1
|
Wang E, Jia Y, Cheng L, Mao C, Bao Y, Shen J, Zhang Y, Fan G. Convergent reductions in interhemispheric functional, structural and callosal connectivity in Parkinson's disease. Front Aging Neurosci 2025; 17:1512130. [PMID: 40018517 PMCID: PMC11865091 DOI: 10.3389/fnagi.2025.1512130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
Background Abnormal interhemispheric functional connectivity is frequently reported in Parkinson's disease (PD), but its structural basis remains unclear. This study aimed to investigate changes in interhemispheric functional, structural, and callosal connectivity, as well as their interrelationships, in PD patients. Methods The study included 57 PD patients and 50 healthy controls (HCs). Interhemispheric functional connectivity was evaluated using voxel mirrored homotopic connectivity (VMHC) derived from resting-state functional MRI, while structural connectivity was measured through homotopic cortical thickness covariance from T1-weighted MRI. The corpus callosum (CC), connecting bilateral regions with VMHC differences, was assessed using fractional anisotropy (FA) from diffusion MRI. Pearson's correlation was used to evaluate the interrelationships among imaging data and their clinical relevance. Results Compared to HCs, PD patients showed reduced VMHC and interhemispheric structural connectivity in similar brain regions, displaying a positive correlation trend between these measures. The affected regions encompassed the bilateral sensorimotor cortices (precentral gyrus, postcentral gyrus, and paracentral lobule) and posterior cortical areas, including the superior parietal lobule, supramarginal gyrus, precuneus, middle occipital gyrus, fusiform gyrus, as well as the superior and middle temporal gyri. FA in the CC, connecting regions with reduced VMHC, was also lower in PD patients. Additionally, interhemispheric structural, functional, and callosal connectivity reductions were, respectively, related to cognitive impairment, motor dysfunctions, and disease duration in PD. Conclusion The study identified convergent reductions in interhemispheric functional, structural and callosal connectivity in PD patients, emphasizing the strong link between structural and functional brain abnormalities. Our findings may provide new insights into the pathophysiology of PD.
Collapse
Affiliation(s)
- Erlei Wang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yujing Jia
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Luqi Cheng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, China
| | - Chengjie Mao
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiqing Bao
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junkang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuanchao Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- College of Health Solutions, Arizona State University, Tempe, AZ, United States
| | - Guohua Fan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Sun L, He S, Cheng B, Shen Y, Zhao W, Tu R, Zhang S. White Matter Microstructure Alteration in Patients with Drug-Induced Parkinsonism: A Diffusion Tensor Imaging Study with Tract-Based Spatial Statistics. J Integr Neurosci 2024; 23:202. [PMID: 39613471 DOI: 10.31083/j.jin2311202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 12/01/2024] Open
Abstract
INTRODUCTION This research aimed to investigate the pathophysiological mechanism of how drug-induced parkinsonism (DIP) affects the integrity of the white matter (WM) fiber microstructure as measured by magnetic resonance diffusion tensor image (DTI) fractional anisotropy (FA) and mean diffusivity (MD). METHODS We recruited 17 participants diagnosed with DIP, 20 Parkinson's disease (PD) patients, and 16 normal controls (NCs) with a similar age, gender, and years of education. Subsequently, all participants underwent DTI magnetic resonance imaging scanning. To analyze the data, we utilized the software packages Functional MRI of the Brain Centre (FMRIB) Diffusion Toolbox (FDT), developed by the FMRIB laboratory at Oxford University, and tract-based spatial statistics (TBSS). RESULTS The Argentina Hyposmia Rating Scale (AHRS) scores of patients in DIP group were markedly higher than those in PD patients group. Compared with the NC group, the FA values in the genu and body of the corpus callosum (CC), anterior limb of the right internal capsule, bilateral anterior corona radiata, bilateral superior corona radiata, right external capsule, and right superior fronto-occipital fasciculus (could be a part of the anterior internal capsule) were significantly decreased in the DIP group; however, no significant cluster was found in MD. CONCLUSIONS The present study provides novel insights into the alterations in WM microstructure among DIP patients, suggesting that these methodologies have the potential to aid in the early diagnosis and treatment of DIP.
Collapse
Affiliation(s)
- Ling Sun
- Department of Geriatrics, Nanchong Central Hospital, 637000 Nanchong, Sichuan, China
| | - Shijia He
- Department of Neurology, Meishan People's Hospital, 620010 Meishan, Sichuan, China
| | - Bo Cheng
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Yao Shen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Wenhao Zhao
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Rong Tu
- Department of Neurology, Nanchong Central Hospital, 637000 Nanchong, Sichuan, China
| | - Shushan Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| |
Collapse
|
3
|
Ren Q, Zhao S, Yu R, Xu Z, Liu S, Zhang B, Sun Q, Jiang Q, Zhao C, Meng X. Thalamic-limbic circuit dysfunction and white matter topological alteration in Parkinson's disease are correlated with gait disturbance. Front Aging Neurosci 2024; 16:1426754. [PMID: 39295640 PMCID: PMC11408845 DOI: 10.3389/fnagi.2024.1426754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/02/2024] [Indexed: 09/21/2024] Open
Abstract
Background Limbic structures have recently garnered increased attention in Parkinson's disease (PD) research. This study aims to explore changes at the whole-brain level in the structural network, specifically the white matter fibres connecting the thalamus and limbic system, and their correlation with the clinical characteristics of patients with PD. Methods Between December 2020 and November 2021, we prospectively enrolled 42 patients with PD and healthy controls at the movement disorder centre. All participants underwent diffusion tensor imaging (DTI), 3D T1-weighted imaging (3D-T1WI), and routine brain magnetic resonance imaging on a 3.0 T MR scanner. We employed the tract-based spatial statistical (TBSS) analytic approach, examined structural network properties, and conducted probabilistic fibre tractography to identify alterations in white matter pathways and the topological organisation associated with PD. Results In patients with PD, significant changes were observed in the fibrous tracts of the prefrontal lobe, corpus callosum, and thalamus. Notably, the fibrous tracts in the prefrontal lobe and corpus callosum showed a moderate negative correlation with the Freezing of Gait Questionnaire (FOG-Q) scores (r = -0.423, p = 0.011). The hippocampus and orbitofrontal gyrus exhibited more fibre bundle parameter changes than other limbic structures. The mean streamline length between the thalamus and the orbitofrontal gyrus demonstrated a moderate negative correlation with Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III (r = -0.435, p = 0.006). Topological parameters, including characteristic path length (L p), global efficiency (E g), normalised shortest path length (λ) and nodal local efficiency (N le), correlated moderately with the MDS-UPDRS, HAMA, MoCA, PDQ-39, and FOG-Q, respectively. Conclusion DTI is a valuable tool for detecting changes in water molecule dispersion and the topological structure of the brain in patients with PD. The thalamus may play a significant role in the gait abnormalities observed in PD.
Collapse
Affiliation(s)
- Qingguo Ren
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Medical Imaging and Engineering Intersection Key Laboratory of Qingdao, Qingdao, China
| | - Shuai Zhao
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Rong Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziliang Xu
- The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Shuangwu Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Zhang
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Qicai Sun
- Department of Radiology, Xuecheng District People's Hospital, Zaozhuang, China
| | - Qingjun Jiang
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Cuiping Zhao
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiangshui Meng
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Medical Imaging and Engineering Intersection Key Laboratory of Qingdao, Qingdao, China
| |
Collapse
|
4
|
Ellis EG, Meyer GM, Kaasinen V, Corp DT, Pavese N, Reich MM, Joutsa J. Multimodal neuroimaging to characterize symptom-specific networks in movement disorders. NPJ Parkinsons Dis 2024; 10:154. [PMID: 39143114 PMCID: PMC11324766 DOI: 10.1038/s41531-024-00774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Movement disorders, such as Parkinson's disease, essential tremor, and dystonia, are characterized by their predominant motor symptoms, yet diseases causing abnormal movement also encompass several other symptoms, including non-motor symptoms. Here we review recent advances from studies of brain lesions, neuroimaging, and neuromodulation that provide converging evidence on symptom-specific brain networks in movement disorders. Although movement disorders have traditionally been conceptualized as disorders of the basal ganglia, cumulative data from brain lesions causing parkinsonism, tremor and dystonia have now demonstrated that this view is incomplete. Several recent studies have shown that lesions causing a given movement disorder occur in heterogeneous brain locations, but disrupt common brain networks, which appear to be specific to each motor phenotype. In addition, findings from structural and functional neuroimaging in movement disorders have demonstrated that brain abnormalities extend far beyond the brain networks associated with the motor symptoms. In fact, neuroimaging findings in each movement disorder are strongly influenced by the constellation of patients' symptoms that also seem to map to specific networks rather than individual anatomical structures or single neurotransmitters. Finally, observations from deep brain stimulation have demonstrated that clinical changes, including both symptom improvement and side effects, are dependent on the modulation of large-scale networks instead of purely local effects of the neuromodulation. Combined, this multimodal evidence suggests that symptoms in movement disorders arise from distinct brain networks, encouraging multimodal imaging studies to better characterize the underlying symptom-specific mechanisms and individually tailor treatment approaches.
Collapse
Affiliation(s)
- Elizabeth G Ellis
- Turku Brain and Mind Center, University of Turku, Turku, Finland.
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.
| | - Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Daniel T Corp
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Nicola Pavese
- Institute of Clinical Medicine, Department of Nuclear Medicine & PET, Aarhus University, Aarhus, Denmark
- Translational and Clinical Research Institute, Newcastle University, Upon Tyn, UK
| | - Martin M Reich
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Juho Joutsa
- Turku Brain and Mind Center, University of Turku, Turku, Finland.
- Clinical Neurosciences, University of Turku, Turku, Finland.
- Neurocenter, Turku University Hospital, Turku, Finland.
| |
Collapse
|
5
|
Owens-Walton C, Nir TM, Al-Bachari S, Ambrogi S, Anderson TJ, Aventurato ÍK, Cendes F, Chen YL, Ciullo V, Cook P, Dalrymple-Alford JC, Dirkx MF, Druzgal J, Emsley HCA, Guimarães R, Haroon HA, Helmich RC, Hu MT, Johansson ME, Kim HB, Klein JC, Laansma M, Lawrence KE, Lochner C, Mackay C, McMillan CT, Melzer TR, Nabulsi L, Newman B, Opriessnig P, Parkes LM, Pellicano C, Piras F, Piras F, Pirpamer L, Pitcher TL, Poston KL, Roos A, Silva LS, Schmidt R, Schwingenschuh P, Shahid-Besanti M, Spalletta G, Stein DJ, Thomopoulos SI, Tosun D, Tsai CC, van den Heuvel OA, van Heese E, Vecchio D, Villalón-Reina JE, Vriend C, Wang JJ, Wu YR, Yasuda CL, Thompson PM, Jahanshad N, van der Werf Y. A worldwide study of white matter microstructural alterations in people living with Parkinson's disease. NPJ Parkinsons Dis 2024; 10:151. [PMID: 39128907 PMCID: PMC11317500 DOI: 10.1038/s41531-024-00758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
The progression of Parkinson's disease (PD) is associated with microstructural alterations in neural pathways, contributing to both motor and cognitive decline. However, conflicting findings have emerged due to the use of heterogeneous methods in small studies. Here we performed a large diffusion MRI study in PD, integrating data from 17 cohorts worldwide, to identify stage-specific profiles of white matter differences. Diffusion-weighted MRI data from 1654 participants diagnosed with PD (age: 20-89 years; 33% female) and 885 controls (age: 19-84 years; 47% female) were analyzed using the ENIGMA-DTI protocol to evaluate white matter microstructure. Skeletonized maps of fractional anisotropy (FA) and mean diffusivity (MD) were compared across Hoehn and Yahr (HY) disease groups and controls to reveal the profile of white matter alterations at different stages. We found an enhanced, more widespread pattern of microstructural alterations with each stage of PD, with eventually lower FA and higher MD in almost all regions of interest: Cohen's d effect sizes reached d = -1.01 for FA differences in the fornix at PD HY Stage 4/5. The early PD signature in HY stage 1 included higher FA and lower MD across the entire white matter skeleton, in a direction opposite to that typical of other neurodegenerative diseases. FA and MD were associated with motor and non-motor clinical dysfunction. While overridden by degenerative changes in the later stages of PD, early PD is associated with paradoxically higher FA and lower MD in PD, consistent with early compensatory changes associated with the disorder.
Collapse
Grants
- R01 AG058854 NIA NIH HHS
- P41 EB015922 NIBIB NIH HHS
- R01NS107513 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01 MH117601 NIMH NIH HHS
- R01 NS107513 NINDS NIH HHS
- U19 AG062418 NIA NIH HHS
- F32 MH122057 NIMH NIH HHS
- R01 AG059874 NIA NIH HHS
- U.S. Alzheimer’s Association (AARG-23-1149996)
- Health Research Council of New Zealand (20/538; 21/165)
- São Paulo Research Foundation FAPESP-BRAINN Grants# 2013-07559-3 / FAPESP #2022-1178-4
- São Paulo Research Foundation FAPESP-BRAINN Grant # 2013–07559-3.
- Health Research Council of New Zealand (20/538); Marsden Fund New Zealand (UOC2105); Neurological Foundation of New Zealand (2232 PRG); Research and Education Trust Pacific Radiology (MRIJDA).
- Grant from ParkinsonNL (P2023-14); Honoraria from Movement Disorders Society Quebec.
- NINDS R01NS107513
- Engineering and Physical Sciences Research Council (EPSRC) UK
- Parkinson's UK, Cure Parkinsons Trust, Oxford Biomedical Research Centre, GSK-Oxford IMCM.
- JK is supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), and the NIHR Oxford Health Clinical Research Facility. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.
- NIMH 32MH122057
- U19 AG062418
- Health Research Council of New Zealand (20/538); Neurological Foundation of New Zealand (2232 PRG); Research and Education Trust Pacific Radiology (MRIJDA).
- EPSRC UK, MRC UK, GE medical systems, Academy of Medical Sciences UK
- Italian Ministry of Health, grant number RF-2019-12370182
- Health Research Council of New Zealand (21/165)
- Personal fees from Bial, AbbVie and Boston Scientific.
- NIH/NIA
- São Paulo Research Foundation FAPESP-BRAINN Grant # 2013–07559-3; CNPQ (#315953/2021-7) National Council for Scientific and Technological Development
- U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01AG059874, R01MH117601, R01NS107513, R01AG058854, P41EB015922
Collapse
Affiliation(s)
- Conor Owens-Walton
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA.
| | - Talia M Nir
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | | | - Sonia Ambrogi
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Tim J Anderson
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Neurology Department, Te Whatu Ora-Health New Zealand Waitaha Canterbury, Christchurch, New Zealand
| | - Ítalo Karmann Aventurato
- Department of Neurology, University of Campinas-UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Fernando Cendes
- Department of Neurology, University of Campinas-UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Yao-Liang Chen
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung, Taiwan, ROC
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan, ROC
| | - Valentina Ciullo
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Phil Cook
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John C Dalrymple-Alford
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Te Kura Mahi ā- Hirikapo | School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Michiel F Dirkx
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Hedley C A Emsley
- Lancaster Medical School, Lancaster University, Lancaster, UK
- Department of Neurology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Rachel Guimarães
- Department of Neurology, University of Campinas-UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Hamied A Haroon
- Division of Psychology, Communication & Human Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Rick C Helmich
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Michele T Hu
- Oxford Parkinson's Disease Centre, Nuffield, Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
| | - Martin E Johansson
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Ho Bin Kim
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Johannes C Klein
- Oxford Parkinson's Disease Centre, Nuffield, Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
| | - Max Laansma
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Katherine E Lawrence
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Clare Mackay
- Oxford Parkinson's Disease Centre, Nuffield, Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
| | - Corey T McMillan
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Tracy R Melzer
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Te Kura Mahi ā- Hirikapo | School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Leila Nabulsi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Ben Newman
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Peter Opriessnig
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Laura M Parkes
- Division of Psychology, Communication & Human Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Clelia Pellicano
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Lukas Pirpamer
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Toni L Pitcher
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Kathleen L Poston
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Annerine Roos
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Lucas Scárdua Silva
- Department of Neurology, University of Campinas-UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Petra Schwingenschuh
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Marian Shahid-Besanti
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | | | - Dan J Stein
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Chih-Chien Tsai
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan, ROC
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Odile A van den Heuvel
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, Department of Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eva van Heese
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Julio E Villalón-Reina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Chris Vriend
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
- Amsterdam UMC, Department of Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging program, Amsterdam, The Netherlands
| | - Jiun-Jie Wang
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung, Taiwan, ROC
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan, ROC
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan City, Taiwan, ROC
- Department of Chemical Engineering, Ming-Chi University of Technology, New Taipei City, Taiwan, ROC
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan, ROC
- Department of Neurology, College of Medicine, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Clarissa Lin Yasuda
- Department of Neurology, University of Campinas-UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Ysbrand van der Werf
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Haliasos N, Giakoumettis D, Gnanaratnasingham P, Low HL, Misbahuddin A, Zikos P, Sakkalis V, Cleo S, Vakis A, Bisdas S. Personalizing Deep Brain Stimulation Therapy for Parkinson's Disease With Whole-Brain MRI Radiomics and Machine Learning. Cureus 2024; 16:e59915. [PMID: 38854362 PMCID: PMC11161197 DOI: 10.7759/cureus.59915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Background Deep brain stimulation (DBS) is a well-recognised treatment for advanced Parkinson's disease (PD) patients. Structural brain alterations of the white matter can correlate with disease progression and act as a biomarker for DBS therapy outcomes. This study aims to develop a machine learning-driven predictive model for DBS patient selection using whole-brain white matter radiomics and common clinical variables. Methodology A total of 120 PD patients underwent DBS of the subthalamic nucleus. Their therapy effect was assessed at the one-year follow-up with the Unified Parkinson's Disease Rating Scale-part III (UPDRSIII) motor component. Radiomics analysis of whole-brain white matter was performed with PyRadiomics. The following machine learning methods were used: logistic regression (LR), support vector machine, naïve Bayes, K-nearest neighbours, and random forest (RF) to allow prediction of clinically meaningful UPRDSIII motor response before and after. Clinical variables were also added to the model to improve accuracy. Results The RF model showed the best performance on the final whole dataset with an area under the curve (AUC) of 0.99, accuracy of 0.95, sensitivity of 0.93, and specificity of 0.97. At the same time, the LR model showed an AUC of 0.93, accuracy of 0.88, sensitivity of 0.84, and specificity of 0.91. Conclusions Machine learning models can be used in clinical decision support tools which can deliver true personalised therapy recommendations for PD patients. Clinicians and engineers should choose between best-performing, less interpretable models vs. most interpretable, lesser-performing models. Larger clinical trials would allow to build trust among clinicians and patients to widely use these AI tools in the future.
Collapse
Affiliation(s)
- Nikolaos Haliasos
- Neurosurgery, Queen's Hospital, Romford, GBR
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University, London, GBR
- Health and Medical Sciences, The Alan Turing Institute for Data Science and Artificial Intelligence, London, GBR
| | | | | | | | | | | | - Vangelis Sakkalis
- Institute of Computer Science, Foundation for Research and Technology, Heraklion, GRC
| | - Spanaki Cleo
- Neurology, School of Medicine, University of Crete, Heraklion, GRC
| | - Antonios Vakis
- Neurosurgery, School of Medicine, University of Crete, Heraklion, GRC
| | | |
Collapse
|
7
|
Zhang Q, Wang H, Shi Y, Li W. White matter biomarker for predicting de novo Parkinson's disease using tract-based spatial statistics: a machine learning-based model. Quant Imaging Med Surg 2024; 14:3086-3106. [PMID: 38617147 PMCID: PMC11007501 DOI: 10.21037/qims-23-1478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
Background Parkinson's disease (PD) is an irreversible, chronic degenerative disease of the central nervous system, potentially associated with cerebral white matter (WM) lesions. Investigating the microstructural alterations within the WM in the early stages of PD can help to identify the disease early and enable intervention to reduce the associated serious threats to health. Methods This study selected 227 cases from the Parkinson's Progression Markers Initiative (PPMI) database, including 152 de novo PD patients and 75 normal controls (NC). Whole-brain voxel analysis of the WM was performed using the tract-based spatial statistics (TBSS) method. The WM regions with statistically significant differences (P<0.05) between the PD and NC groups were identified and used as masks. The mask was applied to each case's fractional anisotropy (FA) image to extract voxel values as feature vectors. Geometric dimensionality reduction was then applied to eliminate redundant values in the feature vectors. Subsequently, the cases were randomly divided into a training group (158 cases, including 103 PD patients and 55 NC) and a test group (69 cases, including 49 PD patients and 20 NC). The least absolute shrinkage and selection operator (LASSO) regression algorithm was employed to extract the minimal set of relevant features, then the random forest (RF) algorithm was utilized for classification using 5-fold cross validation. The resulting model was further integrated with clinical factors to create a comprehensive prediction model. Results In comparison to the NC group, the FA values in PD patients exhibited a statistically significant decrease (P<0.05), indicating the presence of widespread WM lesions across multiple brain regions. Moreover, the PD prediction model, constructed based on these WM lesion regions, yielded prediction accuracy (ACC) and area under the receiver operating characteristic (ROC) curve (AUC) values of 0.778 and 0.865 in the validation set, and 0.783 and 0.831 in the test set, respectively. Furthermore, the performance of the integrated model showed some improvement, with ACC and AUC values in the test set reaching 0.804 and 0.844, respectively. Conclusions The quantitative calculation of WM lesion area on FA images using the TBSS method can serve as a neuroimaging biomarker for diagnosing and predicting early PD at the individual level. When integrated with clinical variables, the predictive performance improves.
Collapse
Affiliation(s)
- Qi Zhang
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Haoran Wang
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Yonghong Shi
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Wensheng Li
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Science, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Welton T, Teo TWJ, Chan LL, Tan EK, Tan LCS. Parkinson's Disease Risk Variant rs9638616 is Non-Specifically Associated with Altered Brain Structure and Function. JOURNAL OF PARKINSON'S DISEASE 2024; 14:713-724. [PMID: 38640170 PMCID: PMC11191537 DOI: 10.3233/jpd-230455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/21/2024]
Abstract
Background A genome-wide association study (GWAS) variant associated with Parkinson's disease (PD) risk in Asians, rs9638616, was recently reported, and maps to WBSCR17/GALNT17, which is involved in synaptic transmission and neurite development. Objective To test the association of the rs9638616 T allele with imaging-derived measures of brain microstructure and function. Methods We analyzed 3-Tesla MRI and genotyping data from 116 early PD patients (aged 66.8±9.0 years; 39% female; disease duration 1.25±0.71 years) and 57 controls (aged 68.7±7.4 years; 54% female), of Chinese ethnicity. We performed voxelwise analyses for imaging-genetic association of rs9638616 T allele with white matter tract fractional anisotropy (FA), grey matter volume and resting-state network functional connectivity. Results The rs9638616 T allele was associated with widespread lower white matter FA (t = -1.75, p = 0.042) and lower functional connectivity of the supplementary motor area (SMA) (t = -5.05, p = 0.001), in both PD and control groups. Interaction analysis comparing the association of rs9638616 and FA between PD and controls was non-significant. These imaging-derived phenotypes mediated the association of rs9638616 to digit span (indirect effect: β= -0.21 [-0.42,-0.05], p = 0.031) and motor severity (indirect effect: β= 0.15 [0.04,0.26], p = 0.045). Conclusions We have shown that a novel GWAS variant which is biologically linked to synaptic transmission is associated with white matter tract and functional connectivity dysfunction in the SMA, supported by changes in clinical motor scores. This provides pathophysiologic clues linking rs9638616 to PD risk and might contribute to future risk stratification models.
Collapse
Affiliation(s)
- Thomas Welton
- National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
| | | | - Ling Ling Chan
- National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| | - Eng-King Tan
- National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
- Department of Neurology, Singapore General Hospital, Singapore
| | - Louis Chew Seng Tan
- National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
| |
Collapse
|
9
|
Li L, Yang W, Wan Y, Shen H, Wang T, Ping L, Liu C, Chen M, Yu H, Jin S, Cheng Y, Xu X, Zhou C. White matter alterations in mild cognitive impairment revealed by meta-analysis of diffusion tensor imaging using tract-based spatial statistics. Brain Imaging Behav 2023; 17:639-651. [PMID: 37656372 DOI: 10.1007/s11682-023-00791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
The neuropathological mechanism of mild cognitive impairment (MCI) remains unclarified. Diffusion tensor imaging (DTI) studies revealed white matter (WM) microarchitecture alterations in MCI, but consistent findings and conclusions have not yet been drawn. The present coordinate-based meta-analysis (CBMA) of tract-based spatial statistics (TBSS) studies aimed to identify the most prominent and robust WM abnormalities in patients with MCI. A systematic search of relevant studies was conducted through January 2022 to identify TBSS studies comparing fractional anisotropy (FA) between MCI patients and healthy controls (HC). We used the seed-based d mapping (SDM) software to achieve the CBMA and analyze regional FA alterations in MCI. Meta-regression analysis was subsequently applied to explore the potential associations between clinical variables and FA changes. MCI patients demonstrated significantly decreased FA in widely distributed areas in the corpus callosum (CC), including the genu, body, and splenium of the CC, as well as one cluster in the left striatum. FA in the body of the CC and in three clusters in the splenium of the CC was negatively associated with the mean age. Additionally, FA in the genu of the CC and in three clusters in the splenium of the CC had negative correlations with the MMSE scores. Disrupted integrities of the CC and left striatum might play vital roles in the process of cognitive decline. These findings enhanced our understanding of the neural mechanism underlying WM neurodegeneration in MCI and provided perspectives for the early detection and intervention of dementia.Registration number: CRD42022235716.
Collapse
Affiliation(s)
- Longfei Li
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Wei Yang
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Yu Wan
- School of Mental Health, Jining Medical University, Jining, China
| | - Hailong Shen
- School of Mental Health, Jining Medical University, Jining, China
| | - Ting Wang
- Outpatient Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Chuanxin Liu
- School of Mental Health, Jining Medical University, Jining, China
| | - Min Chen
- School of Mental Health, Jining Medical University, Jining, China
| | - Hao Yu
- School of Mental Health, Jining Medical University, Jining, China
| | - Shushu Jin
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cong Zhou
- School of Mental Health, Jining Medical University, Jining, China.
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
10
|
Andica C, Kamagata K, Uchida W, Saito Y, Takabayashi K, Hagiwara A, Takeshige-Amano H, Hatano T, Hattori N, Aoki S. Fiber-Specific White Matter Alterations in Parkinson's Disease Patients with GBA Gene Mutations. Mov Disord 2023; 38:2019-2030. [PMID: 37608502 DOI: 10.1002/mds.29578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Patients with Parkinson's disease (PD) carrying GBA gene mutations (GBA-PD) have a more aggressive disease course than those with idiopathic PD (iPD). OBJECTIVE The objective of this study was to investigate fiber-specific white matter (WM) differences in nonmedicated patients with early-stage GBA-PD and iPD using fixel-based analysis, a novel technique to assess tract-specific WM microstructural and macrostructural features comprehensively. METHODS Fixel-based metrics, including microstructural fiber density (FD), macrostructural fiber-bundle cross section (FC), and a combination of FD and FC (FDC), were compared among 30 healthy control subjects, 16 patients with GBA-PD, and 35 patients with iPD. Associations between FDC and clinical evaluations were also explored using multiple linear regression analyses. RESULTS Patients with GBA-PD showed significantly lower FD in the fornix and superior longitudinal fasciculus than healthy control subjects, and lower FC in the corticospinal tract (CST) and lower FDC in the CST, middle cerebellar peduncle, and striatal-thalamo-cortical pathways than patients with iPD. Contrarily, patients with iPD showed significantly higher FC and FDC in the CST and striatal-thalamo-cortical pathways than healthy control subjects. In addition, lower FDC in patients with GBA-PD was associated with reduced glucocerebrosidase enzyme activity, lower cerebrospinal fluid total α-synuclein levels, lower Montreal Cognitive Assessment scores, lower striatal binding ratio, and higher Unified Parkinson's Disease Rating Scale Part III scores. CONCLUSIONS We report reduced fiber-specific WM density and bundle cross-sectional size in patients with GBA-PD, suggesting neurodegeneration linked to glucocerebrosidase deficiency, α-synuclein accumulation, and poorer cognition and motor functions. Conversely, patients with iPD showed increased fiber bundle size, likely because of WM reorganization. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Grants
- Grant-in-Aid for Special Research in Subsidies for ordinary expenses of private schools from The Promotion and Mutual Aid Corporation for Private Schools of Japan
- JP21wm0425006 Japan Agency for Medical Research and Development
- 23H02865 Japan Society for the Promotion of Science
- 23K14927 Japan Society for the Promotion of Science
- PPMI - a public-private partnership - is funded by the Michael J. Fox Foundation for Parkinson's Research funding partners 4D Pharma, Abbvie, Acurex Therapeutics, Allergan, Amathus Therapeutics, ASAP, Avid Radiopharmaceuticals, Bial Biotech, Biogen, BioLegend, Bristol-Myers Squibb, Calico, Celgene, Dacapo Brain Science, Denali, The Edmond J. Safra Foundation, GE Healthcare, Genentech, GlaxoSmithKline, Golub Capital, Handl Therapeutics, Insitro, Janssen Neuroscience, Lilly, Lundbeck, Merck, M
- JP18dm0307004 The Brain/MINDS Beyond program of the Japan Agency for Medical Research and Development
- JP19dm0307101 The Brain/MINDS Beyond program of the Japan Agency for Medical Research and Development
- The Juntendo Research Branding Project
- The Project for Training Experts in Statistical Sciences
Collapse
Affiliation(s)
- Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Taku Hatano
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| |
Collapse
|
11
|
Du B, Zhang Y, Bi X. Editorial: Neuroinflammation and affective/cognitive impairment: The role of white matter and glial cells. Front Aging Neurosci 2023; 14:1115180. [PMID: 36688171 PMCID: PMC9850151 DOI: 10.3389/fnagi.2022.1115180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Affiliation(s)
- Bingying Du
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xiaoying Bi
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China,*Correspondence: Xiaoying Bi ✉
| |
Collapse
|
12
|
Gray Matter Abnormalities in Patients with Complex Regional Pain Syndrome: A Systematic Review and Meta-Analysis of Voxel-Based Morphometry Studies. Brain Sci 2022; 12:brainsci12081115. [PMID: 36009176 PMCID: PMC9405829 DOI: 10.3390/brainsci12081115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Current findings on brain structural alterations in complex regional pain syndrome (CRPS) are heterogenous and controversial. This study aimed to perform a systematic review and meta-analysis to explore the significant gray matter volume (GMV) abnormalities between patients with CRPS and healthy controls (HCs). A systematic search of the PubMed, Web of Science, and MEDLINE databases was performed, updated through 27 January 2022. A total of five studies (93 CRPS patients and 106 HCs) were included. Peak coordinates and effect sizes were extracted and meta-analyzed by anisotropic effect size-signed differential mapping (AES-SDM). Heterogeneity, sensitivity, and publication bias of the main results were checked by the Q test, jackknife analysis, and the Egger test, respectively. Meta-regression analysis was performed to explore the potential impact of risk factors on GMV alterations in patients with CRPS. The main analysis exhibited that patients with CRPS had increased GMV in the left medial superior frontal gyrus (SFGmedial.L), left striatum, and an undefined area (2, 0, -8) that may be in hypothalamus, as well as decreased GMV in the corpus callosum (CC) (extending to right supplementary motor area (SMA.R), right median cingulate/paracingulate gyri (MCC.R)), and an undefined area (extending to the right caudate nucleus (CAU.R), and right thalamus (THA.R)). Meta-regression analysis showed a negative relationship between increased GMV in the SFGmedial.L and disease duration, and the percentage of female patients with CRPS. Brain structure abnormalities in the sensorimotor regions (e.g., SFGmedial.L, SMA.R, CAU.R, MCC.R, and THA.R) may be susceptible in patients with CRPS. Additionally, sex differences and disease duration may have a negative effect on the increased GMV in SFGmedial.L.
Collapse
|
13
|
Gray and white matter abnormality in patients with T2DM-related cognitive dysfunction: a systemic review and meta-analysis. Nutr Diabetes 2022; 12:39. [PMID: 35970833 PMCID: PMC9378704 DOI: 10.1038/s41387-022-00214-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 12/03/2022] Open
Abstract
Aims/hypothesis Brain structure abnormality in patients with type 2 diabetes mellitus (T2DM)-related cognitive dysfunction (T2DM-CD) has been reported for decades in magnetic resonance imaging (MRI) studies. However, the reliable results were still unclear. This study aimed to make a systemic review and meta-analysis to find the significant and consistent gray matter (GM) and white matter (WM) alterations in patients with T2DM-CD by comparing with the healthy controls (HCs). Methods Published studies were systemically searched from PubMed, MEDLINE, Cochrane Library and Web of Science databases updated to November 14, 2021. Studies reporting abnormal GM or WM between patients with T2DM-CD and HCs were selected, and their significant peak coordinates (x, y, z) and effect sizes (z-score or t-value) were extracted to perform a voxel-based meta-analysis by anisotropic effect size-signed differential mapping (AES-SDM) 5.15 software. Results Total 15 studies and 16 datasets (1550 participants) from 7531 results were involved in this study. Compared to HCs, patients with T2DM-CD showed significant and consistent decreased GM in right superior frontal gyrus, medial orbital (PFCventmed. R, BA 11), left superior temporal gyrus (STG. L, BA 48), and right calcarine fissure / surrounding cortex (CAL. R, BA 17), as well as decreased fractional anisotropy (FA) in right inferior network, inferior fronto-occipital fasciculus (IFOF. R), right inferior network, longitudinal fasciculus (ILF. R), and undefined area (32, −60, −42) of cerebellum. Meta-regression showed the positive relationship between decreased GM in PFCventmed.R and MoCA score, the positive relationship between decreased GM in STG.L and BMI, as well as the positive relationship between the decreased FA in IFOF.R and age or BMI. Conclusions/interpretation T2DM impairs the cognitive function by affecting the specific brain structures. GM atrophy in PFCventmed. R (BA 11), STG. L (BA 48), and CAL. R (BA 17), as well as WM injury in IFOF. R, ILF. R, and undefined area (32, −60, −42) of cerebellum. And those brain regions may be valuable targets for future researches. Age, BMI, and MoCA score have a potential influence on the altered GM or WM in T2DM-CD.
Collapse
|
14
|
Yu J, Chen L, Cai G, Wang Y, Chen X, Hong W, Ye Q. Evaluating white matter alterations in Parkinson's disease-related parkin S/N167 mutation carriers using tract-based spatial statistics. Quant Imaging Med Surg 2022; 12:4272-4285. [PMID: 35919057 PMCID: PMC9338378 DOI: 10.21037/qims-21-1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
Abstract
Background Genetic susceptibility plays an important role in the pathogenesis of Parkinson’s disease (PD). parkin S/N167 mutations may increase the risk of PD and affect white matter fibers in the brain. This cross-sectional study explored the effects of gene polymorphisms on white matter fiber damage in PD. Methods In all, 54 cases were enrolled in the study, including PD patients carrying parkin gene S/N167 mutations (G/A), PD patients without gene S/N167 mutations (G/G), and healthy controls (HC). The whole-brain white matter fiber skeleton was analyzed using the tract-based spatial statistics (TBSS) method. Two-way analysis of variance (ANOVA) and post hoc tests were used for data analyses. Results Two classification methods were used; one was based on disease classification, with 26 patients in the PD group (n=12 G/G, n=14 G/A) and 28 in the HC group (n=15 G/G, n=13 G/A), and the other was based on genetic classification, with 27 patients in the G/G group and 27 in the G/A group. In the G/A group, there was a wide range of significant changes in fractional anisotropy (FA), radial diffusivity (RD), and mean diffusivity (MD) values (P<0.05). There was also a significant decrease in FA in the PD-G/A group compared with the PD-G/G and HC-G/A groups (P<0.05). Conclusions There were more extensive brain white matter fiber damage and changes in PD patients; the G/A polymorphism may cause more extensive brain white matter damage.
Collapse
Affiliation(s)
- Jinqiu Yu
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Neurology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, China.,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China.,Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Lina Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China.,Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Guoen Cai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China.,Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Yingqing Wang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China.,Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China.,Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Weimin Hong
- Department of Neurology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, China
| | - Qinyong Ye
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China.,Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
15
|
Joza S, Camicioli R, Martin WRW, Wieler M, Gee M, Ba F. Pedunculopontine Nucleus Dysconnectivity Correlates With Gait Impairment in Parkinson’s Disease: An Exploratory Study. Front Aging Neurosci 2022; 14:874692. [PMID: 35875799 PMCID: PMC9304714 DOI: 10.3389/fnagi.2022.874692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Background Gait impairment is a debilitating and progressive feature of Parkinson’s disease (PD). Increasing evidence suggests that gait control is partly mediated by cholinergic signaling from the pedunculopontine nucleus (PPN). Objective We investigated whether PPN structural connectivity correlated with quantitative gait measures in PD. Methods Twenty PD patients and 15 controls underwent diffusion tensor imaging to quantify structural connectivity of the PPN. Whole brain analysis using tract-based spatial statistics and probabilistic tractography were performed using the PPN as a seed region of interest for cortical and subcortical target structures. Gait metrics were recorded in subjects’ medication ON and OFF states, and were used to determine if specific features of gait dysfunction in PD were related to PPN structural connectivity. Results Tract-based spatial statistics revealed reduced structural connectivity involving the corpus callosum and right superior corona radiata, but did not correlate with gait measures. Abnormalities in PPN structural connectivity in PD were lateralized to the right hemisphere, with pathways involving the right caudate nucleus, amygdala, pre-supplementary motor area, and primary somatosensory cortex. Altered connectivity of the right PPN-caudate nucleus was associated with worsened cadence, stride time, and velocity while in the ON state; altered connectivity of the right PPN-amygdala was associated with reduced stride length in the OFF state. Conclusion Our exploratory analysis detects a potential correlation between gait dysfunction in PD and a characteristic pattern of connectivity deficits in the PPN network involving the right caudate nucleus and amygdala, which may be investigated in future larger studies.
Collapse
Affiliation(s)
- Stephen Joza
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Richard Camicioli
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Marguerite Wieler
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Myrlene Gee
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Fang Ba
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Fang Ba,
| |
Collapse
|
16
|
Chen A, Deng Y, Zuo X, Zhong S. Alteration in Asymmetry of White Matter Network of Parkinson's Disease. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8493729. [PMID: 35873665 PMCID: PMC9273463 DOI: 10.1155/2022/8493729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is manifest clinically by an asymmetrical presentation of motor dysfunction. A large number of previous neuroimaging research studies have stated the alteration in the hemispheric asymmetry of morphological features in PD disease. Diffusion Magnetic Resonance Imaging (MRI), which is noninvasive, has been widely used to quantify the white matter network in the human brain of both healthy subjects and patients. Besides, graph theory analysis is widely used to quantify the topological architecture of the human brain network. Lately, researchers have discovered that the topological architecture of the white matter network significantly differs in PD compared with healthy controls (HC). Nevertheless, the asymmetry of the topological architecture of the white matter network for PD patients remains unclear. To clarify this, the diffusion-weighted images and tractography technique were used to reconstruct the hemispherical white matter networks for 22 bilateral PD patients and 18 HC subjects. Network-based statistical analysis and graph theory analysis approaches were employed to estimate the asymmetry at both the connectivity level and the hemispheric topological level for PD patients. We found that the PD group showed atypically right-higher-than-left asymmetry in hemispheric brain global and local efficiencies. The detected right-higher-than-left asymmetry was driven by the atypically topological changes in the left hemispheric brain in the PD group. Findings from these studies might provide new insights into the asymmetric features of hemispheric disconnectivity and emphasize that the topological asymmetry of the hemispheric brain could be used as a biomarker to identify PD individuals.
Collapse
Affiliation(s)
- Aihong Chen
- Department of Emergency Medicine, Hanyang Hospital Affiliated to Wuhan University of Science, Wuhan, Hubei 430051, China
| | - Yue Deng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430051, China
| | - Xiaobing Zuo
- Department of Emergency Medicine, Hanyang Hospital Affiliated to Wuhan University of Science, Wuhan, Hubei 430051, China
| | - Suting Zhong
- Department of Emergency Medicine, Hanyang Hospital Affiliated to Wuhan University of Science, Wuhan, Hubei 430051, China
| |
Collapse
|
17
|
Pamphlett R, Bishop DP. Mercury is present in neurons and oligodendrocytes in regions of the brain affected by Parkinson's disease and co-localises with Lewy bodies. PLoS One 2022; 17:e0262464. [PMID: 35015796 PMCID: PMC8752015 DOI: 10.1371/journal.pone.0262464] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Environmental toxicants are suspected to play a part in the pathogenesis of idiopathic Parkinson's disease (PD) and may underlie its increasing incidence. Mercury exposure in humans is common and is increasing due to accelerating levels of atmospheric mercury, and mercury damages cells via oxidative stress, cell membrane damage, and autoimmunity, mechanisms suspected in the pathogenesis of PD. We therefore compared the cellular distribution of mercury in the tissues of people with and without PD who had evidence of previous mercury exposure by mercury being present in their locus ceruleus neurons. MATERIALS AND METHODS Paraffin sections from the brain and general organs of two people with PD, two people without PD with a history of mercury exposure, and ten people without PD or known mercury exposure, were stained for inorganic mercury using autometallography, combined with immunostaining for a-synuclein and glial cells. All had mercury-containing neurons in locus ceruleus neurons. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to confirm the presence of mercury and to look for other potentially toxic elements. Autometallography-stained locus ceruleus paraffin sections were examined to compare the frequency of previous mercury exposure between 20 PD and 40 non-PD individuals. RESULTS In PD brains, autometallography-detected mercury was seen in neurons affected by the disease, such as those in the substantia nigra, motor cortex, striatum, thalamus, and cerebellum. Mercury was seen in oligodendrocytes in white and grey matter. Mercury often co-localised with Lewy bodies and neurites. A more restricted distribution of brain mercury was seen in people without PD (both with or without known mercury exposure), with no mercury present in the substantia nigra, striatum, or thalamus. The presence of autometallography-detected mercury in PD was confirmed with LA-ICP-MS, which demonstrated other potentially toxic metals in the locus ceruleus and high iron levels in white matter. Autometallography-detected mercury was found in locus ceruleus neurons in a similar proportion of PD (65%) and non-PD (63%) individuals. CONCLUSIONS In people with PD, mercury was found in neurons and oligodendrocytes in regions of the brain that are affected by the disease, and often co-localised with aggregated a-synuclein. Mercury in the motor cortex, thalamus and striatum could result in bradykinesia and rigidity, and mercury in the cerebellum could cause tremor. People without PD had a restricted uptake of mercury into the brain. The similar frequency of mercury in the locus ceruleus of people with and without PD suggests these two groups have had comparable previous mercury exposures but that PD brains have a greater predisposition to take up circulating mercury. While this post mortem study does not provide a direct link between mercury and idiopathic PD, it adds to the body of evidence that metal toxicants such as mercury play a role in the disease. A precautionary approach would be to reduce rising mercury levels in the atmosphere by limiting the burning of fossil fuels, which may be contributing to the increasing incidence of PD.
Collapse
Affiliation(s)
- Roger Pamphlett
- Sydney Medical School, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- * E-mail:
| | - David P. Bishop
- Elemental Bio-Imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Li X, Liu N, Yang C, Zhang W, Lui S. Cerebellar gray matter volume changes in patients with schizophrenia: A voxel-based meta-analysis. Front Psychiatry 2022; 13:1083480. [PMID: 36620665 PMCID: PMC9814486 DOI: 10.3389/fpsyt.2022.1083480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In schizophrenia, the structural changes in the cerebellum are associated with patients' cognition and motor deficits. However, the findings are inconsistent owing to the heterogeneity in sample size, magnetic resonance imaging (MRI) scanners, and other factors among them. In this study, we conducted a meta-analysis to characterize the anatomical changes in cerebellar subfields in patients with schizophrenia. METHODS Systematic research was conducted to identify studies that compare the gray matter volume (GMV) differences in the cerebellum between patients with schizophrenia and healthy controls with a voxel-based morphometry (VBM) method. A coordinate-based meta-analysis was adopted based on seed-based d mapping (SDM) software. An exploratory meta-regression analysis was conducted to associate clinical and demographic features with cerebellar changes. RESULTS Of note, 25 studies comprising 996 patients with schizophrenia and 1,109 healthy controls were included in the present meta-analysis. In patients with schizophrenia, decreased GMVs were demonstrated in the left Crus II, right lobule VI, and right lobule VIII, while no increased GMV was identified. In the meta-regression analysis, the mean age and illness duration were negatively associated with the GMV in the left Crus II in patients with schizophrenia. CONCLUSION The most significant structural changes in the cerebellum are mainly located in the posterior cerebellar hemisphere in patients with schizophrenia. The decreased GMVs of these regions might partly explain the cognitive deficits and motor symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Xing Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Naici Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Chengmin Yang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Gu L, Guan X, Gao T, Zhou C, Yang W, Lv D, Wu J, Fang Y, Guo T, Song Z, Xu X, Tian J, Yin X, Zhang M, Zhang B, Pu J, Yan Y. The effect of polygenic risk on white matter microstructural degeneration in Parkinson's disease: A longitudinal Diffusion Tensor Imaging study. Eur J Neurol 2021; 29:1000-1010. [PMID: 34882309 DOI: 10.1111/ene.15201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE This study was undertaken to investigate the effect of genetic risk on whole brain white matter (WM) integrity in patients with Parkinson disease (PD). METHODS Data were acquired from the Parkinson's Progression Markers Initiative (PPMI) database. Polygenic load was estimated by calculating weighted polygenic risk scores (PRS) using (i) all available 26 PD-risk single nucleotide polymorphisms (SNPs) (PRS1) and (ii) 23 SNPs with minor allele frequency (MAF) > 0.05 (PRS2). According to the PRS2, and combined with clinical and diffusion tensor imaging (DTI) data over 3-year follow-up, 60 PD patients were screened and assigned to the low-PRS group (n = 30) and high-PRS group (n = 30) to investigate intergroup differences in clinical profiles and WM microstructure measured by DTI cross-sectionally and longitudinally. RESULTS PRS were associated with younger age at onset in patients with PD (PRS1, Spearman ρ = -0.190, p = 0.003; PRS2, Spearman ρ = -0.189, p = 0.003). The high-PRS group showed more extensive WM microstructural degeneration compared with the low-PRS group, mainly involving the anterior thalamic radiation (AThR) and inferior fronto-occipital fasciculus (IFOF) (p < 0.05). Furthermore, WM microstructural changes in AThR correlated with declining cognitive function (r = -0.401, p = 0.028) and increasing dopaminergic deficits in caudate (r = -0.405, p = 0.030). CONCLUSIONS These findings suggest that PD-associated polygenic load aggravates the WM microstructural degeneration and these changes may lead to poor cognition with continuous dopamine depletion. This study provides advanced evidence that combined with a cumulative PRS and DTI methods may predict disease progression in PD patients.
Collapse
Affiliation(s)
- Luyan Gu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaojun Guan
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ting Gao
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cheng Zhou
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenyi Yang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dayao Lv
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Wu
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Fang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Guo
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhe Song
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaojun Xu
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Tian
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinzhen Yin
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Minming Zhang
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yaping Yan
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|