1
|
Lu F, Ma Q, Shi C, Yue W. Changes in the Parietal Lobe Subregion Volume at Various Stages of Alzheimer's Disease and the Role in Cognitively Normal and Mild Cognitive Impairment Conversion. J Integr Neurosci 2025; 24:25991. [PMID: 39862009 DOI: 10.31083/jin25991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Volume alterations in the parietal subregion have received less attention in Alzheimer's disease (AD), and their role in predicting conversion of mild cognitive impairment (MCI) to AD and cognitively normal (CN) to MCI remains unclear. In this study, we aimed to assess the volumetric variation of the parietal subregion at different cognitive stages in AD and to determine the role of parietal subregions in CN and MCI conversion. METHODS We included 662 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 228 CN, 221 early MCI (EMCI), 112 late MCI (LMCI), and 101 AD participants. We measured the volume of the parietal subregion based on the Human Brainnetome Atlas (BNA-246) using voxel-based morphometry among individuals at various stages of AD and the progressive and stable individuals in CN and MCI. We then calculated the area under the curve (AUC) of the receiver operating characteristic (ROC) curve to test the ability of parietal subregions to discriminate between different cognitive groups. The Cox proportional hazard model was constructed to determine which specific parietal subregions, alone or in combination, could be used to predict progression from MCI to AD and CN to MCI. Finally, we examined the relationship between the cognitive scores and parietal subregion volume in the diagnostic groups. RESULTS The left inferior parietal lobule (IPL)_6_5 (rostroventral area 39) showed the best ability to discriminate between patients with AD and those with CN (AUC = 0.688). The model consisting of the left IPL_6_4 (caudal area 40) and bilateral IPL_6_5 showed the best combination for predicting the CN progression to MCI. The left IPL_6_1 (caudal area 39) showed the best predictive power in predicting the progression of MCI to AD. Certain subregions of the volume correlated with cognitive scales. CONCLUSION Subregions of the angular gyrus are essential in the early onset and subsequent development of AD, and early detection of the volume of these regions may be useful in identifying the tendency to develop the disease and its treatment.
Collapse
Affiliation(s)
- Fang Lu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Qing Ma
- Department of Neurology, North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Cailing Shi
- Department of Radiology, Qionglai Medical Centre Hospital, 611530 Chengdu, Sichuan, China
| | - Wenjun Yue
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| |
Collapse
|
2
|
Lu F, Shi C, Rao D, Yue W. The Correlations between Volume Loss of Temporal and Subcortical Functional Subregions and Cognitive Impairment at Various Stages of Cognitive Decline. J Integr Neurosci 2024; 23:220. [PMID: 39735962 DOI: 10.31083/j.jin2312220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND The relationship between subregion atrophy in the entire temporal lobe and subcortical nuclei and cognitive decline at various stages of Alzheimer's disease (AD) is unclear. METHODS We selected 711 participants from the AD Neuroimaging Initiative (ADNI) database, which included 195 cases of cognitively normal (CN), 271 cases of early Mild cognitive impairment (MCI) (EMCI), 132 cases of late MCI (LMCI), and 113 cases of AD. we looked at how subregion atrophy in the temporal lobe and subcortical nuclei correlated with cognition at different stages of AD. The volume of the subregions was measured from the human Brainnetome atlas (BNA-246) using voxel-based morphometry and discriminant and correlation analyses were performed. RESULTS Only the left premotor thalamus demonstrated significant shrinkage in individuals with EMCI (p = 0.012). Discriminant analysis revealed that the left rostral Brodmann area 20 has the highest discriminatory ability among all temporal subregions to distinguish patients with AD from CN. While the left caudal hippocampus can efficiently distinguish patients with LMCI from EMCI. While the right rostral Brodmann area 20 was the most effective in distinguishing AD from LMCI. Correlation analysis revealed that the left nucleus accumbens, left caudal area 35/36, and left sensory thalamus had a mild correlation with cognitive scores measured using the Alzheimer's Disease Assessment Scale-Cognitive (ADAS-cog) 13 and Mini-Mental State Examination (MMSE) scores. CONCLUSIONS Our findings show that the right rostral area 20 in the inferior temporal gyrus plays a significant role in cognitive impairment in AD.
Collapse
Affiliation(s)
- Fang Lu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Cailing Shi
- Department of Radiology, Qionglai Medical Centre Hospital, 611530 Chengdu, Sichuan, China
| | - Dingcai Rao
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Wenjun Yue
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| |
Collapse
|
3
|
Wu Z, Chen J, Liu Y, Yang Y, Feng M, Dai H. The Effects of PICALM rs3851179 and Age on Brain Atrophy and Cognition Along the Alzheimer's Disease Continuum. Mol Neurobiol 2024; 61:6984-6996. [PMID: 38363532 DOI: 10.1007/s12035-024-03953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Rs3851179, a variant of PICALM gene, and age are the risk factors of Alzheimer's disease (AD). AD is divided into early-onset AD (EOAD, < 65 years) and late-onset AD (LOAD, ≥ 65 years) by age. The purpose was to investigate the impact of different genotypes of PICALM rs3851179 on brain atrophy and cognitive decline across the AD continuum in different age groups. Four hundred seven cognitive normal (CN) controls, 362 mild cognitive impairment (MCI) patients, and 94 AD patients were enrolled to assess the interaction between AD continuum, age status, and PICALM on gray matter volume (GMV), global cognition, memory function, and executive function using full factorial ANCOVA (3 × 2 × 2). The interaction between AD continuum and PICALM significantly affected the GMV of the left putamen (PUT.L). rs3851179 A-allele carriers did not show a significant decrease in PUT.L GMV from CN to MCI to AD, while GG-allele carriers did. The interaction between AD continuum and age status was significant on GMV of the left angular gyrus (ANG.L) and right superior occipital gyrus (SOG.R). LOAD had higher GMV of ANG.L and SOG.R than EOAD. The interactive effects among AD continuum, age status, and PICALM were not significant on GMV but were significant on global cognition and executive function. The A-allele was found to have a protective effect on global cognition and executive function in EOAD, but not significantly so in LOAD. PICALM rs3851179 A-allele might alleviate the atrophy of PUT.L across the AD continuum than GG-allele. Age status did not affect the interaction between AD continuum and PICALM on brain atrophy. The ANG.L and SOG.R atrophied more severely in EOAD than in LOAD. Rs3851179 A-allele was protective for global cognition and executive function in EOAD.
Collapse
Affiliation(s)
- Zhiwei Wu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China
| | - Jinhong Chen
- Department of Ultrasound, Hefei Hospital affiliated to Anhui Medical University: The Second People's Hospital of Hefei, Hefei, Anhui Province, 230011, People's Republic of China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, Anhui Province, 230032, People's Republic of China
| | - Yuanqing Liu
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, People's Republic of China
| | - Yiwen Yang
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, People's Republic of China
| | - Mengmeng Feng
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, People's Republic of China
| | - Hui Dai
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, People's Republic of China.
- Institute of Medical Imaging, Soochow University, Suzhou, Jiangsu Province, 215006, People's Republic of China.
- Suzhou Key Laboratory of Intelligent Medicine and Equipment, Suzhou, Jiangsu Province, 215123, People's Republic of China.
| |
Collapse
|
4
|
Liu Y, Qing Z, Qin R, Chen H, Ye Q, Li M, Luo C, Liu R, Xu Y, Zhao H, Zhang B. Module-level structural and functional alternations in amnestic mild cognitive impairment. CHINESE JOURNAL OF ACADEMIC RADIOLOGY 2024; 7:264-276. [DOI: 10.1007/s42058-024-00160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/02/2024] [Accepted: 06/21/2024] [Indexed: 11/07/2024]
|
5
|
Nagamalla V, Verghese J, Ayers E, Barzilai N, Beauchet O, Lipton RB, Shimada H, Srikanth VK, Blumen HM. Distinct Patterns of Brain Atrophy in Amnestic Mild Cognitive Impairment and Motoric Cognitive Risk Syndromes. NEURODEGENER DIS 2024; 24:117-128. [PMID: 39102797 PMCID: PMC11794591 DOI: 10.1159/000540512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Motoric cognitive risk (MCR) and amnestic mild cognitive impairment (aMCI) syndromes are each reliable predictors of incident Alzheimer's disease (AD), but MCR may be a stronger predictor of vascular dementia than AD. This study contrasted cortical and hippocampal atrophy patterns in MCR and aMCI. METHODS Cross-sectional data from 733 older adults without dementia or disability (M age = 73.6; 45% women) in the multicountry MCR consortium were examined. MCR was defined as presence of slow gait and cognitive concerns. Amnestic MCI was defined as poor episodic memory performance and cognitive concerns. Cortical thickness and hippocampal volumes were quantified from structural MRIs. Multivariate and univariate general linear models were used to examine associations between cortical thickness and hippocampal volume in MCR and aMCI, adjusting for age, sex, education, total intracranial volume, white matter lesions, and study site. RESULTS The prevalence of MCR and aMCI was 7.64% and 12.96%, respectively. MCR was associated with widespread cortical atrophy, including prefrontal, insular, cingulate, motor, parietal, and temporal atrophy. aMCI was associated with hippocampal atrophy. CONCLUSION Distinct patterns of atrophy were associated with MCR and aMCI. A distributed pattern of cortical atrophy - that is more consistent with VaD or mixed dementia- was observed in MCR. A more restricted pattern of atrophy - that is more consistent with AD - was observed in aMCI. The biological underpinnings of MCR and aMCI likely differ and may require tailored interventions. INTRODUCTION Motoric cognitive risk (MCR) and amnestic mild cognitive impairment (aMCI) syndromes are each reliable predictors of incident Alzheimer's disease (AD), but MCR may be a stronger predictor of vascular dementia than AD. This study contrasted cortical and hippocampal atrophy patterns in MCR and aMCI. METHODS Cross-sectional data from 733 older adults without dementia or disability (M age = 73.6; 45% women) in the multicountry MCR consortium were examined. MCR was defined as presence of slow gait and cognitive concerns. Amnestic MCI was defined as poor episodic memory performance and cognitive concerns. Cortical thickness and hippocampal volumes were quantified from structural MRIs. Multivariate and univariate general linear models were used to examine associations between cortical thickness and hippocampal volume in MCR and aMCI, adjusting for age, sex, education, total intracranial volume, white matter lesions, and study site. RESULTS The prevalence of MCR and aMCI was 7.64% and 12.96%, respectively. MCR was associated with widespread cortical atrophy, including prefrontal, insular, cingulate, motor, parietal, and temporal atrophy. aMCI was associated with hippocampal atrophy. CONCLUSION Distinct patterns of atrophy were associated with MCR and aMCI. A distributed pattern of cortical atrophy - that is more consistent with VaD or mixed dementia- was observed in MCR. A more restricted pattern of atrophy - that is more consistent with AD - was observed in aMCI. The biological underpinnings of MCR and aMCI likely differ and may require tailored interventions.
Collapse
Affiliation(s)
- Vineela Nagamalla
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joe Verghese
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emmeline Ayers
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Olivier Beauchet
- Department of Medicine and Geriatrics, University of Montreal, Montreal, QC, Canada
| | - Richard B. Lipton
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Velandai K. Srikanth
- National Centre for Healthy Ageing, Melbourne, VIC, Australia
- Peninsula Clinical School, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Helena M. Blumen
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
6
|
Zhu W, Zhou X, Ren M, Yin W, Tang Y, Yin J, Sun Y, Zhu X, Sun Z. Process approach as a cognitive biomarker related to gray matter volume in mild cognitive impairment and Alzheimer's disease. BMC Neurol 2024; 24:199. [PMID: 38872077 PMCID: PMC11170873 DOI: 10.1186/s12883-024-03711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Process approach is valuable for memory assessment in Alzheimer's disease (AD) and mild cognitive impairment (MCI), yet its underlying mechanisms remain elusive. This study aims to synergize the process approach with brain structure analysis to explore both the discriminative capacity and potential mechanisms underlying the process approach. METHODS 37 subjects of MCI, 35 subjects of AD and 38 subjects of healthy control (HC) were included. The process approach in Auditory Verbal Learning Test (AVLT), including discriminability (A'), response bias (B"D), semantic clustering (LBCsem) and serial clustering (LBCser) was performed. The gray matter volume (GMV) was analyzed by voxel-based morphometry. Receiver operating characteristic (ROC) analysis and partial correlations were conducted to explore the value of the process approach and investigate the relationship between the process approach, traditional indices of AVLT and GMV. RESULTS ROC analysis showed the value of A', B"D and LBCser in differentiating MCI and AD. Combining AVLT-Immediately Recall (AVLT-IR) and LBCser showed a higher value in diagnosing MCI. Partial correlations revealed that in the MCI group, A' and B"D were mainly positively associated with GMV of the hippocampus and temporal lobe. CONCLUSION This study indicated that the process approach is a promising cognitive biomarker to detect MCI and AD.
Collapse
Affiliation(s)
- Wenhao Zhu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, China
| | - Xia Zhou
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, China
| | - Mengmeng Ren
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, China
| | - Wenwen Yin
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, China
| | - Yating Tang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, China
| | - Jiabin Yin
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, China
| | - Yue Sun
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoqun Zhu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, China
| | - Zhongwu Sun
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, China.
| |
Collapse
|
7
|
Ke M, Hou L, Liu G. The co-activation patterns of multiple brain regions in Juvenile Myoclonic Epilepsy. Cogn Neurodyn 2024; 18:337-347. [PMID: 38699614 PMCID: PMC11061087 DOI: 10.1007/s11571-022-09838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/03/2022] Open
Abstract
Juvenile myoclonic epilepsy (JME) as an idiopathic generalized epilepsy has been studied by many advanced neuroimaging techniques to elucidate its neuroanatomical basis and pathophysiological mechanisms. In this paper, we used co-activation patterns (CAPs) to explore the differences of dynamic brain activity changes in resting state between JME patients and healthy controls. 27 cases JME patients and 27 cases healthy of fMRI data were collected. The structural image data of the subjects were analyzed by voxel-based morphological analysis, and the regions with gray matter volume atrophy and high voxel were selected as the regions of interest. Further, the mean disease duration was used as boundary to divide the patients' data into the below-average time and the above-average time groups, which were defined as patient disease duration groups. And these data were used to construct CAPs and to compare changes in brain dynamics. It was found that the number of patterns occurrences and the possibility of switching between patterns were smaller than those in the healthy control, which indicated patients with damage to brain regions. For the patient time control group, the number of patterns occurrences and the possibility of switching between patterns were similar, while there was linear regression between the three values and disease duration. Collectively, this study provides important evidence for revealing the key brain regions of JME by studying the transformation between CAPs. Future studies could investigate the effects of receiving treatment on patient dynamic brain activity.
Collapse
Affiliation(s)
- Ming Ke
- School of Computer and Communication, Lanzhou University of Technology, 730050 Lanzhou, China
| | - Lei Hou
- School of Computer and Communication, Lanzhou University of Technology, 730050 Lanzhou, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, 730030 Lanzhou, China
| |
Collapse
|
8
|
Li M, Ma YH, Guo Y, Liu JY, Tan L. Associations of cerebrospinal fluid complement proteins with Alzheimer's pathology, cognition, and brain structure in non-dementia elderly. Alzheimers Res Ther 2024; 16:12. [PMID: 38238858 PMCID: PMC10795368 DOI: 10.1186/s13195-023-01377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) complement activation is a key part of neuroinflammation that occurs in the early stages of Alzheimer's disease (AD). However, the associations of CSF complement proteins with AD pathology, cognition, and structural neuroimaging biomarkers for AD have been rarely investigated. METHODS A total of 210 participants (125 mild cognitive impairment [MCI] patients and 85 normal controls) were included from Alzheimer's Disease Neuroimaging Initiative (ADNI) database who measured AD pathology, cognition, and neuroimaging at baseline and every 12 months. The mixed-effect linear models were utilized to investigate longitudinal associations of CSF complement proteins with AD pathology, cognition, and neuroimaging in cognitively normal (CN) and mild cognitive impairment (MCI) subjects. Causal mediation analyses were conducted to explore the potential mediators between CSF complement proteins and cognitive changes. RESULTS We found that the subjects with low CSF complement protein levels at baseline had worse outcomes in AD pathology, indicated by their lowest concentrations observed in A + and A + T + individuals. The reduced CSF complement proteins were associated with faster accumulation of tau among CN subjects and with cognitive decline and greater brain atrophy of specific regions among MCI subjects. Furthermore, mediation analyses showed that the effects of CSF complement proteins on cognitive performance were partially mediated by regional brain structures (mediation proportions range from 19.78 to 94.92%; p < 0.05). CONCLUSIONS This study demonstrated that CSF complement proteins were involved in the early progression of AD. Our results indicated that regional brain atrophy might be a plausible way to connect CSF complement protein levels and cognition.
Collapse
Affiliation(s)
- Meng Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Yun Guo
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Jia-Yao Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Lee AJ, Stark JH, Hayes SM. Baseline Frontoparietal Gray Matter Volume Predicts Executive Function Performance in Aging and Mild Cognitive Impairment at 24-Month Follow-Up. J Alzheimers Dis 2024; 100:357-374. [PMID: 38875035 PMCID: PMC11932740 DOI: 10.3233/jad-231468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Background Executive dysfunction in mild cognitive impairment (MCI) has been associated with gray matter atrophy. Prior studies have yielded limited insight into associations between gray matter volume and executive function in early and late amnestic MCI (aMCI). Objective To examine the relative importance of predictors of executive function at 24 months and relationships between baseline regional gray matter volume and executive function performance at 24-month follow-up in non-demented older adults. Methods 147 participants from the Alzheimer's Disease Neuroimaging Initiative (mean age = 70.6 years) completed brain magnetic resonance imaging and neuropsychological testing and were classified as cognitively normal (n = 49), early aMCI (n = 60), or late aMCI (n = 38). Analyses explored the importance of demographic, APOEɛ4, biomarker (p-tau/Aβ42, t-tau/Aβ42), and gray matter regions-of-interest (ROI) variables to 24-month executive function, whether ROIs predicted executive function, and whether relationships varied by baseline diagnostic status. Results Across all participants, baseline anterior cingulate cortex and superior parietal lobule volumes were the strongest predictors of 24-month executive function performance. In early aMCI, anterior cingulate cortex volume was the strongest predictor and demonstrated a significant interaction such that lower volume related to worse 24-month executive function in early aMCI. Educational attainment and inferior frontal gyrus volume were the strongest predictors of 24-month executive function performance for cognitively normal and late aMCI groups, respectively. Conclusions Baseline frontoparietal gray matter regions were significant predictors of executive function performance in the context of aMCI and may identify those at risk of Alzheimer's disease. Anterior cingulate cortex volume may predict executive function performance in early aMCI.
Collapse
Affiliation(s)
- Ann J. Lee
- Department of Psychology, The Ohio State University, 225 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210 United States
| | - Jessica H. Stark
- Department of Psychology, The Ohio State University, 225 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210 United States
| | - Scott M. Hayes
- Department of Psychology, The Ohio State University, 225 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210 United States
- Chronic Brain Injury Initiative, The Ohio State University, 203 Bricker Hall, 190 North Oval Mall, Columbus, OH, 43210 United States
| |
Collapse
|
10
|
Teghil A, Boccia M, Di Vita A, Zazzaro G, Sepe Monti M, Trebbastoni A, Talarico G, Campanelli A, Bruno G, Guariglia C, de Lena C, D'Antonio F. Multidimensional assessment of time perception along the continuum of Alzheimer's Disease and evidence of alterations in subjective cognitive decline. Sci Rep 2023; 13:22117. [PMID: 38092802 PMCID: PMC10719320 DOI: 10.1038/s41598-023-49222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Timing alterations occur in Alzheimer's disease (AD), even in early stages (mild cognitive impairment, MCI). Moreover, a stage named subjective cognitive decline (SCD), in which individuals perceive a change in cognitive performance not revealed by neuropsychological tests, has been identified as a preclinical phase of AD. However, no study to date has investigated different dimensions of time processing along the continuum from physiological to pathological aging, and whether timing alterations occur in SCD. Here a sample of participants with SCD, MCI, AD and healthy controls (HC) performed tasks assessing prospective duration estimation, production, reproduction, implicit temporal learning in conditions dependent from external cues (externally-cued learning, ECL) or independent from external cues (internally-based learning, IBL), retrospective duration estimation, the subjective experience of time and the temporal collocation of events. AD patients performed worse than HC and SCD in prospective timing, and in collocating events in time. The subjective experience of time did not differ between groups. Concerning temporal learning, AD performed worse in ECL than in IBL, whereas SCD performed worse in IBL than in ECL. SCD, MCI and AD patients all showed errors greater than HC in retrospective duration estimation. Results point to implicit temporal learning in externally-cued conditions and retrospective time estimation as possible early markers of cognitive decline.
Collapse
Affiliation(s)
- Alice Teghil
- Department of Psychology, Sapienza" University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy.
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Maddalena Boccia
- Department of Psychology, Sapienza" University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonella Di Vita
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Giulia Zazzaro
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Micaela Sepe Monti
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | | | | | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Cecilia Guariglia
- Department of Psychology, Sapienza" University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Carlo de Lena
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Fabrizia D'Antonio
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Li L, Yang W, Wan Y, Shen H, Wang T, Ping L, Liu C, Chen M, Yu H, Jin S, Cheng Y, Xu X, Zhou C. White matter alterations in mild cognitive impairment revealed by meta-analysis of diffusion tensor imaging using tract-based spatial statistics. Brain Imaging Behav 2023; 17:639-651. [PMID: 37656372 DOI: 10.1007/s11682-023-00791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
The neuropathological mechanism of mild cognitive impairment (MCI) remains unclarified. Diffusion tensor imaging (DTI) studies revealed white matter (WM) microarchitecture alterations in MCI, but consistent findings and conclusions have not yet been drawn. The present coordinate-based meta-analysis (CBMA) of tract-based spatial statistics (TBSS) studies aimed to identify the most prominent and robust WM abnormalities in patients with MCI. A systematic search of relevant studies was conducted through January 2022 to identify TBSS studies comparing fractional anisotropy (FA) between MCI patients and healthy controls (HC). We used the seed-based d mapping (SDM) software to achieve the CBMA and analyze regional FA alterations in MCI. Meta-regression analysis was subsequently applied to explore the potential associations between clinical variables and FA changes. MCI patients demonstrated significantly decreased FA in widely distributed areas in the corpus callosum (CC), including the genu, body, and splenium of the CC, as well as one cluster in the left striatum. FA in the body of the CC and in three clusters in the splenium of the CC was negatively associated with the mean age. Additionally, FA in the genu of the CC and in three clusters in the splenium of the CC had negative correlations with the MMSE scores. Disrupted integrities of the CC and left striatum might play vital roles in the process of cognitive decline. These findings enhanced our understanding of the neural mechanism underlying WM neurodegeneration in MCI and provided perspectives for the early detection and intervention of dementia.Registration number: CRD42022235716.
Collapse
Affiliation(s)
- Longfei Li
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Wei Yang
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Yu Wan
- School of Mental Health, Jining Medical University, Jining, China
| | - Hailong Shen
- School of Mental Health, Jining Medical University, Jining, China
| | - Ting Wang
- Outpatient Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Chuanxin Liu
- School of Mental Health, Jining Medical University, Jining, China
| | - Min Chen
- School of Mental Health, Jining Medical University, Jining, China
| | - Hao Yu
- School of Mental Health, Jining Medical University, Jining, China
| | - Shushu Jin
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cong Zhou
- School of Mental Health, Jining Medical University, Jining, China.
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
12
|
Du C, Dang M, Chen K, Chen Y, Zhang Z. Divergent brain regional atrophy and associated fiber disruption in amnestic and non-amnestic MCI. Alzheimers Res Ther 2023; 15:199. [PMID: 37957768 PMCID: PMC10642051 DOI: 10.1186/s13195-023-01335-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Understanding the pathological characteristics of various mild cognitive impairment (MCI) subtypes is crucial for the differential diagnosis of dementia. The purpose of this study was to feature divergent symptom-deficit profiles in amnestic MCI (aMCI) and non-amnestic MCI (naMCI). METHODS T1 and DTI MRI data from a total of 158 older adults with 50 normal controls, 56 aMCI, and 52 naMCI were included. The voxel-wise gray matter volumes and the number of seed-based white matter fiber bundles were compared among these three groups. Furthermore, correlation and mediation analyses between the neuroimaging indices and cognitive measures were performed. RESULTS The aMCI with specific memory abnormalities was characterized by volumetric atrophy of the left hippocampus but not by damage in the linked white matter fiber bundles. Conversely, naMCI was characterized by both the altered volume of the right inferior frontal gyrus and the significant damage to fiber bundles traversing the region in all three directions, not only affecting fibers around the atrophied area but also distant fibers. Mediation analyses of gray matter-white matter-cognition showed that gray matter atrophy affects the number of fiber bundles and further affects attention and executive function. Meanwhile, fiber bundle damage also affects gray matter volume, which further affects visual processing and language. CONCLUSIONS The divergent structural damage patterns of the MCI subtypes and cognitive dysfunctions highlight the importance of detailed differential diagnoses in the early stages of pathological neurodegenerative diseases to deepen the understanding of dementia subtypes and inform targeted early clinical interventions.
Collapse
Affiliation(s)
- Chao Du
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing, 100875, China
- Research Institute of Intelligent and Complex Systems, Fudan University, Shanghai, 200433, China
| | - Mingxi Dang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing, 100875, China
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, 85006, USA
- Arizona State University, Temple, AZ, 85281, USA
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing, 100875, China.
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
13
|
Xia R, Ren J, Wang M, Wan Y, Dai Y, Li X, Wu Z, Chen S. Effect of acupuncture on brain functional networks in patients with mild cognitive impairment: an activation likelihood estimation meta-analysis. Acupunct Med 2023; 41:259-267. [PMID: 36790017 DOI: 10.1177/09645284221146199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
BACKGROUND Prior research has shown that acupuncture, a traditional Chinese medical therapy, may have a certain therapeutic effect in patients with mild cognitive impairment (MCI). Furthermore, some studies have explored the effects of acupuncture on the brain functional networks of MCI patients to investigate the mechanism of action. Different studies have analysed the brain regions involved in acupuncture-induced changes, but (to our knowledge) these have not been summarized by a systematic review. METHODS We searched PubMed, EMBASE, Cochrane Library, SinoMed, CNKI and other databases in Chinese and English to identify neuroimaging studies of acupuncture interventions in MCI patients. After two stages of literature screening, bias risk assessment and data extraction, brain regions with significant differences were input into GingerALE software. Based on the activation likelihood estimation algorithm, coordinate-based meta-analyses were conducted. RESULTS The changes in functional activation of 95 different areas in 8 trials, including 212 MCI patients, were analysed. The three most commonly used traditional acupuncture point locations in acupuncture interventions for MCI were KI3 (Taixi), LR3 (Taichong) and LI4 (Hegu). The results of the ALE data analysis showed that, after acupuncture intervention, the degree of activation in the anterior cingulate, inferior frontal gyrus, medial frontal gyrus and cerebellar tonsil of MCI patients increased significantly. CONCLUSIONS Acupuncture intervention for MCI appears to change the plasticity of brain function and improve the cognitive function of patients. Due to the small number and low quality of the included studies, the conclusion of this meta-analysis should be treated with caution. REGISTRATION PROSPERO reference CRD42022301056 (http://www.crd.york.ac.uk/PROSPERO).
Collapse
Affiliation(s)
- Rui Xia
- Shenzhen Bao'an Clinical Medical School, Guangdong Medical University, Shenzhen, China
| | - Jinxin Ren
- Guangdong Medical University, Dongguan, China
| | - Mengyang Wang
- Shenzhen Bao'an Clinical Medical School, Guangdong Medical University, Shenzhen, China
| | - Yiwen Wan
- Shenzhen Bao'an Clinical Medical School, Guangdong Medical University, Shenzhen, China
| | - Yalan Dai
- Shenzhen Bao'an Clinical Medical School, Guangdong Medical University, Shenzhen, China
| | - Xingjie Li
- Shenzhen Bao'an Clinical Medical School, Guangdong Medical University, Shenzhen, China
| | - Zhuguo Wu
- Guangdong Medical University, Dongguan, China
| | - Shangjie Chen
- Shenzhen Bao'an Clinical Medical School, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
14
|
Pan A, Liu S, Hu S, Dai J, Yi J. Gray Matter Alterations in Panic Disorder: A Voxel-Wise Meta-Analysis. PSYCHIAT CLIN PSYCH 2023; 33:229-237. [PMID: 38765308 PMCID: PMC11082626 DOI: 10.5152/pcp.2023.23684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/07/2023] [Indexed: 05/22/2024] Open
Abstract
Background Gray matter alterations play a role in the panic disorder's pathophysiology origin. However, the current literature seemed inadequate to reach a consistent conclusion. Therefore, we conducted this gray matter meta-analysis on panic disorder. Methods A systematic review and a voxel-wise meta-analysis based on voxel-based morphometry were conducted for the gray matter studies in patients with panic disorder. The Seed-based d Mapping toolbox was applied for the voxel-wise meta-analysis. Fourteen gray matter studies (954 subjects) were enrolled in the current meta-analysis. The subgroup analysis of typical-onset versus late-onset patients was also performed. At last, the clinical severity was meta-regressed with gray matter alterations. Results Significant gray matter alterations were found in the left para-cingulate gyrus and the right amygdala of panic disorder patients. The subgroup analysis of typical-onset panic disorder patients showed a similar pattern. However, gray matter alterations were demonstrated in the bilateral opercular cortex of late-onset panic disorder patients. A significant association between the clinical severity and the gray matter alterations was found in the fronto-cingulate regions of panic disorder patients. Conclusion Gray matter alterations might represent a significant pillar of panic disorder's neurobiology, especially for the amygdala, cingulate, and frontal regions. Future gray matter studies in panic disorder should be needed to reconfirm this pattern of gray matter alterations.
Collapse
Affiliation(s)
- Anguang Pan
- Department of Radiology, Xishan Hospital, the Seventh People’s Hospital of Wenzhou, Wenzhou, Zhejiang, China
| | - Shaojie Liu
- Hainan Province’s Capital City Compulsory Isolation Drug Rehabilitation Center Hospital, Haikou, Hainan, China
| | - Shijun Hu
- Department of Radiology, Xishan Hospital, the Seventh People’s Hospital of Wenzhou, Wenzhou, Zhejiang, China
| | - Jin Dai
- Nuclear Magnetic Resonance, Wulanchabu Central Hospital, Wulanchabu, Inner Mongolia, China
| | - Juan Yi
- Department of Neurology, General Hospital of Central Theater Command, Wuhan, Hubei, China
| |
Collapse
|
15
|
Gao SL, Yue J, Li XL, Li A, Cao DN, Han SW, Wei ZY, Yang G, Zhang Q. Multimodal magnetic resonance imaging on brain network in amnestic mild cognitive impairment: A mini-review. Medicine (Baltimore) 2023; 102:e34994. [PMID: 37653770 PMCID: PMC10470781 DOI: 10.1097/md.0000000000034994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Amnestic mild cognitive impairment (aMCI) is a stage between normal aging and Alzheimer disease (AD) where individuals experience a noticeable decline in memory that is greater than what is expected with normal aging, but dose not meet the clinical criteria for AD. This stage is considered a transitional phase that puts individuals at a high risk for developing AD. It is crucial to intervene during this stage to reduce the changes of AD development. Recently, advanced multimodal magnetic resonance imaging techniques have been used to study the brain structure and functional networks in individuals with aMCI. Through the use of structural magnetic resonance imaging, diffusion tensor imaging, and functional magnetic resonance imaging, abnormalities in certain brain regions have been observed in individuals with aMCI. Specifically, the default mode network, salience network, and executive control network have been found to show abnormalities in both structure and function. This review aims to provide a comprehensive understanding of the brain structure and functional networks associated with aMCI. By analyzing the existing literature on multimodal magnetic resonance imaging and aMCI, this study seeks to uncover potential biomarkers and gain insight into the underlying pathogenesis of aMCI. This knowledge can then guide the development of future treatments and interventions to delay or prevent the progression of aMCI to AD.
Collapse
Affiliation(s)
- Sheng-Lan Gao
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinhuan Yue
- Shenzhen Frontiers in Chinese Medicine Research Co., Ltd., Shenzhen, China
| | - Xiao-Ling Li
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ang Li
- Sanofi-Aventis China Investment Co., Ltd, Beijing, China
| | - Dan-Na Cao
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Sheng-Wang Han
- Third Ward of Rehabilitation Department, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ze-Yi Wei
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH
| | - Qinhong Zhang
- Shenzhen Frontiers in Chinese Medicine Research Co., Ltd., Shenzhen, China
| |
Collapse
|
16
|
Kasai S, Watanabe K, Umemura Y, Ishimoto Y, Sasaki M, Nagaya H, Tatsuo S, Mikami T, Tamada Y, Ide S, Tomiyama M, Matsuzaka M, Kakeda S. Altered structural hippocampal intra-networks in a general elderly Japanese population with mild cognitive impairment. Sci Rep 2023; 13:13330. [PMID: 37587138 PMCID: PMC10432547 DOI: 10.1038/s41598-023-39569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
Although altered networks inside the hippocampus (hippocampal intra-networks) have been observed in dementia, the evaluation of hippocampal intra-networks using magnetic resonance imaging (MRI) is challenging. We employed conventional structural imaging and incident component analysis (ICA) to investigate the structural covariance of the hippocampal intra-networks. We aimed to assess altered hippocampal intra-networks in patients with mild cognitive impairment (MCI). A cross-sectional study of 2122 participants with 3T MRI (median age 69 years, 60.9% female) were divided into 218 patients with MCI and 1904 cognitively normal older adults (CNOA). By employing 3D T1-weighted imaging, voxels within the hippocampus were entered into the ICA analysis to extract the structural covariance intra-networks within the hippocampus. The ICA extracted 16 intra-networks from the hippocampal structural images, which were divided into two bilateral networks and 14 ipsilateral networks. Of the 16 intra-networks, two (one bilateral network and one ipsilateral networks) were significant predictors of MCI from the CNOA after adjusting for age, sex, education, disease history, and hippocampal volume/total intracranial volume ratio. In conclusion, we found that the relationship between hippocampal intra-networks and MCI was independent from the hippocampal volume. Our results suggest that altered hippocampal intra-networks may reflect a different pathology in MCI from that of brain atrophy.
Collapse
Affiliation(s)
- Sera Kasai
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Keita Watanabe
- Department of Radiology, Kyoto Prefectural University of Medicine, 465 Kajiimachi, Jokyo-ku, Kyoto-shi, Kyoto-fu, Japan.
| | - Yoshihito Umemura
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Yuka Ishimoto
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Miho Sasaki
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Haruka Nagaya
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Soichiro Tatsuo
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Tatsuya Mikami
- Innovation Center for Health Promotion, Hirosaki University, Hirosaki, Japan
| | - Yoshinori Tamada
- Innovation Center for Health Promotion, Hirosaki University, Hirosaki, Japan
| | - Satoru Ide
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Masashi Matsuzaka
- Department of Medical Informatics, Hirosaki University Hospital, Hirosaki, Japan
| | - Shingo Kakeda
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
17
|
Zhang J, Liu Y, Li Z, Hu Q, Huang X, Lv H, Xu J, Yu H. Functional magnetic resonance imaging studies of acupuncture at ST36: a coordinate-based meta-analysis. Front Neurosci 2023; 17:1180434. [PMID: 37360179 PMCID: PMC10287969 DOI: 10.3389/fnins.2023.1180434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Background Functional magnetic resonance imaging (fMRI) has been widely used to investigate the brain effect of acupuncture point Stomach 36 (ST36, Zusanli). However, inconsistent results have hindered our understanding of the neural mechanisms of acupuncture at ST36. Objective To perform a meta-analysis of fMRI studies on acupuncture at ST36 to assess the brain atlas of acupuncture at ST36 from available studies. Method Based on a preregistered protocol in PROSPERO (CRD42019119553), a large set of databases was searched up to August 9, 2021, without language restrictions. Peak coordinates were extracted from clusters that showed significant signal differences before and after acupuncture treatment. A meta-analysis was performed using seed-based d mapping with permutation of subject images (SDM-PSI), a newly improved meta-analytic method. Results A total of 27 studies (27 ST36) were included. This meta-analysis found that ST36 could activate the left cerebellum, the bilateral Rolandic operculum, the right supramarginal gyrus, and the right cerebellum. Functional characterizations showed that acupuncture at ST36 was mainly associated with action and perception. Conclusion Our results provide a brain atlas for acupuncture at ST36, which, besides offering a better understanding of the underlying neural mechanisms, also provides the possibility of future precision therapies.
Collapse
Affiliation(s)
- Jinhuan Zhang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Yongfeng Liu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Zihan Li
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xingxian Huang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hanqing Lv
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haibo Yu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
18
|
Yang C, Gao X, Liu N, Sun H, Gong Q, Yao L, Lui S. Convergent and distinct neural structural and functional patterns of mild cognitive impairment: a multimodal meta-analysis. Cereb Cortex 2023:7169132. [PMID: 37197764 DOI: 10.1093/cercor/bhad167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023] Open
Abstract
Mild cognitive impairment (MCI) is regarded as a transitional stage between normal aging and Alzheimer's disease. Numerous voxel-based morphometry (VBM) and resting-state fMRI (rs-fMRI) studies have provided strong evidence of abnormalities in the structure and intrinsic function of brain regions in MCI. Studies have recently begun to explore their association but have not employed systematic information in this pursuit. Herein, a multimodal meta-analysis was performed, which included 43 VBM datasets (1,247 patients and 1,352 controls) of gray matter volume (GMV) and 42 rs-fMRI datasets (1,468 patients and 1,605 controls) that combined 3 metrics: amplitude of low-frequency fluctuation, the fractional amplitude of low-frequency fluctuation, and regional homogeneity. Compared to controls, patients with MCI displayed convergent reduced regional GMV and altered intrinsic activity, mainly in the default mode network and salience network. Decreased GMV alone in ventral medial prefrontal cortex and altered intrinsic function alone in bilateral dorsal anterior cingulate/paracingulate gyri, right lingual gyrus, and cerebellum were identified, respectively. This meta-analysis investigated complex patterns of convergent and distinct brain alterations impacting different neural networks in MCI patients, which contributes to a further understanding of the pathophysiology of MCI.
Collapse
Affiliation(s)
- Chengmin Yang
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Xin Gao
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Naici Liu
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Hui Sun
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Li Yao
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| |
Collapse
|
19
|
Song W, Zhao L, Li X, Wu B. Altered brain activity in patients with end-stage renal disease: A meta-analysis of resting-state functional imaging. Brain Behav 2023:e3057. [PMID: 37190900 DOI: 10.1002/brb3.3057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
INTRODUCTION Previous studies have revealed abnormal resting-state brain activity in patients with end-stage renal disease (ESRD); however, the results are inconsistent. Thus, we conducted a coordinate-based meta-analysis of whole-brain resting-state functional neuroimaging studies in ESRD to identify the most consistent neural activity alterations in ESRD patients and explore their relation to serological indicators. METHODS A comprehensive literature search strategy was applied to select pertinent studies up to December 2022 in PubMed, Web of Science, and Embase databases. Voxel-wise meta-analysis was conducted via the latest meta-analytic algorithm, seed-based d mapping with permutation of subject images software. Meta-regression analyses were also conducted to explore the potential effect of clinical variables on resting-state neural activity. RESULTS Eleven studies comprising 304 patients with ESRD and 296 healthy controls (HCs) were included. Compared with HCs, ESRD patients showed decreased brain activity in the default mode network (DMN) regions, including the bilateral anterior cingulate cortex/medial prefrontal cortex, bilateral midcingulate cortex/posterior cingulate cortex, bilateral precuneus, and right angular gyrus. The neural activities in the bilateral midcingulate cortex, bilateral midcingulate cortex/posterior cingulate cortex, and right angular gyrus were significantly associated with serological indexes including hemoglobin, urea, and creatinine levels. CONCLUSION The present study provides a quantitative overview of brain activity alterations in patients with ESRD, and the results confirm the essential role of the DMN in ESRD patients, which may be the potential neural basis of their cognitive deficits. Additionally, some serological indicators may be used as predictive markers for progressive impairment of brain function.
Collapse
Affiliation(s)
- Wenjuan Song
- Department of Radiology, First People's Hospital of Linping District, Hangzhou, China
| | - Liuyan Zhao
- Department of Radiology, First People's Hospital of Linping District, Hangzhou, China
| | - Xuekun Li
- Department of Magnetic Resonance, First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Baolin Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Brain Macro-Structural Alterations in Aging Rats: A Longitudinal Lifetime Approach. Cells 2023; 12:cells12030432. [PMID: 36766774 PMCID: PMC9914014 DOI: 10.3390/cells12030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Aging is accompanied by macro-structural alterations in the brain that may relate to age-associated cognitive decline. Animal studies could allow us to study this relationship, but so far it remains unclear whether their structural aging patterns correspond to those in humans. Therefore, by applying magnetic resonance imaging (MRI) and deformation-based morphometry (DBM), we longitudinally screened the brains of male RccHan:WIST rats for structural changes across their average lifespan. By combining dedicated region of interest (ROI) and voxel-wise approaches, we observed an increase in their global brain volume that was superimposed by divergent local morphologic alterations, with the largest aging effects in early and middle life. We detected a modality-dependent vulnerability to shrinkage across the visual, auditory, and somato-sensory cortical areas, whereas the piriform cortex showed partial resistance. Furthermore, shrinkage emerged in the amygdala, subiculum, and flocculus as well as in frontal, parietal, and motor cortical areas. Strikingly, we noticed the preservation of ectorhinal, entorhinal, retrosplenial, and cingulate cortical regions, which all represent higher-order brain areas and extraordinarily grew with increasing age. We think that the findings of this study will further advance aging research and may contribute to the establishment of interventional approaches to preserve cognitive health in advanced age.
Collapse
|
21
|
Jockwitz C, Krämer C, Stumme J, Dellani P, Moebus S, Bittner N, Caspers S. Characterization of the angular gyrus in an older adult population: a multimodal multilevel approach. Brain Struct Funct 2023; 228:83-102. [PMID: 35904594 DOI: 10.1007/s00429-022-02529-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/26/2022] [Indexed: 01/07/2023]
Abstract
The angular gyrus (AG) has been associated with multiple cognitive functions, such as language, spatial and memory functions. Since the AG is thought to be a cross-modal hub region suffering from significant age-related structural atrophy, it may also play a key role in age-related cognitive decline. However, the exact relation between structural atrophy of the AG and cognitive decline in older adults is not fully understood, which may be related to two aspects: First, the AG is cytoarchitectonically divided into two areas, PGa and PGp, potentially sub-serving different cognitive functions. Second, the older adult population is characterized by high between-subjects variability which requires targeting individual phenomena during the aging process. We therefore performed a multimodal (gray matter volume [GMV], resting-state functional connectivity [RSFC] and structural connectivity [SC]) characterization of AG subdivisions PGa and PGp in a large older adult population, together with relations to age, cognition and lifestyle on the group level. Afterwards, we switched the perspective to the individual, which is especially important when it comes to the assessment of individual patients. The AG can be considered a heterogeneous structure in of the older brain: we found the different AG parts to be associated with different patterns of whole-brain GMV associations as well as their associations with RSFC, and SC patterns. Similarly, differential effects of age, cognition and lifestyle on the GMV of AG subdivisions were observed. This suggests each region to be structurally and functionally differentially involved in the older adult's brain network architecture, which was supported by differential molecular and genetic patterns, derived from the EBRAINS multilevel atlas framework. Importantly, individual profiles deviated considerably from the global conclusion drawn from the group study. Hence, general observations within the older adult population need to be carefully considered, when addressing individual conditions in clinical practice.
Collapse
Affiliation(s)
- Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany. .,Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| | - Camilla Krämer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Johanna Stumme
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Paulo Dellani
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Susanne Moebus
- Institute of Urban Public Health, University of Duisburg-Essen, Essen, Germany
| | - Nora Bittner
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
22
|
Liu L, Wang T, Du X, Zhang X, Xue C, Ma Y, Wang D. Concurrent Structural and Functional Patterns in Patients With Amnestic Mild Cognitive Impairment. Front Aging Neurosci 2022; 14:838161. [PMID: 35663572 PMCID: PMC9161636 DOI: 10.3389/fnagi.2022.838161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Amnestic mild cognitive impairment (aMCI) is a clinical subtype of MCI, which is known to have a high risk of developing Alzheimer's disease (AD). Although neuroimaging studies have reported brain abnormalities in patients with aMCI, concurrent structural and functional patterns in patients with aMCI were still unclear. In this study, we combined voxel-based morphometry (VBM), amplitude of low-frequency fluctuations (ALFFs), regional homogeneity (Reho), and resting-state functional connectivity (RSFC) approaches to explore concurrent structural and functional alterations in patients with aMCI. We found that, compared with healthy controls (HCs), both ALFF and Reho were decreased in the right superior frontal gyrus (SFG_R) and right middle frontal gyrus (MFG_R) of patients with aMCI, and both gray matter volume (GMV) and Reho were decreased in the left inferior frontal gyrus (IFG_L) of patients with aMCI. Furthermore, we took these overlapping clusters from VBM, ALFF, and Reho analyses as seed regions to analyze RSFC. We found that, compared with HCs, patients with aMCI had decreased RSFC between SFG_R and the right temporal lobe (subgyral) (TL_R), the MFG_R seed and left superior temporal gyrus (STG_L), left inferior parietal lobule (IPL_L), and right anterior cingulate cortex (ACC_R), the IFG_L seed and left precentral gyrus (PRG_L), left cingulate gyrus (CG_L), and IPL_L. These findings highlighted shared imaging features in structural and functional magnetic resonance imaging (MRI), suggesting that SFG_R, MFG_R, and IFG_L may play a major role in the pathophysiology of aMCI, which might be useful to better understand the underlying neural mechanisms of aMCI and AD.
Collapse
Affiliation(s)
- Li Liu
- Affiliated Mental Health Center, Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tenglong Wang
- School of Humanities and Management, Graduate School of Wannan Medical College, Wuhu, China
| | - Xiangdong Du
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiaobin Zhang
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Chuang Xue
- Affiliated Mental Health Center, Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Ma
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Dong Wang
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| |
Collapse
|
23
|
Disrupted Value-Directed Strategic Processing in Individuals with Mild Cognitive Impairment: Behavioral and Neural Correlates. Geriatrics (Basel) 2022; 7:geriatrics7030056. [PMID: 35645279 PMCID: PMC9149834 DOI: 10.3390/geriatrics7030056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Value-directed strategic processing involves attending to higher-value information while inhibiting lower-value information. This preferential processing is relatively preserved in cognitively normal older adults but is impaired in individuals with dementia. No studies have investigated whether value-directed strategic processing is disrupted in earlier stages of cognitive decline, namely, mild cognitive impairment (MCI). The current study examined behavioral and EEG differences in value-directed strategic processing between 18 individuals with MCI and 18 cognitively normal older controls using a value-directed list learning task. Behaviorally, individuals with MCI recalled fewer total and high-value words compared to controls, but no group differences were observed in low-value word recall. Neurally, individuals with MCI had reduced theta synchronization relative to controls between 100 and 200 ms post-stimulus. Greater alpha desynchronization was observed for high- versus low-value words between 300 and 400 ms in controls but not in the MCI group. The groups showed some processing similarities, with greater theta synchronization for low-value words between 700 and 800 ms and greater alpha desynchronization for high-value words between 500 and 1100 ms. Overall, value-directed strategic processing was compromised in individuals with MCI on both behavioral and neural measures relative to controls. These findings add to the growing body of literature on differences between typical cognitive aging and MCI.
Collapse
|
24
|
Imabayashi E, Ishii K, Toyohara J, Wagatsuma K, Sakata M, Tago T, Ishibashi K, Kojima N, Kohda N, Tokumaru AM, Kim H. Possibility of Enlargement in Left Medial Temporal Areas Against Cerebral Amyloid Deposition Observed During Preclinical Stage. Front Aging Neurosci 2022; 14:847094. [PMID: 35517046 PMCID: PMC9063485 DOI: 10.3389/fnagi.2022.847094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative changes in the preclinical stage of Alzheimer’s disease (AD) have recently been the focus of attention because they may present a range of treatment opportunities. A total of 134 elderly volunteers who lived in a local community were investigated and grouped into preclinical and mild cognitive impairment stages according to the Clinical Dementia Rating test; we also estimated amyloid deposition in the brain using positron emission tomography (PET). A significant interaction between clinical stage and amyloid PET positivity on cerebral atrophy was observed in the bilateral parietal lobe, parahippocampal gyri, hippocampus, fusiform gyrus, and right superior and middle temporal gyri, as previously reported. Early AD-specific voxel of interest (VOI) analysis was also applied and averaged Z-scores in the right, left, bilateral, and right minus left medial temporal early AD specific area were computed. We defined these averaged Z-scores in the right, left, bilateral, and right minus left early AD specific VOI in medial temporal area as R-MedT-Atrophy-score, L-MedT-Atrophy-score, Bil-MedT-Atrophy-score, and R_L-MedT-Atrophy-score, respectively. It revealed that the R_L-MedT-Atrophy-scores were significantly larger in the amyloid-positive than in the amyloid-negative cognitively normal (CN) elderly group, that is, the right medial temporal areas were smaller than left in amyloid positive CN group and these left-right differences were significantly larger in amyloid positive than amyloid negative CN elderly group. The L-MedT-Atrophy-score was slightly larger (p = 0.073), that is, the left medial temporal area was smaller in the amyloid-negative CN group than in the amyloid-positive CN group. Conclusively, the left medial temporal area could be larger in CN participants with amyloid deposition than in those without amyloid deposition. The area under the receiver operating characteristic curve for differentiating amyloid positivity among CN participants using the R_L-MedT-Atrophy-scores was 0.73; the sensitivity and specificity were 0.828 and 0.606, respectively. Although not significant, a negative correlation was observed between the composite cerebral standardized uptake value ratio in amyloid PET images and L-MedT-Atrophy-score in CN group. The left medial temporal volume might become enlarged because of compensatory effects against AD pathology occurring at the beginning of the amyloid deposition.
Collapse
Affiliation(s)
- Etsuko Imabayashi
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Diagnostic and Therapeutic Nuclear Medicine Group, Department of Molecular Imaging and Theranostics, Quantum Life and Medical Science Directorate, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- *Correspondence: Etsuko Imabayashi, ,
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kei Wagatsuma
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Muneyuki Sakata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kenji Ishibashi
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Narumi Kojima
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Noriyuki Kohda
- Nutraceuticals Division, Otsu Nutraceuticals Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Aya M. Tokumaru
- Department of Radiology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hunkyung Kim
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
25
|
Volume, density, and thickness brain abnormalities in mild cognitive impairment: an ALE meta-analysis controlling for age and education. Brain Imaging Behav 2022; 16:2335-2352. [PMID: 35416608 DOI: 10.1007/s11682-022-00659-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2022] [Indexed: 11/02/2022]
Abstract
Prior meta-analyses have provided important information regarding which brain areas are structurally compromised in individuals with mild cognitive impairment (MCI). These studies have not however separated volume, density, and thickness, controlled for important demographic influences, considered null findings, or recognized studies indicating increased brain volumes in MCI individuals. Furthermore, there is a question as to whether deficits extend into cortical regions, and also into the thalamus. This study aims to address these issues using activation likelihood estimation (ALE) analyses with a sample size more than twice that of prior meta-analyses. A total of 71 studies were identified and entered into the ALE analysis which consisted of 2262 with MCI and 1902 healthy controls. Three major clusters were identified showing decreased gray matter volume in the MCI group compared to controls, with the most salient decreases being in the hippocampus, parahippocampal gyrus, and the amygdala. Reduced thalamic volume was also observed, but to a lesser extent. Density was reduced in the left hippocampus, while thickness was reduced in the uncus. No significant cluster emerged from an ALE meta-analysis of studies finding volume increases in MCI individuals. While the MCI group was significantly older and less educated than controls, controlling for these factors still resulted in significant, albeit attenuated findings. These results support hippocampal and parahippocampal deficits in MCI, and further highlight the amygdala, thalamus, and uncus as other areas to be considered in future MCI studies.
Collapse
|
26
|
Zhang X, Xue C, Cao X, Yuan Q, Qi W, Xu W, Zhang S, Huang Q. Altered Patterns of Amplitude of Low-Frequency Fluctuations and Fractional Amplitude of Low-Frequency Fluctuations Between Amnestic and Vascular Mild Cognitive Impairment: An ALE-Based Comparative Meta-Analysis. Front Aging Neurosci 2021; 13:711023. [PMID: 34531735 PMCID: PMC8438295 DOI: 10.3389/fnagi.2021.711023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Changes in the amplitude of low-frequency fluctuations (ALFF) and the fractional amplitude of low-frequency fluctuations (fALFF) have provided stronger evidence for the pathophysiology of cognitive impairment. Whether the altered patterns of ALFF and fALFF differ in amnestic cognitive impairment (aMCI) and vascular mild cognitive impairment (vMCI) is largely unknown. The purpose of this study was to explore the ALFF/fALFF changes in the two diseases and to further explore whether they contribute to the diagnosis and differentiation of these diseases. Methods: We searched PubMed, Ovid, and Web of Science databases for articles on studies using the ALFF/fALFF method in patients with aMCI and vMCI. Based on the activation likelihood estimation (ALE) method, connectivity modeling based on coordinate meta-analysis and functional meta-analysis was carried out. Results: Compared with healthy controls (HCs), patients with aMCI showed increased ALFF/fALFF in the bilateral parahippocampal gyrus/hippocampus (PHG/HG), right amygdala, right cerebellum anterior lobe (CAL), left middle temporal gyrus (MTG), left cerebrum temporal lobe sub-gyral, left inferior temporal gyrus (ITG), and left cerebrum limbic lobe uncus. Meanwhile, decreased ALFF/fALFF values were also revealed in the bilateral precuneus (PCUN), bilateral cuneus (CUN), and bilateral posterior cingulate (PC) in patients with aMCI. Compared with HCs, patients with vMCI predominantly showed decreased ALFF/fALFF in the bilateral CUN, left PCUN, left PC, and right cingulate gyrus (CG). Conclusions: The present findings suggest that ALFF and fALFF displayed remarkable altered patterns between aMCI and vMCI when compared with HCs. Thus, the findings of this study may serve as a reliable tool for distinguishing aMCI from vMCI, which may help understand the pathophysiological mechanisms of these diseases.
Collapse
Affiliation(s)
- Xulian Zhang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Cao
- Division of Statistics and Data Science, Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Qianqian Yuan
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shaojun Zhang
- Department of Statistics, University of Florida, Gainesville, FL, United States
| | - Qingling Huang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Zhang J, Wu X, Nie D, Zhuo Y, Li J, Hu Q, Xu J, Yu H. Magnetic Resonance Imaging Studies on Acupuncture Therapy in Depression: A Systematic Review. Front Psychiatry 2021; 12:670739. [PMID: 34489749 PMCID: PMC8417590 DOI: 10.3389/fpsyt.2021.670739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating studies had been performed using magnetic resonance imaging (MRI) to understand the neural mechanism of acupuncture therapy for depression. However, inconsistencies remain due to differences in research designs and MRI analytical methods. Therefore, we aim to summarize the current MRI research and provide useful information for further research by identifying papers published in English and Chinese about MRI studies on acupuncture for depression up to November 2020. A total of 22 studies met the inclusion criteria, including 810 depression patients and 416 health controls (HCs). The applied designs of these studies are mainly random control trial and pre-post designs. The MRI analytical methods are mainly (fractional) amplitude of low-frequency fluctuation (fALFF/ALFF) and functional connectivity (FC), whereas a small subset of studies used voxel-based morphometry (VBM) and diffusion tensor imaging (DTI). The most consistent functional MRI (fMRI) results showed increased N-acetylaspartate/creatine (NAA/Cr) ratios, increased ALFF in the right precuneus, decreased ALFF in the inferior frontal gyrus (IFG), and increased FC of the anterior cingulate cortex (ACC). In contrast, no significant neurological changes were identified in any of the DTI or VBM studies. However, clear, reliable conclusions cannot be drawn due to the use of different designs, analytical methods, seed points selected, types of depression, acupuncture points, and so on. Improved report specifications, well-designed studies, consistent analytical methods, and larger sample sizes will enable the field to better elucidate the underlying mechanisms of acupuncture in depressed patients.
Collapse
Affiliation(s)
- Jinhuan Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China.,Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoxiong Wu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dehui Nie
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuanyuan Zhuo
- Acupuncture Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jiaying Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haibo Yu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China.,Acupuncture Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|