1
|
Zhang Y, Miao H, Wang C, Wu B, Chen X, Chi L. Modulation of Neural Compensatory Response by Duration of Sleep Deprivation in a Cognitive Flexibility Task. J Sleep Res 2025:e70081. [PMID: 40312919 DOI: 10.1111/jsr.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/28/2025] [Accepted: 04/17/2025] [Indexed: 05/03/2025]
Abstract
The neural compensation mechanism involves maintaining cognitive performance during sleep deprivation (SD) by triggering alternative neural activations. While cognitive task complexity modulates post-SD neural activation, the role of SD duration remains uncertain. Thirty-three healthy college students (16 male and 17 female) completed a 36-h SD protocol, performing a switching task at baseline (pre-SD), after 24 h of SD (SD-24), and after 36 h of SD (SD-36). Resting-state EEG signals were recorded for 5 min at each SD stage and analysed using Standardised Low-Resolution Electromagnetic Tomography. Behavioural results showed that task performance declined after SD-24 compared to pre-SD, but recovered toward baseline levels after SD-36. Additionally, cognitive flexibility was lower after SD-24 and SD-36 than pre-SD, with no significant difference observed between SD-24 and SD-36. EEG results indicated decreased activation of the orbitofrontal and superior frontal gyrus after SD-24 and SD-36 compared to pre-SD, but increased activation of the superior parietal lobe after SD-36 compared to SD-24. The results of this study suggest that compensatory mechanisms depend on SD duration, indicating that effective neural compensation requires sustained wakefulness to activate fully.
Collapse
Affiliation(s)
- Yue Zhang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Haofei Miao
- School of Psychology, Beijing Sport University, Beijing, China
| | - Chao Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Bin Wu
- China Astronaut Research and Training Center, Beijing, China
| | - Xiaoping Chen
- China Astronaut Research and Training Center, Beijing, China
- National Key Laboratory of Human Factors Engineering, Beijing, China
| | - Lizhong Chi
- School of Psychology, Beijing Sport University, Beijing, China
| |
Collapse
|
2
|
Huidobro N, Meza-Andrade R, Méndez-Balbuena I, Trenado C, Tello Bello M, Tepichin Rodríguez E. Electroencephalographic Biomarkers for Neuropsychiatric Diseases: The State of the Art. Bioengineering (Basel) 2025; 12:295. [PMID: 40150759 PMCID: PMC11939446 DOI: 10.3390/bioengineering12030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Because of their nature, biomarkers for neuropsychiatric diseases were out of the reach of medical diagnostic technology until the past few decades. In recent years, the confluence of greater, affordable computer power with the need for more efficient diagnoses and treatments has increased interest in and the possibility of their discovery. This review will focus on the progress made over the past ten years regarding the search for electroencephalographic biomarkers for neuropsychiatric diseases. This includes algorithms and methods of analysis, machine learning, and quantitative electroencephalography as applied to neurodegenerative and neurodevelopmental diseases as well as traumatic brain injury and COVID-19. Our findings suggest that there is a need for consensus among quantitative electroencephalography researchers on the classification of biomarkers that most suit this field; that there is a slight disconnection between the development of increasingly sophisticated methods of analysis and what they will actually be of use for in the clinical setting; and finally, that diagnostic biomarkers are the most favored type in the field with a few caveats. The main goal of this state-of-the-art review is to provide the reader with a general panorama of the state of the art in this field.
Collapse
Affiliation(s)
- Nayeli Huidobro
- School of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, Puebla 72000, Mexico
| | - Roberto Meza-Andrade
- Departamento de Ciencias de la Salud, Universidad de las Américas Puebla, Puebla 72000, Mexico;
| | | | - Carlos Trenado
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, 40225 Duesseldorf, Germany;
| | - Maribel Tello Bello
- Escuela de Ingeniería y Actuaría, Universidad Anáhuac, Puebla 72000, Mexico;
| | | |
Collapse
|
3
|
Jiang Y, Neal J, Sompol P, Yener G, Arakaki X, Norris CM, Farina FR, Ibanez A, Lopez S, Al‐Ezzi A, Kavcic V, Güntekin B, Babiloni C, Hajós M. Parallel electrophysiological abnormalities due to COVID-19 infection and to Alzheimer's disease and related dementia. Alzheimers Dement 2024; 20:7296-7319. [PMID: 39206795 PMCID: PMC11485397 DOI: 10.1002/alz.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 09/04/2024]
Abstract
Many coronavirus disease 2019 (COVID-19) positive individuals exhibit abnormal electroencephalographic (EEG) activity reflecting "brain fog" and mild cognitive impairments even months after the acute phase of infection. Resting-state EEG abnormalities include EEG slowing (reduced alpha rhythm; increased slow waves) and epileptiform activity. An expert panel conducted a systematic review to present compelling evidence that cognitive deficits due to COVID-19 and to Alzheimer's disease and related dementia (ADRD) are driven by overlapping pathologies and neurophysiological abnormalities. EEG abnormalities seen in COVID-19 patients resemble those observed in early stages of neurodegenerative diseases, particularly ADRD. It is proposed that similar EEG abnormalities in Long COVID and ADRD are due to parallel neuroinflammation, astrocyte reactivity, hypoxia, and neurovascular injury. These neurophysiological abnormalities underpinning cognitive decline in COVID-19 can be detected by routine EEG exams. Future research will explore the value of EEG monitoring of COVID-19 patients for predicting long-term outcomes and monitoring efficacy of therapeutic interventions. HIGHLIGHTS: Abnormal intrinsic electrophysiological brain activity, such as slowing of EEG, reduced alpha wave, and epileptiform are characteristic findings in COVID-19 patients. EEG abnormalities have the potential as neural biomarkers to identify neurological complications at the early stage of the disease, to assist clinical assessment, and to assess cognitive decline risk in Long COVID patients. Similar slowing of intrinsic brain activity to that of COVID-19 patients is typically seen in patients with mild cognitive impairments, ADRD. Evidence presented supports the idea that cognitive deficits in Long COVID and ADRD are driven by overlapping neurophysiological abnormalities resulting, at least in part, from neuroinflammatory mechanisms and astrocyte reactivity. Identifying common biological mechanisms in Long COVID-19 and ADRD can highlight critical pathologies underlying brain disorders and cognitive decline. It elucidates research questions regarding cognitive EEG and mild cognitive impairment in Long COVID that have not yet been adequately investigated.
Collapse
Affiliation(s)
- Yang Jiang
- Aging Brain and Cognition LaboratoryDepartment of Behavioral ScienceCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Jennifer Neal
- Aging Brain and Cognition LaboratoryDepartment of Behavioral ScienceCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Pradoldej Sompol
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Görsev Yener
- Faculty of MedicineDept of Neurologyİzmir University of EconomicsİzmirTurkey
- IBG: International Biomedicine and Genome CenterİzmirTurkey
| | - Xianghong Arakaki
- Cognition and Brain Integration LaboratoryDepartment of NeurosciencesHuntington Medical Research InstitutesPasadenaCaliforniaUSA
| | - Christopher M. Norris
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Agustin Ibanez
- BrainLat: Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiagoChile
- Cognitive Neuroscience CenterUniversidad de San AndrésVictoriaBuenos AiresArgentina
- GBHI: Global Brain Health InstituteTrinity College DublinThe University of DublinDublin 2Ireland
| | - Susanna Lopez
- Department of Physiology and Pharmacology “V. Erspamer,”Sapienza University of RomeRomeItaly
| | - Abdulhakim Al‐Ezzi
- Cognition and Brain Integration LaboratoryDepartment of NeurosciencesHuntington Medical Research InstitutesPasadenaCaliforniaUSA
| | - Voyko Kavcic
- Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Bahar Güntekin
- Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of BiophysicsSchool of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “V. Erspamer,”Sapienza University of RomeRomeItaly
- Hospital San Raffaele CassinoCassinoFrosinoneItaly
| | - Mihály Hajós
- Cognito TherapeuticsCambridgeMassachusettsUSA
- Department of Comparative MedicineYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
4
|
Zhang X, Feng S, Yang X, Peng Y, Du M, Zhang R, Sima J, Zou F, Wu X, Wang Y, Gao X, Luo Y, Zhang M. Neuroelectrophysiological alteration associated with cognitive flexibility after 24 h sleep deprivation in adolescents. Conscious Cogn 2024; 124:103734. [PMID: 39096822 DOI: 10.1016/j.concog.2024.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
The cognitive neural mechanisms by which sleep deprivation affects cognitive flexibility are poorly understood. Therefore, the study investigated the neuroelectrophysiological basis of the effect of 24 h sleep deprivation on cognitive flexibility in adolescents. 72 participants (36 females, mean age ± SD=20.46 ± 2.385 years old) participated in the study and were randomly assigned to the sleep deprivation group and control group. They were instructed to complete a task switch paradigm, during which participants' behavioral and electroencephalographic data were recorded. Behaviorally, there were significant between-group differences in accuracy. The results of event-related potential showed that the P2, N2 and P3 components had significant group effects or interaction effects. At the time-frequency level, there were statistically significant differences between the delta and theta bands. These results suggested that 24 h sleep deprivation affected problem-solving effectiveness rather than efficiency, mainly because it systematically impaired cognitive processing associated with cognitive flexibility.
Collapse
Affiliation(s)
- Xirui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Henan 453003, China
| | - Shuqing Feng
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China
| | - Xiaochen Yang
- The First Affiliated Hospital of Xinxiang Medical University, Henan 453003, China
| | - Yunwen Peng
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China
| | - Mei Du
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China
| | - Rui Zhang
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China
| | - Jiashan Sima
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China
| | - Feng Zou
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China
| | - Xin Wu
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China
| | - Yufeng Wang
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China
| | - Xiaomeng Gao
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China.
| | - Yanyan Luo
- School of Nursing, Xinxiang Medical University, Henan 453003, China.
| | - Meng Zhang
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China.
| |
Collapse
|
5
|
Li X, Qu X, Shi K, Yang Y, Sun J. Physical exercise for brain plasticity promotion an overview of the underlying oscillatory mechanism. Front Neurosci 2024; 18:1440975. [PMID: 39176382 PMCID: PMC11338794 DOI: 10.3389/fnins.2024.1440975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
The global recognition of the importance of physical exercise (PE) for human health has resulted in increased research on its effects on cortical activity. Neural oscillations, which are prominent features of brain activity, serve as crucial indicators for studying the effects of PE on brain function. Existing studies support the idea that PE modifies various types of neural oscillations. While EEG-related literature in exercise science exists, a comprehensive review of the effects of exercise specifically in healthy populations has not yet been conducted. Given the demonstrated influence of exercise on neural plasticity, particularly cortical oscillatory activity, it is imperative to consolidate research on this phenomenon. Therefore, this review aims to summarize numerous PE studies on neuromodulatory mechanisms in the brain over the past decade, covering (1) effects of resistance and aerobic training on brain health via neural oscillations; (2) how mind-body exercise affects human neural activity and cognitive functioning; (3) age-Related effects of PE on brain health and neurodegenerative disease rehabilitation via neural oscillation mechanisms; and (4) conclusion and future direction. In conclusion, the effect of PE on cortical activity is a multifaceted process, and this review seeks to comprehensively examine and summarize existing studies' understanding of how PE regulates neural activity in the brain, providing a more scientific theoretical foundation for the development of personalized PE programs and further research.
Collapse
Affiliation(s)
| | | | - Kaixuan Shi
- Physical Education Department, China University of Geosciences Beijing, Beijing, China
| | | | | |
Collapse
|
6
|
Chino B, López-Sanz D, Doval S, Torres-Simón L, de Frutos Lucas J, Giménez-Llort L, Zegarra-Valdivia J, Maestú F. Resting State Electrophysiological Profiles and Their Relationship with Cognitive Performance in Cognitively Unimpaired Older Adults: A Systematic Review. J Alzheimers Dis 2024; 100:453-468. [PMID: 38875030 PMCID: PMC11307078 DOI: 10.3233/jad-231009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 06/16/2024]
Abstract
Background Aging is a complex and natural process. The physiological decline related to aging is accompanied by a slowdown in cognitive processes, which begins shortly after individuals reach maturity. These changes have been sometimes interpreted as a compensatory sign and others as a fingerprint of deterioration. Objective In this context, our aim is to uncover the mechanisms that underlie and support normal cognitive functioning in the brain during the later stages of life. Methods With this purpose, a systematic literature search was conducted using PubMed, Scopus, and Web of Science databases, which identified 781 potential articles. After applying inclusion and exclusion criteria, we selected 12 studies that examined the brain oscillations patterns in resting-state conditions associated with cognitive performance in cognitively unimpaired older adults. Results Although cognitive healthy aging was characterized differently across studies, and various approaches to analyzing brain activity were employed, our review indicates a relationship between alpha peak frequency (APF) and improved performance in neuropsychological scores among cognitively unimpaired older adults. Conclusions A higher APF is linked with a higher score in intelligence, executive function, and general cognitive performance, and could be considered an optimal, and easy-to-assess, electrophysiological marker of cognitive health in older adults.
Collapse
Affiliation(s)
- Brenda Chino
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Institute of Neuroscience, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - David López-Sanz
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Sandra Doval
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Lucía Torres-Simón
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Jaisalmer de Frutos Lucas
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Lydia Giménez-Llort
- Institute of Neuroscience, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | | | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
7
|
Wu R, Li A, Xue C, Chai J, Qiang Y, Zhao J, Wang L. Screening for Mild Cognitive Impairment with Speech Interaction Based on Virtual Reality and Wearable Devices. Brain Sci 2023; 13:1222. [PMID: 37626578 PMCID: PMC10452416 DOI: 10.3390/brainsci13081222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Significant advances in sensor technology and virtual reality (VR) offer new possibilities for early and effective detection of mild cognitive impairment (MCI), and this wealth of data can improve the early detection and monitoring of patients. In this study, we proposed a non-invasive and effective MCI detection protocol based on electroencephalogram (EEG), speech, and digitized cognitive parameters. The EEG data, speech data, and digitized cognitive parameters of 86 participants (44 MCI patients and 42 healthy individuals) were monitored using a wearable EEG device and a VR device during the resting state and task (the VR-based language task we designed). Regarding the features selected under different modality combinations for all language tasks, we performed leave-one-out cross-validation for them using four different classifiers. We then compared the classification performance under multimodal data fusion using features from a single language task, features from all tasks, and using a weighted voting strategy, respectively. The experimental results showed that the collaborative screening of multimodal data yielded the highest classification performance compared to single-modal features. Among them, the SVM classifier using the RBF kernel obtained the best classification results with an accuracy of 87%. The overall classification performance was further improved using a weighted voting strategy with an accuracy of 89.8%, indicating that our proposed method can tap into the cognitive changes of MCI patients. The MCI detection scheme based on EEG, speech, and digital cognitive parameters proposed in this study provides a new direction and support for effective MCI detection, and suggests that VR and wearable devices will be a promising direction for easy-to-perform and effective MCI detection, offering new possibilities for the exploration of VR technology in the field of language cognition.
Collapse
Affiliation(s)
- Ruixuan Wu
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Aoyu Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Chen Xue
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Jiali Chai
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Yan Qiang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Juanjuan Zhao
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
- College of Information, Jinzhong College of Information, Jinzhong 030600, China
| | - Long Wang
- College of Information, Jinzhong College of Information, Jinzhong 030600, China
| |
Collapse
|
8
|
Grennan G, Balasubramani PP, Vahidi N, Ramanathan D, Jeste DV, Mishra J. Dissociable neural mechanisms of cognition and well-being in youth versus healthy aging. Psychol Aging 2022; 37:827-842. [PMID: 36107693 PMCID: PMC9669243 DOI: 10.1037/pag0000710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Mental health, cognition, and their underlying neural processes in healthy aging are rarely studied simultaneously. Here, in a sample of healthy younger (n = 62) and older (n = 54) adults, we compared subjective mental health as well as objective global cognition across several core cognitive domains with simultaneous electroencephalography (EEG). We found significantly greater symptoms of anxiety, depression, and loneliness in youth and in contrast, greater mental well-being in older adults. Yet, global performance across core cognitive domains was significantly worse in older adults. EEG-based source imaging of global cognitive task-evoked processing showed reduced suppression of activity in the anterior medial prefrontal default mode network (DMN) region in older adults relative to youth. Global cognitive performance efficiency was predicted by greater activity in the right dorsolateral prefrontal cortex in younger adults and in contrast, by greater activity in right inferior frontal cortex in older adults. Furthermore, greater mental well-being in older adults related to lesser global task-evoked activity in the posterior DMN. Overall, these results suggest dissociated neural mechanisms underlying global cognition and mental well-being in youth versus healthy aging. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Gillian Grennan
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Neural Engineering and Translation Labs, University of California, San Diego, La Jolla, CA, USA
| | - Pragathi Priyadharsini Balasubramani
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Neural Engineering and Translation Labs, University of California, San Diego, La Jolla, CA, USA
| | - Nasim Vahidi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Neural Engineering and Translation Labs, University of California, San Diego, La Jolla, CA, USA
| | - Dhakshin Ramanathan
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Neural Engineering and Translation Labs, University of California, San Diego, La Jolla, CA, USA
- Department of Mental Health, VA San Diego Medical Center, San Diego, CA, USA
| | - Dilip V Jeste
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Jyoti Mishra
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Neural Engineering and Translation Labs, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Chino B, Cuesta P, Pacios J, de Frutos-Lucas J, Torres-Simón L, Doval S, Marcos A, Bruña R, Maestú F. Episodic memory dysfunction and hypersynchrony in brain functional networks in cognitively intact subjects and MCI: a study of 379 individuals. GeroScience 2022; 45:477-489. [PMID: 36109436 PMCID: PMC9886758 DOI: 10.1007/s11357-022-00656-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/01/2022] [Indexed: 02/03/2023] Open
Abstract
Delayed recall (DR) impairment is one of the most significant predictive factors in defining the progression to Alzheimer's disease (AD). Changes in brain functional connectivity (FC) could accompany this decline in the DR performance even in a resting state condition from the preclinical stages to the diagnosis of AD itself, so the characterization of the relationship between the two phenomena has attracted increasing interest. Another aspect to contemplate is the potential moderator role of the APOE genotype in this association, considering the evidence about their implication for the disease. 379 subjects (118 mild cognitive impairment (MCI) and 261 cognitively intact (CI) individuals) underwent an extensive evaluation, including MEG recording. Applying cluster-based permutation test, we identified a cluster of differences in FC and studied which connections drove such an effect in DR. The moderation effect of APOE genotype between FC results and delayed recall was evaluated too. Higher FC in beta band in the right occipital region is associated with lower DR scores in both groups. A significant anteroposterior link emerged in the seed-based analysis with higher values in MCI. Moreover, APOE genotype appeared as a moderator between beta FC and DR performance only in the CI group. An increased beta FC in the anteroposterior brain region appears to be associated with lower memory performance in MCI. This finding could help discriminate the pattern of the progression of healthy aging to MCI and the relation between resting state and memory performance.
Collapse
Affiliation(s)
- Brenda Chino
- Institute of Neuroscience, Autonomous University of Barcelona, Barcelona, Spain. .,Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain.
| | - Pablo Cuesta
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Department of Radiology, Rehabilitation, and Physiotherapy, Complutense University of Madrid, Madrid, Spain ,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Javier Pacios
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain ,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Jaisalmer de Frutos-Lucas
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain ,Centre for Precision Health, Edith Cowan University, Joondalup, WA 6027 Australia ,Centro de Investigación Nebrija en Cognición (CINC), Universidad de Nebrija, Madrid, Spain
| | - Lucía Torres-Simón
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Sandra Doval
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Alberto Marcos
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain ,Neurology Department, Hospital Clinico San Carlos, Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Department of Radiology, Rehabilitation, and Physiotherapy, Complutense University of Madrid, Madrid, Spain ,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain ,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
10
|
Wang J, Sun T, Zhang Y, Yu X, Wang H. Distinct Effects of the Apolipoprotein E ε4 Genotype on Associations Between Delayed Recall Performance and Resting-State Electroencephalography Theta Power in Elderly People Without Dementia. Front Aging Neurosci 2022; 14:830149. [PMID: 35693343 PMCID: PMC9178171 DOI: 10.3389/fnagi.2022.830149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
Background Abnormal electroencephalography (EEG) activity has been demonstrated in mild cognitive impairment (MCI), and theta rhythm might be inversely related to memory. The apolipoprotein E (ApoE) epsilon 4 (ε4) allele, as a genetic vulnerability factor for pathologic and normal age-related cognitive decline, may influence different patterns of cognitive dysfunction. Therefore, the present study primarily aimed to verify the role of resting theta rhythm in delayed recall deficits, and further explore the effects of the ApoE genotype on the associations between the resting theta power and delayed recall performance in the elderly individuals without dementia. Methods A total of 47 individuals without dementia, including 23 MCI and 24 healthy subjects (HCs), participated in the study. All subjects were administered the Hopkins Verbal Learning Test–Revised (HVLT-R) to measure delayed recall performance. Power spectra based on resting-state EEG data were used to examine brain oscillations. Linear regression was used to examine the relationships between EEG power and delayed recall performance in each subgroup. Results The increased theta power in the bilateral central and temporal areas (Ps = 0.02–0.044, uncorrected) was found in the patients with MCI, and were negatively correlated with delayed recall performance (rs = −0.358 to −0.306, Ps = 0.014–0.036, FDR corrected) in the elderly individuals without dementia. The worse delayed recall performance was associated with higher theta power in the left central and temporal areas, especially in ApoE ε4 non-carriers and not in carriers (rs = −0.404 to −0.369, Ps = 0.02–0.035, uncorrected). Conclusion Our study suggests that theta disturbances might contribute to delayed recall memory decline. The ApoE genotype may have distinct effects on EEG-based neural correlates of episodic memory performance.
Collapse
Affiliation(s)
- Jing Wang
- Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health, Peking University, Beijing, China
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
| | - Tingting Sun
- Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health, Peking University, Beijing, China
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
- Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Zhang
- Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health, Peking University, Beijing, China
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
| | - Xin Yu
- Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health, Peking University, Beijing, China
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
| | - Huali Wang
- Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health, Peking University, Beijing, China
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
- *Correspondence: Huali Wang,
| |
Collapse
|
11
|
Treatment effects on event-related EEG potentials and oscillations in Alzheimer's disease. Int J Psychophysiol 2022; 177:179-201. [PMID: 35588964 DOI: 10.1016/j.ijpsycho.2022.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease dementia (ADD) is the most diffuse neurodegenerative disorder belonging to mild cognitive impairment (MCI) and dementia in old persons. This disease is provoked by an abnormal accumulation of amyloid-beta and tauopathy proteins in the brain. Very recently, the first disease-modifying drug has been licensed with reserve (i.e., Aducanumab). Therefore, there is a need to identify and use biomarkers probing the neurophysiological underpinnings of human cognitive functions to test the clinical efficacy of that drug. In this regard, event-related electroencephalographic potentials (ERPs) and oscillations (EROs) are promising candidates. Here, an Expert Panel from the Electrophysiology Professional Interest Area of the Alzheimer's Association and Global Brain Consortium reviewed the field literature on the effects of the most used symptomatic drug against ADD (i.e., Acetylcholinesterase inhibitors) on ERPs and EROs in ADD patients with MCI and dementia at the group level. The most convincing results were found in ADD patients. In those patients, Acetylcholinesterase inhibitors partially normalized ERP P300 peak latency and amplitude in oddball paradigms using visual stimuli. In these same paradigms, those drugs partially normalize ERO phase-locking at the theta band (4-7 Hz) and spectral coherence between electrode pairs at the gamma (around 40 Hz) band. These results are of great interest and may motivate multicentric, double-blind, randomized, and placebo-controlled clinical trials in MCI and ADD patients for final cross-validation.
Collapse
|
12
|
Theta and gamma oscillatory dynamics in mouse models of Alzheimer's disease: A path to prospective therapeutic intervention. Neurosci Biobehav Rev 2022; 136:104628. [PMID: 35331816 DOI: 10.1016/j.neubiorev.2022.104628] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/26/2022]
Abstract
Understanding the neural basis of cognitive deficits, a key feature of Alzheimer's disease (AD), is imperative for achieving the therapy of the disease. Rhythmic oscillatory activities in neural systems are a fundamental mechanism for diverse brain functions, including cognition. In several neurological conditions like AD, aberrant neural oscillations have been shown to play a central role. Furthermore, manipulation of brain oscillations in animals has confirmed their impact on cognition and disease. In this article, we review the evidence from mouse models that shows how synchronized oscillatory activity is intricately linked to AD machinery. We primarily focus on recent reports showing abnormal oscillatory activities at theta and gamma frequencies in AD condition and their influence on cellular disturbances and cognitive impairments. A thorough comprehension of the role that neuronal oscillations play in AD pathology should pave the way to therapeutic interventions that can curb the disease.
Collapse
|
13
|
Lee MS, Paul A, Xu Y, Hairston WD, Cauwenberghs G. Characterization of Ag/AgCl Dry Electrodes for Wearable Electrophysiological Sensing. FRONTIERS IN ELECTRONICS 2022. [DOI: 10.3389/felec.2021.700363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With the rising need for on-body biometric sensing, the development of wearable electrophysiological sensors has been faster than ever. Surface electrodes placed on the skin need to be robust in order to measure biopotentials from the body reliably and comfortable for extended wearability. The electrical stability of nonpolarizable silver/silver chloride (Ag/AgCl) and its low-cost, commercial production have made these electrodes ubiquitous health sensors in the clinical environment, where wet gels and long wires are accommodated by patient immobility. However, smaller, dry electrodes with wireless acquisition are essential for truly wearable, continuous health sensing. Currently, techniques for the robust fabrication of custom Ag/AgCl electrodes are lacking. Here, we present three methods for the fabrication of Ag/AgCl electrodes: oxidizing Ag in a chlorine solution, electroplating Ag, and curing Ag/AgCl ink. Each of these methods is then used to create three different electrode shapes for wearable application. Bench-top and on-body evaluation of the electrode techniques was achieved by electrochemical impedance spectroscopy (EIS), calculation of variance in electrocardiogram (ECG) measurements, and analysis of auditory steady-state response (ASSR) measurement. Microstructures produced on the electrode by each fabrication technique were also investigated with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The custom Ag/AgCl electrodes were found to be efficient in comparison with standard, commercial Ag/AgCl wet electrodes across all three of our presented techniques, with Ag/AgCl ink shown to be the better out of the three in bench-top and biometric recordings.
Collapse
|