1
|
Sporn S, Galea JM. The effects of haloperidol on motor vigour and movement fusion during sequential reaching. PLoS One 2025; 20:e0316894. [PMID: 39888903 PMCID: PMC11785334 DOI: 10.1371/journal.pone.0316894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/17/2024] [Indexed: 02/02/2025] Open
Abstract
Reward is a powerful tool to enhance human motor behaviour with previous research showing that during a sequential reaching movement, a monetary incentive leads to increased speed of each movement (motor vigour effect), whilst reward-based performance feedback increases the speed of transition between movements (movement fusion effect). The neurotransmitter dopamine plays a central role in the processing of reward signals and has been implicated to modulate motor vigour and regulate movement fusion. However, in humans, it is unclear if the same dopaminergic mechanism underlies both processes. To address this, we used a complex sequential reaching task in which rewards were based on movement times (MT). Crucially, MTs could be reduced via: 1) enhanced speed of individual movements (motor vigour effect) and/or 2) enhanced speed of transition between movements (movement fusion effect). 95 participants were randomly assigned to a reward or no reward group and were given either 2.5mg of the dopamine antagonist haloperidol or a placebo (control group). An independent decision-making task performed prior to the main experiment suggested that haloperidol was active during the sequential reaching task (positive control). We did not find evidence that haloperidol affected the facilitatory effects of reward on movement fusion. However, we found that haloperidol negated the reward-based effects on motor vigour. Therefore, our results suggest that a D2-antagonist differentially influences reward-based effects on movement vigour and movement fusion, indicating that the dopaminergic mechanisms underlying these two processes may be distinct.
Collapse
Affiliation(s)
- Sebastian Sporn
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- Department of Clinical and Movement Neuroscience, Queens Square Institute of Neurology, UCL, London, United Kingdom
| | - Joseph M. Galea
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Muehlberg C, Goerg S, Rullmann M, Hesse S, Sabri O, Wawrzyniak M, Classen J, Fricke C, Rumpf JJ. Motor learning is modulated by dopamine availability in the sensorimotor putamen. Brain Commun 2024; 6:fcae409. [PMID: 39584157 PMCID: PMC11582004 DOI: 10.1093/braincomms/fcae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/16/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Successful motor skill acquisition requires the dynamic interaction of multiple brain regions, with the striatum playing a critical role in this network. Animal studies suggest that dopaminergic mechanisms are involved in the regulation of motor learning-associated striatal plasticity. In humans, however, the contribution of nigrostriatal dopaminergic transmission to motor learning remains elusive beyond its well-characterized role in initiation and fluent execution of movements. In this prospective observational study, we investigated motor sequence learning in individuals who had undergone 123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane single-photon emission computed tomography for the differential diagnosis of Parkinson's disease (n = 41) and age-matched healthy controls (n = 20). We found that striatal dopamine transporter depletion exhibited distinct spatial patterns that were associated with impairments in motor sequence learning and the manifestation of Parkinsonian motor symptoms, respectively. Specifically, significant associations between striatal dopamine transporter depletion and impairments in motor sequence learning were confined to posterior putaminal regions, whereas significant associations of striatal dopamine transporter depletion with Parkinsonian motor symptom severity showed a widespread spatial pattern across the entire striatal volume with an anterior maximum. Normative functional connectivity analysis revealed that both behavioural domains shared largely overlapping connectivity patterns with the basal ganglia and supplementary motor area. However, apart from connectivity with more posterior parts of the supplementary motor area, significant functional connectivity with primary motor cortical areas was only present for striatal dopamine transporter availability-related modulation of online motor learning. Our findings indicate that striatal dopaminergic signalling plays a specific role in motor sequence learning beyond its influence on mere motor execution, implicating learning-related sensorimotor striatum recruitment and cortico-striatal plasticity as dopamine-dependent mechanisms.
Collapse
Affiliation(s)
- Christoph Muehlberg
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Sophia Goerg
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Max Wawrzyniak
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Christopher Fricke
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Jost-Julian Rumpf
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Bindel L, Mühlberg C, Pfeiffer V, Nitschke M, Müller A, Wegscheider M, Rumpf JJ, Zeuner KE, Becktepe JS, Welzel J, Güthe M, Classen J, Tzvi E. Visuomotor Adaptation Deficits in Patients with Essential Tremor. CEREBELLUM (LONDON, ENGLAND) 2023; 22:925-937. [PMID: 36085397 PMCID: PMC10485096 DOI: 10.1007/s12311-022-01474-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Essential tremor (ET) is a progressive movement disorder whose pathophysiology is not fully understood. Current evidence supports the view that the cerebellum is critically involved in the genesis of the tremor in ET. However, it is still unknown whether cerebellar dysfunction affects not only the control of current movements but also the prediction of future movements through dynamic adaptation toward a changed environment. Here, we tested the capacity of 28 patients with ET to adapt in a visuomotor adaptation task known to depend on intact cerebellar function. We found specific impairments in that task compared to age-matched healthy controls. Adaptation to the visual perturbation was disrupted in ET patients, while de-adaptation, the phase after abrupt removal of the perturbation, developed similarly to control subjects. Baseline tremor-independent motor performance was as well similar to healthy controls, indicating that adaptation deficits in ET patients were not rooted in an inability to perform goal-directed movements. There was no association between clinical severity scores of ET and early visuomotor adaptation abilities. These results provide further evidence that the cerebellum is dysfunctional in ET.
Collapse
Affiliation(s)
- Laura Bindel
- Department of Neurology, Leipzig University, Liebigstraße 20, 04103, Leipzig, Germany
| | - Christoph Mühlberg
- Department of Neurology, Leipzig University, Liebigstraße 20, 04103, Leipzig, Germany
| | - Victoria Pfeiffer
- Department of Neurology, University of Lübeck, 23562, Lübeck, Germany
| | - Matthias Nitschke
- Department of Neurology, University of Lübeck, 23562, Lübeck, Germany
| | - Annekatrin Müller
- Department of Neurology, Leipzig University, Liebigstraße 20, 04103, Leipzig, Germany
| | - Mirko Wegscheider
- Department of Neurology, Leipzig University, Liebigstraße 20, 04103, Leipzig, Germany
| | - Jost-Julian Rumpf
- Department of Neurology, Leipzig University, Liebigstraße 20, 04103, Leipzig, Germany
| | | | - Jos S Becktepe
- Department of Neurology, Kiel University, 24105, Kiel, Germany
| | - Julius Welzel
- Department of Neurology, Kiel University, 24105, Kiel, Germany
| | - Miriam Güthe
- Department of Neurology, Kiel University, 24105, Kiel, Germany
| | - Joseph Classen
- Department of Neurology, Leipzig University, Liebigstraße 20, 04103, Leipzig, Germany
| | - Elinor Tzvi
- Department of Neurology, Leipzig University, Liebigstraße 20, 04103, Leipzig, Germany.
- Syte Institute, 20354, Hamburg, Germany.
| |
Collapse
|
4
|
Martin E, Scotté-Barranoff C, Tallet J. What neurological diseases tell us about procedural perceptual-motor learning? A systematic review of the literature. Neurol Sci 2023:10.1007/s10072-023-06724-w. [PMID: 36973591 DOI: 10.1007/s10072-023-06724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023]
Abstract
INTRODUCTION Procedural perceptual-motor learning of sequences (PPMLS) provides perceptual-motor skills in many activities of daily living. Based on behavioral and neuroimaging results, theoretical models of PPMLS postulate that the cortico-striatal loop, the cortico-cerebellar loop and the hippocampus are specifically involved in the early stage of PPMLS while the cortico-striatal loop would be specifically involved in the late stage of PPMLS. Hence, current models predict that the early stage of PPMLS should be impaired in Parkinson's disease (PD: lesion of the cortico-striatal loop), in cerebellar disease (CD: lesion of the cortico-cerebellar loop) and in Alzheimer's disease (AD: lesion of the hippocampus), whereas the late stage of PPMLS should be specifically impaired in PD. OBJECTIVE The aim of the study is (1) to draw a complete picture of experimental results on PPMLS in PD, CD and AD (2) to understand heterogeneity of results as regard to participant and task characteristics. METHOD This review is based on the guideline proposed by the PRISMA statement. RESULTS Our review reveals (1) that the experimental results clarify the theoretical models and (2) that the impairment of PPMLS depends on both the personal characteristics of the participants and the characteristics of the task to-be-learnt rather than on the disease itself. CONCLUSION Our results highlight that these characteristics should be more carefully considered to understand the heterogeneity of results across studies on PPMLS and the effects of rehabilitation programs.
Collapse
Affiliation(s)
- Elodie Martin
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.
- Institut de Formation en Psychomotricité, Université Toulouse, UPS, Toulouse, France.
| | | | - Jessica Tallet
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|