1
|
Wang X, Shen Y, Wei W, Bai Y, Li P, Ding K, Zhou Y, Xie J, Zhang X, Guo Z, Wang M. Alterations of regional homogeneity and functional connectivity in different hoehn and yahr stages of Parkinson's disease. Brain Res Bull 2024; 218:111110. [PMID: 39486465 DOI: 10.1016/j.brainresbull.2024.111110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
PURPOSE Using regional homogeneity (ReHo) and functional connectivity (FC) to assess alterations in brain function and their potential relation to different Hoehn and Yahr (H&Y) stages in Parkinson's disease (PD). MATERIALS AND METHODS 66 patients with PD and 57 age- and sex-matched healthy control (HC) participants were recruited. All subjects underwent clinical assessments and resting-state functional magnetic resonance imaging (rs-fMRI) scanning. We analyzed alterations in regional brain activity using ReHo analyses in all subjects and further explored their relationship to disease severity. Finally, the brain region significantly associated with disease severity was used as a seed point to analyze the FC changes between it and other brain regions in the whole brain. RESULTS Compared with HC participants, PD patients showed a significant decrease ReHo in the sensorimotor network (bilateral precentral and postcentral gyrus). The ReHo value of the left precentral gyrus in PD patients decreased with increasing H&Y stage and correlated negatively with Unified Parkinson's Disease Rating Scale (UPDRS) III scores. Further, FC analysis of the left precentral gyrus as a region of interest showed that functional activity between the left precentral gyrus and sensorimotor network, default network, and visual network was decreased. CONCLUSION The left precentral gyrus plays an important role in the pathophysiological mechanisms of PD patients, and this finding further highlights the potential of the primary motor cortex (M1) as a non-invasive therapeutic target for neuromodulation in PD patients.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Yu Shen
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Wei Wei
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Yan Bai
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Panlong Li
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Kaiyue Ding
- Department of Medical Imaging, Henan University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yihang Zhou
- Department of Medical Imaging, Xinxiang Medical University & Henan Provincial People's Hospital, Zhengzhou, China
| | - Jiapei Xie
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | | | - Zhiping Guo
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China; Health Management Center of Henan Province, Zhengzhou University People's Hospital & FuWai Central China Cardiovascular Hospital, Zhengzhou, China.
| | - Meiyun Wang
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China; Laboratory of Brain Science and Brain-Like Intelligence Technology, Biomedical Research Institute, Henan Academy of Sciences, Zhengzhou, China.
| |
Collapse
|
2
|
Liu Y, Yuan J, Tan C, Wang M, Zhou F, Song C, Tang Y, Li X, Liu Q, Shen Q, Congli H, Liu J, Cai S, Liao H. Exploring brain asymmetry in early-stage Parkinson's disease through functional and structural MRI. CNS Neurosci Ther 2024; 30:e14874. [PMID: 39056398 PMCID: PMC11273215 DOI: 10.1111/cns.14874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVE This study explores the correlation between asymmetrical brain functional activity, gray matter asymmetry, and the severity of early-stage Parkinson's disease (PD). METHODS Ninety-three early-stage PD patients (ePD, H-Y stages 1-2.5) were recruited, divided into 47 mild (ePD-mild, H-Y stages 1-1.5) and 46 moderate (ePD-moderate, H-Y stages 2-2.5) cases, alongside 43 matched healthy controls (HCs). The study employed the Hoehn and Yahr (H-Y) staging system for disease severity assessment and utilized voxel-mirrored homotopic connectivity (VMHC) for analyzing brain functional activity asymmetry. Asymmetry voxel-based morphometry analysis (VBM) was applied to evaluate gray matter asymmetry. RESULTS The study found that, relative to HCs, both PD subgroups demonstrated reduced VMHC values in regions including the amygdala, putamen, inferior and middle temporal gyrus, and cerebellum Crus I. The ePD-moderate group also showed decreased VMHC in additional regions such as the postcentral gyrus, lingual gyrus, and superior frontal gyrus, with notably lower VMHC in the superior frontal gyrus compared to the ePD-mild group. A negative correlation was observed between the mean VMHC values in the superior frontal gyrus and H-Y stages, UPDRS, and UPDRS-III scores. No significant asymmetry in gray matter was detected. CONCLUSIONS Asymmetrical brain functional activity is a significant characteristic of PD, which exacerbates as the disease severity increases, resembling the dissemination of Lewy bodies across the PD neurological framework. VMHC emerges as a potent tool for characterizing disease severity in early-stage PD.
Collapse
Affiliation(s)
- Yujing Liu
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Jiaying Yuan
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Changlian Tan
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Min Wang
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Fan Zhou
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Chendie Song
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuqing Tang
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Xv Li
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Qinru Liu
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Qin Shen
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Huang Congli
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Jun Liu
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Clinical Research Center for Medical Imaging in Hunan ProvinceChangshaChina
| | - Sainan Cai
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Clinical Research Center for Medical Imaging in Hunan ProvinceChangshaChina
| |
Collapse
|
3
|
Cao X, Gan C, Zhang H, Yuan Y, Sun H, Zhang L, Wang L, Zhang L, Zhang K. Altered perivascular spaces in subcortical white matter in Parkinson's disease patients with levodopa-induced dyskinesia. NPJ Parkinsons Dis 2024; 10:71. [PMID: 38548788 PMCID: PMC10978930 DOI: 10.1038/s41531-024-00688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Dilated perivascular spaces (PVS) have emerged as a pathological hallmark in various neurological conditions, including Parkinson's disease (PD). Levodopa-induced dyskinesia (LID), an intractable motor complication of PD, remains enigmatic regarding the distribution patterns of PVS. Our objective was to scrutinize the percent PVS (pPVS) changes within PD patients with LID (PD-LID). In total, 132 individuals were enrolled, including PD-LID (n = 42), PD patients without LID (PD-nLID, n = 45), and healthy controls (HCs, n = 45). Employing an automated approach for PVS quantification based on structural magnetic resonance imaging, we comprehensively evaluated total pPVS in subcortical white matter globally and regionally. A significant increase in global pPVS was observed in PD patients versus HCs, particularly evident in PD-LID relative to HCs. Within the PD-LID group, elevated pPVS was discerned in the right inferior frontal gyrus region (rIFG) (pars opercularis), contrasting with PD-nLID and HCs. Moreover, PD patients exhibited increased pPVS in bilateral superior temporal regions compared to HCs. Notably, pPVS in the rIFG positively correlated with dyskinetic symptoms and could well identify LID. Our findings unveiled PVS alternations in subcortical white matter in PD-LID at both global and regional levels, highlighting the increased pPVS in rIFG as a prospective imaging marker for LID.
Collapse
Affiliation(s)
- Xingyue Cao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Caiting Gan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Heng Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yongsheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Huimin Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Li Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lina Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lian Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
4
|
Slézia A, Hegedüs P, Rusina E, Lengyel K, Solari N, Kaszas A, Balázsfi D, Botzanowski B, Acerbo E, Missey F, Williamson A, Hangya B. Behavioral, neural and ultrastructural alterations in a graded-dose 6-OHDA mouse model of early-stage Parkinson's disease. Sci Rep 2023; 13:19478. [PMID: 37945922 PMCID: PMC10636184 DOI: 10.1038/s41598-023-46576-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Studying animal models furthers our understanding of Parkinson's disease (PD) pathophysiology by providing tools to investigate detailed molecular, cellular and circuit functions. Different versions of the neurotoxin-based 6-hydroxydopamine (6-OHDA) model of PD have been widely used in rats. However, these models typically assess the result of extensive and definitive dopaminergic lesions that reflect a late stage of PD, leading to a paucity of studies and a consequential gap of knowledge regarding initial stages, in which early interventions would be possible. Additionally, the better availability of genetic tools increasingly shifts the focus of research from rats to mice, but few mouse PD models are available yet. To address these, we characterize here the behavioral, neuronal and ultrastructural features of a graded-dose unilateral, single-injection, striatal 6-OHDA model in mice, focusing on early-stage changes within the first two weeks of lesion induction. We observed early onset, dose-dependent impairments of overall locomotion without substantial deterioration of motor coordination. In accordance, histological evaluation demonstrated a partial, dose-dependent loss of dopaminergic neurons of substantia nigra pars compacta (SNc). Furthermore, electron microscopic analysis revealed degenerative ultrastructural changes in SNc dopaminergic neurons. Our results show that mild ultrastructural and cellular degradation of dopaminergic neurons of the SNc can lead to certain motor deficits shortly after unilateral striatal lesions, suggesting that a unilateral dose-dependent intrastriatal 6-OHDA lesion protocol can serve as a successful model of the early stages of Parkinson's disease in mice.
Collapse
Affiliation(s)
- Andrea Slézia
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary.
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France.
- Institute of Cognitive Neuroscience and Psychology, Eotvos Lorand Research Network, Budapest, Hungary.
- Institut de Neurosciences de la Timone, CNRS UMR 7289, Aix-Marseille Université, Marseille, France.
| | - Panna Hegedüs
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Evgeniia Rusina
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Katalin Lengyel
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Nicola Solari
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Attila Kaszas
- Institut de Neurosciences de la Timone, CNRS UMR 7289, Aix-Marseille Université, Marseille, France
| | - Diána Balázsfi
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Boris Botzanowski
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Emma Acerbo
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Florian Missey
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Adam Williamson
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France.
- International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.
| | - Balázs Hangya
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary.
| |
Collapse
|
5
|
Li J, Tan C, Zhang L, Cai S, Shen Q, Liu Q, Wang M, Song C, Zhou F, Yuan J, Liu Y, Lan B, Liao H. Neural functional network of early Parkinson's disease based on independent component analysis. Cereb Cortex 2023; 33:11025-11035. [PMID: 37746803 DOI: 10.1093/cercor/bhad342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
This work explored neural network changes in early Parkinson's disease: Resting-state functional magnetic resonance imaging was used to investigate functional alterations in different stages of Parkinson's disease (PD). Ninety-five PD patients (50 early/mild and 45 early/moderate) and 37 healthy controls (HCs) were included. Independent component analysis revealed significant differences in intra-network connectivity, specifically in the default mode network (DMN) and right frontoparietal network (RFPN), in both PD groups compared to HCs. Inter-network connectivity analysis showed reduced connectivity between the executive control network (ECN) and DMN, as well as ECN-left frontoparietal network (LFPN), in early/mild PD. Early/moderate PD exhibited decreased connectivity in ECN-LFPN, ECN-RFPN, ECN-DMN, and DMN-auditory network, along with increased connectivity in LFPN-cerebellar network. Correlations were found between ECN-DMN and ECN-LFPN connections with UPDRS-III scores in early/mild PD. These findings suggest that PD progression involves dysfunction in multiple intra- and inter-networks, particularly implicating the ECN, and a wider range of abnormal functional networks may mark the progression of the disease.
Collapse
Affiliation(s)
- Junli Li
- Department of Medical Imaging, Huizhou Central People's Hospital, Eling North Road, Huicheng District, Huizhou, Guangdong 516001, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Lin Zhang
- Department of Radiology, Chengdu Fifth People's Hospital, Mashi Street, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Qin Shen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Qinru Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Min Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - ChenDie Song
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Fan Zhou
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Jiaying Yuan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Yujing Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Bowen Lan
- Department of Medical Imaging, Huizhou Central People's Hospital, Eling North Road, Huicheng District, Huizhou, Guangdong 516001, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| |
Collapse
|
6
|
Huang T, Tang L, Zhao J, Shang S, Chen Y, Tian Y, Zhang Y. Drooling disrupts the brain functional connectivity network in Parkinson's disease. CNS Neurosci Ther 2023; 29:3094-3107. [PMID: 37144606 PMCID: PMC10493659 DOI: 10.1111/cns.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS This study aimed to investigate the causal interaction between significant sensorimotor network (SMN) regions and other brain regions in Parkinson's disease patients with drooling (droolers). METHODS Twenty-one droolers, 22 PD patients without drooling (non-droolers), and 22 matched healthy controls underwent 3T-MRI resting-state scans. We performed independent component analysis and Granger causality analysis to determine whether significant SMN regions help predict other brain areas. Pearson's correlation was computed between imaging characteristics and clinical characteristics. ROC curves were plotted to assess the diagnostic performance of effective connectivity (EC). RESULTS Compared with non-droolers and healthy controls, droolers showed abnormal EC of the right caudate nucleus (CAU.R) and right postcentral gyrus to extensive brain regions. In droolers, increased EC from the CAU.R to the right middle temporal gyrus was positively correlated with MDS-UPDRS, MDS-UPDRS II, NMSS, and HAMD scores; increased EC from the right inferior parietal lobe to CAU.R was positively correlated with MDS-UPDRS score. ROC curve analysis showed that these abnormal ECs are of great significance in diagnosing drooling in PD. CONCLUSION This study identified that PD patients with drooling have abnormal EC in the cortico-limbic-striatal-cerebellar and cortio-cortical networks, which could be potential biomarkers for drooling in PD.
Collapse
Affiliation(s)
- Ting Huang
- Department of Neurology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Li‐Li Tang
- Department of NeurologyNanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Jin‐Ying Zhao
- Department of Neurology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Song‖an Shang
- Department of Medical Imaging Center, Clinical Medical CollegeYangzhou UniversityYangzhouChina
| | - Yu‐Chen Chen
- Department of Radiology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - You‐Yong Tian
- Department of Neurology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Ying‐Dong Zhang
- Department of Neurology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
7
|
Zhou F, Tan C, Song C, Wang M, Yuan J, Liu Y, Cai S, Liu Q, Shen Q, Tang Y, Li X, Liao H. Abnormal intra- and inter-network functional connectivity of brain networks in early-onset Parkinson's disease and late-onset Parkinson's disease. Front Aging Neurosci 2023; 15:1132723. [PMID: 37032830 PMCID: PMC10080130 DOI: 10.3389/fnagi.2023.1132723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Objective The purpose of this study is to look into the altered functional connectivity of brain networks in Early-Onset Parkinson's Disease (EOPD) and Late-Onset Parkinson's Disease (LOPD), as well as their relationship to clinical symptoms. Methods A total of 50 patients with Parkinson' disease (28 EOPD and 22 LOPD) and 49 healthy controls (25 Young Controls and 24 Old Controls) were admitted to our study. Employing independent component analysis, we constructed the brain networks of EOPD and Young Controls, LOPD and Old Controls, respectively, and obtained the functional connectivity alterations in brain networks. Results Cerebellar network (CN), Sensorimotor Network (SMN), Executive Control Network (ECN), and Default Mode Network (DMN) were selected as networks of interest. Compared with their corresponding health controls, EOPD showed increased functional connectivity within the SMN and ECN and no abnormalities of inter-network functional connectivity were found, LOPD demonstrated increased functional connectivity within the ECN while decreased functional connectivity within the CN. Furthermore, in LOPD, functional connectivity between the SMN and DMN was increased. The functional connectivity of the post-central gyrus within the SMN in EOPD was inversely correlated with the Unified Parkinson's Disease Rating Scale Part III scores. Age, age of onset, and MMSE scores are significantly different between EOPD and LOPD (p < 0.05). Conclusion There is abnormal functional connectivity of networks in EOPD and LOPD, which could be the manifestation of the associated pathological damage or compensation.
Collapse
|
8
|
Wen X, Chi S, Yu Y, Wang G, Zhang X, Wang Z, Gesang M, Luo B. The Cerebellum is Involved in Motor Improvements After Repetitive Transcranial Magnetic Stimulation in Parkinson's Disease Patients. Neuroscience 2022; 499:1-11. [PMID: 35817220 DOI: 10.1016/j.neuroscience.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
Accumulating evidence indicates that repetitive transcranial magnetic stimulation (rTMS) ameliorates motor symptoms in patients with Parkinson's disease (PD); however, patients' responses to rTMS are different. Here, we aimed to explore neural activity changes in patients with PD exhibiting different responses to high-frequency rTMS treatments using functional magnetic resonance imaging (fMRI). We treated 24 patients with PD using 10-session rTMS (10 Hz) over the supplementary motor area (SMA) for 10 days. Resting-state functional magnetic resonance imaging (rs-fMRI), the Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) and other neuropsychological scales were performed at the baseline and endpoint of rTMS treatment. The changes in the fractional amplitude of low-frequency fluctuation (fALFF) were calculated. Significant improvements were observed in motor symptoms, especially in the sub-symptoms of bradykinesia. All the participants were subsequently stratified into responders and non-responders according to the UPDRS-III reduction. We identified increased fALFF values in the left Crus II of the cerebellar hemisphere and bilateral thalamus as responsive signs to rTMS. Furthermore, the motor response to rTMS over the SMA, measured by the reduction in UPDRS-III and bradykinesia scores, was positively associated with increased fALFF values in the left Crus2 of cerebellar hemisphere, left lobule VIIB of cerebellar hemisphere, right lobule VI of the cerebellar hemisphere, and the right postcentral gyrus. These findings provide evidence for the involvement of cerebellar activity in the motor response to rTMS treatment.
Collapse
Affiliation(s)
- Xinrui Wen
- Department of Neurology & Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shumei Chi
- Department of Neurology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yang Yu
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guanjun Wang
- Department of Radiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoying Zhang
- Department of Neurology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zheng Wang
- Department of Neurology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meiduo Gesang
- Department of Neurology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Benyan Luo
- Department of Neurology & Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|