. .,TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany.
| |
Collapse
|
4
|
Vartanian O, Replete V, Saint SA, Lam Q, Forbes S, Beaudoin ME, Brunyé TT, Bryant DJ, Feltman KA, Heaton KJ, McKinley RA, Van Erp JBF, Vergin A, Whittaker A. What Is Targeted When We Train Working Memory? Evidence From a Meta-Analysis of the Neural Correlates of Working Memory Training Using Activation Likelihood Estimation. Front Psychol 2022; 13:868001. [PMID: 35432071 PMCID: PMC9005969 DOI: 10.3389/fpsyg.2022.868001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
Working memory (WM) is the system responsible for maintaining and manipulating information, in the face of ongoing distraction. In turn, WM span is perceived to be an individual-differences construct reflecting the limited capacity of this system. Recently, however, there has been some evidence to suggest that WM capacity can increase through training, raising the possibility that training can functionally alter the neural structures supporting WM. To address the hypothesis that the neural substrates underlying WM are targeted by training, we conducted a meta-analysis of functional magnetic resonance imaging (fMRI) studies of WM training using Activation Likelihood Estimation (ALE). Our results demonstrate that WM training is associated exclusively with decreases in blood oxygenation level-dependent (BOLD) responses in clusters within the fronto-parietal system that underlie WM, including the bilateral inferior parietal lobule (BA 39/40), middle (BA 9) and superior (BA 6) frontal gyri, and medial frontal gyrus bordering on the cingulate gyrus (BA 8/32). We discuss the various psychological and physiological mechanisms that could be responsible for the observed reductions in the BOLD signal in relation to WM training, and consider their implications for the construct of WM span as a limited resource.
Collapse
Affiliation(s)
- Oshin Vartanian
- Defence Research and Development Canada, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Vladyslava Replete
- Defence Research and Development Canada, Toronto, ON, Canada
- Faculty of Medicine, Queen’s University, Kingston, ON, Canada
| | - Sidney Ann Saint
- Defence Research and Development Canada, Toronto, ON, Canada
- Department of Psychology, University of Waterloo, Waterloo, ON, Canada
| | - Quan Lam
- Defence Research and Development Canada, Toronto, ON, Canada
| | - Sarah Forbes
- Defence Research and Development Canada, Toronto, ON, Canada
- Department of Psychiatry, University of Manitoba, Winnipeg, MB, Canada
| | - Monique E. Beaudoin
- Applied Research Laboratory for Intelligence and Security, University of Maryland, College Park, MD, United States
| | - Tad T. Brunyé
- U.S. Army DEVCOM Soldier Center, Natick, MA, United States
| | - David J. Bryant
- Defence Research and Development Canada, Toronto, ON, Canada
| | - Kathryn A. Feltman
- U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL, United States
| | - Kristin J. Heaton
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Richard A. McKinley
- U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Jan B. F. Van Erp
- Netherlands Organization for Applied Scientific Research (TNO), Soesterberg, Netherlands
- Department of Human Media Interaction, University of Twente, Enschede, Netherlands
| | - Annika Vergin
- Bundeswehr Office for Defence Planning, Federal Ministry of Defence, Berlin, Germany
| | - Annalise Whittaker
- Defence Science and Technology Laboratory, UK Ministry of Defence, Salisbury, United Kingdom
| |
Collapse
|
5
|
Ripp I, Wu Q, Wallenwein L, Emch M, Yakushev I, Koch K. Neuronal efficiency following n-back training task is accompanied by a higher cerebral glucose metabolism. Neuroimage 2022; 253:119095. [PMID: 35304266 DOI: 10.1016/j.neuroimage.2022.119095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 11/28/2022] Open
Abstract
Recent functional magnetic resonance imaging (fMRI) studies revealed lower neural activation during processing of an n-back task following working memory training, indicating a training-related increase in neural efficiency. In the present study, we asked if the training induced regional neural activation is accompanied by changes in glucose consumption. An active control and an experimental group of healthy middle-aged volunteers conducted 32 sessions of visual and verbal n-back trainings over 8 weeks. We analyzed data of 52 subjects (25 experimental and 27 control group) for practice effects underlying verbal working memory task and 50 subjects (24 experimental and 26 control group) for practice effects underlying visual WM task. The samples of these two tasks were nearly identical (data of 47 subjects were available for both verbal and visual tasks). Both groups completed neuroimaging sessions at a hybrid PET/MR system before and after training. Each session included criterion task fMRI and resting state positron emission tomography with FDG (FDG-PET). As reported previously, lower neural activation following n-back training was found in regions of the fronto-parieto-cerebellar circuitry during a verbal n-back task. Notably, these changes co-occurred spatially with a higher relative FDG-uptake. Decreased neural activation within regions of the fronto-parietal network during visual n-back task did not show co-occurring changes in relative FDG-uptake. There was no direct association between neuroimaging and behavioral measures, which could be due to the inter-subjects' variability in reaching capacity limits. Our findings provide new details for working memory training induced neural efficiency on a molecular level by integrating FDG-PET and fMRI measures.
Collapse
Affiliation(s)
- Isabelle Ripp
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Qiong Wu
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany; Institute of Medical Psychology, Ludwig-Maximilians-Universität, Munich, Germany.
| | - Lara Wallenwein
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mónica Emch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Kathrin Koch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| |
Collapse
|
6
|
Xu J, Deng M, Nan W, Cai D. The effects of working memory training in children revealed by behavioral responses and ERP. Brain Behav 2021; 11:e2310. [PMID: 34333867 PMCID: PMC8413785 DOI: 10.1002/brb3.2310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Recent studies have examined the effect of computerized cognitive training on working memory (WM), but the behavioral and neural effects were uncertain. Also, few studies have explored WM training effects on children using event-related potentials. The purpose of our study was to investigate the effects of WM training in children, including the effects on behavioral performance and neurophysiological outcomes. METHODS Forty-four healthy children (mean age = 7.76 years, SD = 0.57 years, 18 females) were assigned to the training and control groups. Over 20 training sessions, the training group participated in the computation-span and spatial N-back tasks, whereas the control group joined in normal class activities. They all completed the pre- and post-test evaluation of WM tasks (digit span backwards task and N-back task). RESULTS The results showed that WM training led to improved performance in the digit span backwards task and 2-back task of post-test evaluation, shortened P3a and P3b latencies in nontarget trials during the spatial 1-back task, shortened P3a latency in target and nontarget trials, as well as increased P3b amplitude and shortened P3b latency in target trials during the spatial 2-back task. CONCLUSIONS These results suggested that WM training might enhance children's behavioral performance on WM tasks and brought about neurophysiological changes. This study gives insights into the potential of WM training effects on children's behavioral performance and neurophysiological outcomes.
Collapse
Affiliation(s)
- Jie Xu
- Department of PsychologyShanghai Normal UniversityShanghaiChina
| | - Meiqi Deng
- Department of PsychologyShanghai Normal UniversityShanghaiChina
- School of Foreign Languages in TourismShanghai Institute of TourismShanghaiChina
| | - Wenya Nan
- Department of PsychologyShanghai Normal UniversityShanghaiChina
| | - Dan Cai
- Department of PsychologyShanghai Normal UniversityShanghaiChina
| |
Collapse
|
7
|
Kimura T, Nakano W. Enhancement of prefrontal area excitability induced by a cognitive task: Impact on subsequence visuomotor task performance. Neurobiol Learn Mem 2021; 181:107436. [PMID: 33831512 DOI: 10.1016/j.nlm.2021.107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 11/19/2022]
Abstract
Cognitive tasks may have the potential to improve visuomotor task performance; however, the reason for this is unclear. If this can be clarified, it may be possible to develop clinically valuable outcomes, such as promotion of motor learning though cognitive tasks. The present study aimed to investigate whether changes in prefrontal area excitability induced by cognitive tasks, especially within the dorsolateral prefrontal cortex (DLPFC), influenced the speed of improvement during visuomotor task performance. Twenty young healthy adults were recruited. The serial reaction time task (SRTT) was used to assess visuomotor task performance. Cognitive tasks included an adjusted N-back task, a non-adjusted N-back task, and a control task, which were evaluated on different days. Additionally, we measured cerebral hemodynamic activity using near-infrared spectroscopy while each cognitive task was being performed. We observed that the adjusted N-back task significantly enhanced the speed of improvement during the SRTT performance compared to the control task. However, there was no relationship between the speed of improvement during the SRTT performance and changes in prefrontal area excitability induced by the cognitive tasks. Our findings contribute towards developing an effective method that uses cognitive tasks to promote visuomotor learning.
Collapse
Affiliation(s)
- Takehide Kimura
- Department of Physical Therapy, Faculty of Health Sciences, Tsukuba International University, 6-8-33 Manabe, Tsuchiura, Ibaraki, Japan.
| | - Wataru Nakano
- Department of Physical Therapy, Faculty of Health and Medical Sciences, Tokoha University, 1-30 Mizuochityou, Aoi-ku, Shizuoka, Shizuoka, Japan
| |
Collapse
|
8
|
Wu Q, Ripp I, Emch M, Koch K. Cortical and subcortical responsiveness to intensive adaptive working memory training: An MRI surface-based analysis. Hum Brain Mapp 2021; 42:2907-2920. [PMID: 33724600 PMCID: PMC8127158 DOI: 10.1002/hbm.25412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/31/2022] Open
Abstract
Working memory training (WMT) has been shown to have effects on cognitive performance, the precise effects and the underlying neurobiological mechanisms are, however, still a matter of debate. In particular, the impact of WMT on gray matter morphology is still rather unclear. In the present study, 59 healthy middle‐aged participants (age range 50–65 years) were pseudo‐randomly single‐blinded allocated to an 8‐week adaptive WMT or an 8‐week nonadaptive intervention. Before and after the intervention, high resolution magnetic resonance imaging (MRI) was performed and cognitive test performance was assessed in all participants. Vertex‐wise cortical volume, thickness, surface area, and cortical folding was calculated. Seven subcortical volumes of interest and global mean cortical thickness were also measured. Comparisons of symmetrized percent change (SPC) between groups were conducted to identify group by time interactions. Greater increases in cortical gyrification in bilateral parietal regions, including superior parietal cortex and inferior parietal lobule as well as precuneus, greater increases in cortical volume and thickness in bilateral primary motor cortex, and changes in surface area in bilateral occipital cortex (medial and lateral occipital cortex) were detected in WMT group after training compared to active controls. Structural training‐induced changes in WM‐related regions, especially parietal regions, might provide a better brain processing environment for higher WM load.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, School of MedicineTechnical University of MunichMunichGermany
- TUM‐Neuroimaging Center (TUM‐NIC)Technical University of MunichMunichGermany
- Institute of Medical PsychologyLudwig‐Maximilians‐UniversitätMunichGermany
| | - Isabelle Ripp
- TUM‐Neuroimaging Center (TUM‐NIC)Technical University of MunichMunichGermany
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der IsarTechnical University of MunichMunichGermany
- Graduate School of Systemic NeurosciencesLudwig‐Maximilians‐UniversitätMartinsriedGermany
| | - Mónica Emch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, School of MedicineTechnical University of MunichMunichGermany
- TUM‐Neuroimaging Center (TUM‐NIC)Technical University of MunichMunichGermany
- Graduate School of Systemic NeurosciencesLudwig‐Maximilians‐UniversitätMartinsriedGermany
| | - Kathrin Koch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, School of MedicineTechnical University of MunichMunichGermany
- TUM‐Neuroimaging Center (TUM‐NIC)Technical University of MunichMunichGermany
- Graduate School of Systemic NeurosciencesLudwig‐Maximilians‐UniversitätMartinsriedGermany
| |
Collapse
|
9
|
Wei Y, Wu L, Wang Y, Liu J, Miao P, Wang K, Wang C, Cheng J. Disrupted Regional Cerebral Blood Flow and Functional Connectivity in Pontine Infarction: A Longitudinal MRI Study. Front Aging Neurosci 2020; 12:577899. [PMID: 33328960 PMCID: PMC7710811 DOI: 10.3389/fnagi.2020.577899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/12/2020] [Indexed: 11/28/2022] Open
Abstract
Abnormal cerebral blood flow (CBF) and resting-state functional connectivity (rs-FC) are sensitive biomarkers of disease progression and prognosis. This study investigated neural underpinnings of motor and cognitive recovery by longitudinally studying the changes of CBF and FC in pontine infarction (PI). Twenty patients underwent three-dimensional pseudo-continuous arterial spin labeling (3D-pcASL), resting-state functional magnetic resonance imaging (rs-fMRI) scans, and behavioral assessments at 1 week, 1, 3, and 6 months after stroke. Twenty normal control (NC) subjects underwent the same examination once. First, we investigated CBF changes in the acute stage, and longitudinal changes from 1 week to 6 months after PI. Brain regions with longitudinal CBF changes were then used as seeds to investigate longitudinal FC alterations during the follow-up period. Compared with NC, patients in the left PI (LPI) and right PI (RPI) groups showed significant CBF alterations in the bilateral cerebellum and some supratentorial brain regions at the baseline stage. Longitudinal analysis revealed that altered CBF values in the right supramarginal (SMG_R) for the LPI group, while the RPI group showed significantly dynamic changes of CBF in the left calcarine sulcus (CAL_L), middle occipital gyrus (MOG_L), and right supplementary motor area (SMA_R). Using the SMG_R as the seed in the LPI group, FC changes were found in the MOG_L, middle temporal gyrus (MTG_L), and prefrontal lobe (IFG_L). Correlation analysis showed that longitudinal CBF changes in the SMG_R and FC values between the SMG_R and MOG_L were associated with motor and memory scores in the LPI group, and longitudinal CBF changes in the CAL_L and SMA_R were related to memory and motor recovery in the RPI group. These longitudinal CBF and accompany FC alterations may provide insights into the neural mechanism underlying functional recovery after PI, including that of motor and cognitive functions.
Collapse
Affiliation(s)
- Ying Wei
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luobing Wu
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingchun Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Peifang Miao
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaiyu Wang
- GE Healthcare MR Research, Beijing, China
| | - Caihong Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Working memory updating training promotes plasticity & behavioural gains: A systematic review & meta-analysis. Neurosci Biobehav Rev 2020; 118:209-235. [DOI: 10.1016/j.neubiorev.2020.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 11/18/2022]
|
11
|
Brooks SJ, Mackenzie-Phelan R, Tully J, Schiöth HB. Review of the Neural Processes of Working Memory Training: Controlling the Impulse to Throw the Baby Out With the Bathwater. Front Psychiatry 2020; 11:512761. [PMID: 33132926 PMCID: PMC7511702 DOI: 10.3389/fpsyt.2020.512761] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Smartphone technology has enabled the creation of many working memory training (WMT) Apps, with those peer-reviewed described in a recent review. WMT claims to improve working memory, attention deficits, hyperactivity and fluid intelligence, in line with plasticity brain changes. Critics argue that WMT is unable to achieve "far-transfer"-the attainment of benefits to cognition from one taught context to another dissimilar context-associated with improved quality of life. However, brain changes after a course of WMT in frontoparietal and striatal circuits-that often occur prior to behavioral changes-may be a better indicator of far-transfer efficacy, especially to improve impulse control commonly dysregulated in those with addictive disorders, yet not commonly examined in WMT studies. METHOD In contrast to previous reviews, the aim here is to focus on the findings of brain imaging WMT training studies across various imaging modalities that use various paradigms, published via PubMed, Scopus, Medline, and Google Scholar. RESULTS 35 brain imaging studies utilized fMRI, structural imaging (MRI, DTI), functional connectivity, EEG, transcranial direct current stimulation (tDCS), cerebral perfusion, and neurogenetic analyses with tasks based on visuospatial and auditory working memory, dual and standard n-back. DISCUSSION Evidence suggests that repeated WMT reduces brain activation in frontoparietal and striatal networks reflective of increased neural circuitry efficiency via myelination and functional connectivity changes. Neural effects of WMT may persist months after training has ended, lead to non-trained task transfer, be strengthened by auxiliary methods such as tDCS and be related to COMT polymorphisms. WMT could be utilized as an effective, non-invasive intervention for working memory deficits to treat impulse and affective control problems in people with addictive disorders.
Collapse
Affiliation(s)
- Samantha J Brooks
- School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom.,Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Neuroscience Research Laboratory (NeuRL), Department of Psychology, School of Human and Community Development, University of the Witwatersrand, Johannesburg, South Africa
| | - Rhiannon Mackenzie-Phelan
- School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jamie Tully
- School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| | - Helgi B Schiöth
- Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|