1
|
Nishimoto T, Oka F, Inoue T, Moriyama H, Kawano R, Suzuki M, Chung DY, Ayata C, Ishihara H. Impact of intracranial hypertension and cerebral perfusion pressure on spreading depolarization. J Cereb Blood Flow Metab 2025; 45:703-716. [PMID: 39501698 PMCID: PMC11563493 DOI: 10.1177/0271678x241296799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/30/2024] [Accepted: 08/27/2024] [Indexed: 11/17/2024]
Abstract
Spreading depolarization (SD) develops after stroke and traumatic brain injury and may contribute to secondary brain damage. These diseases are often accompanied by intracranial hypertension, but little is known about the effects of intracranial pressure (ICP) on SD. Here, we study the effect of increased ICP on hemodynamic and metabolic response to SD in rats. SDs were triggered at different ICPs and cerebral perfusion pressures (CPP). The regional cerebral blood flow (rCBF), partial pressure of brain tissue oxygen (PbtO2), cerebral extracellular glucose and lactate concentrations were recorded. Fluoro-Jade staining was used to quantify neuronal injury in cortex. At high ICP (50 mmHg) with low CPP (30 mmHg), rCBF and PbtO2 were monophasically decreased in contrast to a monophasically increased pattern under normal conditions. Neuronal death increased in both hemispheres but much more on the side where SDs were triggered. At high ICP (50 mmHg) with normal CPP (70 mmHg), CBF and metabolism during SD did not differ from baseline, and neuronal death did not increase even on the side of SD induction. These data suggest that maintaining CPP at 70 mmHg, even when the ICP is as high as 50 mmHg, preserves normal blood flow and metabolism during SD events and prevents neuronal degeneration.
Collapse
Affiliation(s)
- Takuma Nishimoto
- Department of Neurosurgery, Yamaguchi Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Fumiaki Oka
- Department of Neurosurgery, Yamaguchi Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Takao Inoue
- Organization of Research Initiatives, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Hiroshi Moriyama
- Department of Neurosurgery, Yamaguchi Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Reo Kawano
- Data Management and Biostatistics Unit, Innovation Center for Translational Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi Graduate School of Medicine, Ube, Yamaguchi, Japan
- Organization of Research Initiatives, Yamaguchi University, Ube, Yamaguchi, Japan
| | - David Y Chung
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hideyuki Ishihara
- Department of Neurosurgery, Yamaguchi Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
2
|
Khaing ZZ, Chandrasekaran A, Katta A, Reed MJ. The Brain and Spinal Microvasculature in Normal Aging. J Gerontol A Biol Sci Med Sci 2023; 78:1309-1319. [PMID: 37093786 PMCID: PMC10395569 DOI: 10.1093/gerona/glad107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 04/25/2023] Open
Abstract
Changes in the brain and spinal cord microvasculature during normal aging contribute to the "sensitive" nature of aged central nervous system tissue to ischemic insults. In this review, we will examine alterations in the central nervous system microvasculature during normal aging, which we define as aging without a dominant pathology such as neurodegenerative processes, vascular injury or disease, or trauma. We will also discuss newer technologies to improve the study of central nervous system microvascular structure and function. Microvasculature within the brain and spinal cord will be discussed separately as anatomy and physiology differ between these compartments. Lastly, we will identify critical areas for future studies as well as key unanswered questions.
Collapse
Affiliation(s)
- Zin Z Khaing
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | | | - Anjali Katta
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - May J Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Shin P, Pian Q, Ishikawa H, Hamanaka G, Mandeville ET, Guo S, Fu B, Alfadhel M, Allu SR, Şencan-Eğilmez I, Li B, Ran C, Vinogradov SA, Ayata C, Lo E, Arai K, Devor A, Sakadžić S. Aerobic exercise reverses aging-induced depth-dependent decline in cerebral microcirculation. eLife 2023; 12:e86329. [PMID: 37402178 PMCID: PMC10319437 DOI: 10.7554/elife.86329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
Aging is a major risk factor for cognitive impairment. Aerobic exercise benefits brain function and may promote cognitive health in older adults. However, underlying biological mechanisms across cerebral gray and white matter are poorly understood. Selective vulnerability of the white matter to small vessel disease and a link between white matter health and cognitive function suggests a potential role for responses in deep cerebral microcirculation. Here, we tested whether aerobic exercise modulates cerebral microcirculatory changes induced by aging. To this end, we carried out a comprehensive quantitative examination of changes in cerebral microvascular physiology in cortical gray and subcortical white matter in mice (3-6 vs. 19-21 months old), and asked whether and how exercise may rescue age-induced deficits. In the sedentary group, aging caused a more severe decline in cerebral microvascular perfusion and oxygenation in deep (infragranular) cortical layers and subcortical white matter compared with superficial (supragranular) cortical layers. Five months of voluntary aerobic exercise partly renormalized microvascular perfusion and oxygenation in aged mice in a depth-dependent manner, and brought these spatial distributions closer to those of young adult sedentary mice. These microcirculatory effects were accompanied by an improvement in cognitive function. Our work demonstrates the selective vulnerability of the deep cortex and subcortical white matter to aging-induced decline in microcirculation, as well as the responsiveness of these regions to aerobic exercise.
Collapse
Affiliation(s)
- Paul Shin
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Qi Pian
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Emiri T Mandeville
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Shuzhen Guo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Buyin Fu
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Mohammed Alfadhel
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
- Department of Bioengineering, Northeastern UniversityBostonUnited States
| | - Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
- Department of Chemistry, University of PennsylvaniaPhiladelphiaUnited States
| | - Ikbal Şencan-Eğilmez
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
- Biophotonics Research Center, Mallinckrodt Institute of Radiology, Department of Radiology, Washington University School of MedicineSt. LouisUnited States
| | - Baoqiang Li
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Chongzhao Ran
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
- Department of Chemistry, University of PennsylvaniaPhiladelphiaUnited States
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
- Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Eng Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Anna Devor
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| | - Sava Sakadžić
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| |
Collapse
|
4
|
Knopp RC, Erickson MA, Rhea EM, Reed MJ, Banks WA. Cellular senescence and the blood-brain barrier: Implications for aging and age-related diseases. Exp Biol Med (Maywood) 2023; 248:399-411. [PMID: 37012666 PMCID: PMC10281623 DOI: 10.1177/15353702231157917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The blood-brain barrier (BBB) is a critical physiochemical interface that regulates communication between the brain and blood. It is comprised of brain endothelial cells which regulate the BBB's barrier and interface properties and is surrounded by supportive brain cell types including pericytes and astrocytes. Recent reports have suggested that the BBB undergoes dysfunction during normative aging and in disease. In this review, we consider the effect of cellular senescence, one of the nine hallmarks of aging, on the BBB. We first characterize known normative age-related changes at the BBB, and then evaluate changes in neurodegenerative diseases, with an emphasis on if/how cellular senescence is influencing these changes. We then discuss what insight has been gained from in vitro and in vivo studies of cellular senescence at the BBB. Finally, we evaluate mechanisms by which cellular senescence in peripheral pathologies can indirectly or directly affect BBB function.
Collapse
Affiliation(s)
- Rachel C Knopp
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - Michelle A Erickson
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - May J Reed
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| |
Collapse
|
5
|
Shin P, Pian Q, Ishikawa H, Hamanaka G, Mandeville ET, Shuzhen G, Buyin F, Alfadhel M, Allu SR, Şencan-Eğilmez I, Li B, Ran C, Vinogradov SA, Ayata C, Lo EH, Arai K, Devor A, Sakadžić S. Aerobic exercise reverses aging-induced depth-dependent decline in cerebral microcirculation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.12.528244. [PMID: 36824939 PMCID: PMC9949059 DOI: 10.1101/2023.02.12.528244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Aging is a major risk factor for cognitive impairment. Aerobic exercise benefits brain function and may promote cognitive health in older adults. However, underlying biological mechanisms across cerebral gray and white matter are poorly understood. Selective vulnerability of the white matter to small vessel disease and a link between white matter health and cognitive function suggests a potential role for responses in deep cerebral microcirculation. Here, we tested whether aerobic exercise modulates cerebral microcirculatory changes induced by aging. To this end, we carried out a comprehensive quantitative examination of changes in cerebral microvascular physiology in cortical gray and subcortical white matter in mice (3-6 vs. 19-21 months old), and asked whether and how exercise may rescue age-induced deficits. In the sedentary group, aging caused a more severe decline in cerebral microvascular perfusion and oxygenation in deep (infragranular) cortical layers and subcortical white matter compared with superficial (supragranular) cortical layers. Five months of voluntary aerobic exercise partly renormalized microvascular perfusion and oxygenation in aged mice in a depth-dependent manner, and brought these spatial distributions closer to those of young adult sedentary mice. These microcirculatory effects were accompanied by an improvement in cognitive function. Our work demonstrates the selective vulnerability of the deep cortex and subcortical white matter to aging-induced decline in microcirculation, as well as the responsiveness of these regions to aerobic exercise.
Collapse
Affiliation(s)
- Paul Shin
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Corresponding author:
| | - Qi Pian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Emiri T Mandeville
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Guo Shuzhen
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Fu Buyin
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Mohammed Alfadhel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Ikbal Şencan-Eğilmez
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Biophotonics Research Center, Mallinckrodt Institute of Radiology, Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
6
|
Kecskés S, Menyhárt Á, Bari F, Farkas E. Nimodipine augments cerebrovascular reactivity in aging but runs the risk of local perfusion reduction in acute cerebral ischemia. Front Aging Neurosci 2023; 15:1175281. [PMID: 37181624 PMCID: PMC10174256 DOI: 10.3389/fnagi.2023.1175281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction The efficacy of cerebrovascular reactivity (CVR) is taken as an indicator of cerebrovascular health. Methods and Results We found that CVR tested with the inhalation of 10 % CO2 declined in the parietal cortex of 18-20-month-old rats. The CVR deficit in old rats was coincident with cerebrovascular smooth muscle cell and astrocyte senescence, revealed by the immuno-labeling of the cellular senescence marker p16 in these cells. In a next series of experiments, CVR was severely impaired in the acute phase of incomplete global forebrain ischemia produced by the bilateral occlusion of the common carotid arteries in young adult rats. In acute ischemia, CVR impairment often manifested as a perfusion drop rather than blood flow elevation in response to hypercapnia. Next, nimodipine, an L-type voltage-gated calcium channel antagonist was administered topically to rescue CVR in both aging, and cerebra ischemia. Nimodipine augmented CVR in the aged brain, but worsened CVR impairment in acute cerebral ischemia. Discussion A careful evaluation of benefits and side effects of nimodipine is recommended, especially in acute ischemic stroke.
Collapse
Affiliation(s)
- Szilvia Kecskés
- Cerebral Blood Flow and Metabolism Research Group, Hungarian Centre of Excellence for Molecular Medicine – University of Szeged, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ákos Menyhárt
- Cerebral Blood Flow and Metabolism Research Group, Hungarian Centre of Excellence for Molecular Medicine – University of Szeged, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Cerebral Blood Flow and Metabolism Research Group, Hungarian Centre of Excellence for Molecular Medicine – University of Szeged, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- *Correspondence: Eszter Farkas,
| |
Collapse
|
7
|
Li J, Zeng X, Yang X, Ding H. Lycopene ameliorates skin aging by regulating the insulin resistance pathway and activating SIRT1. Food Funct 2022; 13:11307-11320. [PMID: 36226790 DOI: 10.1039/d2fo01111e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Microvascular loss is one of the most important characteristics of skin aging and several microvascular activities play key roles in preserving skin health. In vitro, lycopene (Ly) reduced the contents of reactive oxygen species (ROS), β-galactosidase, and advanced glycosylation end products (AGEs), while increasing the contents of ATP and NAD+/NADH along with the mitochondrial membrane potential (MMP). Furthermore, the expression of Fibrillin-I and VEGF was increased in aged primary skin fibroblast cells (PRSFs). LC-MS non-targeted cell metabolomics demonstrated a mechanism by which (Ly) lycopene protects aging skin cells, and the KEGG analysis predicted the pathways involved. In vivo, aged rats exhibited signs of reduced capillary density and blood flow, skin aging, mitochondrial disorder, and insulin resistance. Following Ly intervention, these phenomena were reversed. Meanwhile, insulin pathway protein, VEGF, and SIRT1 protein expression data showed that lycopene might reverse insulin resistance and promote microvascular renewal to protect aging skin. In summary, all data demonstrated that Ly might reverse insulin resistance via SIRT1 during skin aging and promote microvascular neovascularization to protect aging skin.
Collapse
Affiliation(s)
- Jing Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, P. R. China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430000, Hubei, P. R. China.
| | - Xin Zeng
- Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430000, Hubei, P. R. China.
| | - Xiaolong Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, P. R. China.
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430000, Hubei, P. R. China.
| |
Collapse
|
8
|
Menyhárt Á, Varga DP, M Tóth O, Makra P, Bari F, Farkas E. Transient Hypoperfusion to Ischemic/Anoxic Spreading Depolarization is Related to Autoregulatory Failure in the Rat Cerebral Cortex. Neurocrit Care 2021; 37:112-122. [PMID: 34855119 PMCID: PMC9259535 DOI: 10.1007/s12028-021-01393-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
Background In ischemic stroke, cerebral autoregulation and neurovascular coupling may become impaired. The cerebral blood flow (CBF) response to spreading depolarization (SD) is governed by neurovascular coupling. SDs recur in the ischemic penumbra and reduce neuronal viability by the insufficiency of the CBF response. Autoregulatory failure and SD may coexist in acute brain injury. Here, we set out to explore the interplay between the impairment of cerebrovascular autoregulation, SD occurrence, and the evolution of the SD-coupled CBF response. Methods Incomplete global forebrain ischemia was created by bilateral common carotid artery occlusion in isoflurane-anesthetized rats, which induced ischemic SD (iSD). A subsequent SD was initiated 20–40 min later by transient anoxia SD (aSD), achieved by the withdrawal of oxygen from the anesthetic gas mixture for 4–5 min. SD occurrence was confirmed by the recording of direct current potential together with extracellular K+ concentration by intracortical microelectrodes. Changes in local CBF were acquired with laser Doppler flowmetry. Mean arterial blood pressure (MABP) was continuously measured via a catheter inserted into the left femoral artery. CBF and MABP were used to calculate an index of cerebrovascular autoregulation (rCBFx). In a representative imaging experiment, variation in transmembrane potential was visualized with a voltage-sensitive dye in the exposed parietal cortex, and CBF maps were generated with laser speckle contrast analysis. Results Ischemia induction and anoxia onset gave rise to iSD and aSD, respectively, albeit aSD occurred at a longer latency, and was superimposed on a gradual elevation of K+ concentration. iSD and aSD were accompanied by a transient drop of CBF (down to 11.9 ± 2.9 and 7.4 ± 3.6%, iSD and aSD), but distinctive features set the hypoperfusion transients apart. During iSD, rCBFx indicated intact autoregulation (rCBFx < 0.3). In contrast, aSD was superimposed on autoregulatory failure (rCBFx > 0.3) because CBF followed the decreasing MABP. CBF dropped 15–20 s after iSD, but the onset of hypoperfusion preceded aSD by almost 3 min. Taken together, the CBF response to iSD displayed typical features of spreading ischemia, whereas the transient CBF reduction with aSD appeared to be a passive decrease of CBF following the anoxia-related hypotension, leading to aSD. Conclusions We propose that the dysfunction of cerebrovascular autoregulation that occurs simultaneously with hypotension transients poses a substantial risk of SD occurrence and is not a consequence of SD. Under such circumstances, the evolving SD is not accompanied by any recognizable CBF response, which indicates a severely damaged neurovascular coupling.
Collapse
Affiliation(s)
- Ákos Menyhárt
- Department of Medical Physics and Informatics, Faculty of Science and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Cerebral Blood Flow and Metabolism Research Group, Hungarian Centre of Excellence for Molecular Medicine, University of Szeged, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Faculty of Science and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dániel Péter Varga
- Department of Medical Physics and Informatics, Faculty of Science and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Orsolya M Tóth
- Department of Medical Physics and Informatics, Faculty of Science and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Péter Makra
- Department of Medical Physics and Informatics, Faculty of Science and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Faculty of Science and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Cerebral Blood Flow and Metabolism Research Group, Hungarian Centre of Excellence for Molecular Medicine, University of Szeged, Szeged, Hungary.
- Department of Cell Biology and Molecular Medicine, Faculty of Science and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
| |
Collapse
|
9
|
Özkan E, Çetin-Taş Y, Şekerdağ E, Kızılırmak AB, Taş A, Yıldız E, Yapıcı-Eser H, Karahüseyinoğlu S, Zeybel M, Gürsoy-Özdemir Y. Blood-brain barrier leakage and perivascular collagen accumulation precede microvessel rarefaction and memory impairment in a chronic hypertension animal model. Metab Brain Dis 2021; 36:2553-2566. [PMID: 34118020 DOI: 10.1007/s11011-021-00767-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/06/2021] [Indexed: 01/07/2023]
Abstract
Hypertension (HT) is one of the main causes of vascular dementia, lead to cognitive decline. Here, we investigated the relationship between cerebral microvessels, pericytes, extracellular matrix (ECM) accumulation, blood-brain barrier (BBB) breakdown, and memory impairment at mid-life in a chronic hypertension animal model. Spontaneously hypertensive rats (SHRs) (n = 20) are chosen for the model and age matched Wistar rats (n = 16) as controls. Changes in brain microvasculature and in vitro experiments are shown with immunofluorescence studies and cognition with open field, novel object recognition, and Y maze tests. There was a significant reduction in pericyte coverage in SHRs (p = 0.021), while the quantitative parameters of the cerebral microvascular network were not different between groups. On the other hand, parenchymal albumin leakage, as a Blood-brain barrier (BBB) breakdown marker, was prominent in SHRs (p = 0.023). Extracellular matrix (ECM) components, collagen type 1, 3 and 4 were significantly increased (accumulated) around microvasculature in SHRs (p = 0.011, p = 0.013, p = 0.037, respectively). Furthermore, in vitro experiments demonstrated that human brain vascular pericytes but not astrocytes and endothelial cells secreted type I collagen upon TGFβ1 exposure pointing out a possible role of pericytes in increased collagen accumulation around cerebral microvasculature due to HT. Furthermore, valsartan treatment decreased the amount of collagen type 1 secreted by pericytes after TGFβ1 exposure. At the time of evaluation, SHRs did not demonstrate cognitive decline and memory impairments. Our results showed that chronic HT causes ECM accumulation and BBB leakage before leading to memory impairments and therefore, pericytes could be a novel target for preventing vascular dementia.
Collapse
Affiliation(s)
- Esra Özkan
- Koç University Research Center for Translational Medicine, Istanbul, Turkey.
- Koç University Hospital, Zeytinburnu, 34010, Istanbul, Turkey.
| | - Yağmur Çetin-Taş
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Emine Şekerdağ
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Ali B Kızılırmak
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Ali Taş
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Erdost Yıldız
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Hale Yapıcı-Eser
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey
| | - Serçin Karahüseyinoğlu
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
- Department of Histology and Embryology, School of Medicine, Koç University, Istanbul, Turkey
| | - Müjdat Zeybel
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Yasemin Gürsoy-Özdemir
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
10
|
Wang X, HuangFu C, Zhu X, Liu J, Gong X, Pan Q, Ma X. Exosomes and Exosomal MicroRNAs in Age-Associated Stroke. Curr Vasc Pharmacol 2021; 19:587-600. [PMID: 33563154 DOI: 10.2174/1570161119666210208202621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
Aging has been considered to be the most important non-modifiable risk factor for stroke and death. Changes in circulation factors in the systemic environment, cellular senescence and artery hypertension during human ageing have been investigated. Exosomes are nanosize membrane vesicles that can regulate target cell functions via delivering their carried bioactive molecules (e.g. protein, mRNA, and microRNAs). In the central nervous system, exosomes and exosomal microRNAs play a critical role in regulating neurovascular function, and are implicated in the initiation and progression of stroke. MicroRNAs are small non-coding RNAs that have been reported to play critical roles in various biological processes. Recently, evidence has shown that microRNAs are packaged into exosomes and can be secreted into the systemic and tissue environment. Circulating microRNAs participate in cellular senescence and contribute to age-associated stroke. Here, we provide an overview of current knowledge on exosomes and their carried microRNAs in the regulation of cellular and organismal ageing processes, demonstrating the potential role of exosomes and their carried microRNAs in age-associated stroke.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Changmei HuangFu
- Department of Geriatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xiudeng Zhu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Jiehong Liu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xinqin Gong
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Qunwen Pan
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xiaotang Ma
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| |
Collapse
|
11
|
Candelario-Jalil E, Paul S. Impact of aging and comorbidities on ischemic stroke outcomes in preclinical animal models: A translational perspective. Exp Neurol 2021; 335:113494. [PMID: 33035516 PMCID: PMC7874968 DOI: 10.1016/j.expneurol.2020.113494] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is a highly complex and devastating neurological disease. The sudden loss of blood flow to a brain region due to an ischemic insult leads to severe damage to that area resulting in the formation of an infarcted tissue, also known as the ischemic core. This is surrounded by the peri-infarct region or penumbra that denotes the functionally impaired but potentially salvageable tissue. Thus, the penumbral tissue is the main target for the development of neuroprotective strategies to minimize the extent of ischemic brain damage by timely therapeutic intervention. Given the limitations of reperfusion therapies with recombinant tissue plasminogen activator or mechanical thrombectomy, there is high enthusiasm to combine reperfusion therapy with neuroprotective strategies to further reduce the progression of ischemic brain injury. Till date, a large number of candidate neuroprotective drugs have been identified as potential therapies based on highly promising results from studies in rodent ischemic stroke models. However, none of these interventions have shown therapeutic benefits in stroke patients in clinical trials. In this review article, we discussed the urgent need to utilize preclinical models of ischemic stroke that more accurately mimic the clinical conditions in stroke patients by incorporating aged animals and animal stroke models with comorbidities. We also outlined the recent findings that highlight the significant differences in stroke outcome between young and aged animals, and how major comorbid conditions such as hypertension, diabetes, obesity and hyperlipidemia dramatically increase the vulnerability of the brain to ischemic damage that eventually results in worse functional outcomes. It is evident from these earlier studies that including animal models of aging and comorbidities during the early stages of drug development could facilitate the identification of neuroprotective strategies with high likelihood of success in stroke clinical trials.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
12
|
Abstract
Sleep maintains the function of the entire body through homeostasis. Chronic sleep deprivation (CSD) is a prime health concern in the modern world. Previous reports have shown that CSD has profound negative effects on brain vasculature at both the cellular and molecular levels, and that this is a major cause of cognitive dysfunction and early vascular ageing. However, correlations among sleep deprivation (SD), brain vascular changes and ageing have barely been looked into. This review attempts to correlate the alterations in the levels of major neurotransmitters (acetylcholine, adrenaline, GABA and glutamate) and signalling molecules (Sirt1, PGC1α, FOXO, P66shc, PARP1) in SD and changes in brain vasculature, cognitive dysfunction and early ageing. It also aims to connect SD-induced loss in the number of dendritic spines and their effects on alterations in synaptic plasticity, cognitive disabilities and early vascular ageing based on data available in scientific literature. To the best of our knowledge, this is the first article providing a pathophysiological basis to link SD to brain vascular ageing.
Collapse
|