1
|
Storniolo JL, Farinelli V, Esposti R, Cavallari P. Impact of muscle fatigue on anticipatory postural adjustments during gait initiation. Front Physiol 2025; 15:1520578. [PMID: 39872415 PMCID: PMC11770096 DOI: 10.3389/fphys.2024.1520578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Prolonged or strenuous exercise leads to a temporary decrease in muscle function and performance, which interferes with activity of both prime movers and postural muscles. This effect of fatigue has been reported both for single segment movements and for locomotion. However, little is known regarding the effects of fatigue on anticipatory postural adjustments (APAs) during gait initiation, a task in which the control of focal movement should be strictly coupled to a feedforward control of posture. Methods We studied APAs during gait initiation in 16 healthy well-trained adult males, searching for muscle activities that precede the backward shift of the Center of Pressure (CoP). Participants stood on a force plate for about 10 s and then started walking at their natural speed. APAs were evaluated before and after a 1 min exhausting sequence of countermovement jumps. An optoelectronic system captured the heel-off events while a force plate measured the CoP position and vertical ground reaction force. Wireless probes recorded the electromyogram of trunk and leg muscles from both sides. Results It was observed that muscle fatigue delayed excitatory and inhibitory APAs, of about 40 and 80 ms, respectively, and a parallel delay was induced on prime movers; moreover, velocity and amplitude of backward CoP shift were reduced. Regarding APAs sign and occurrence, most of the participants showed bilateral inhibition in dorsal muscles and excitation in the ventral ones, displaying a forward "diving" strategy that was almost unaffected by fatigue. However, after fatigue, three of the "diving" participants switched to a "turning" strategy, i.e., they displayed a reciprocal activation/inhibition pattern in the dorsal muscles, compatible with a trunk rotation. Discussion The "turning" strategy has been previously described in untrained individuals and in a toes-amputee mountain climber, who showed a "diving" approach to gait initiation when wearing his prosthetic shoes and switched to the "turning" approach when barefoot. Altogether, these results support the idea that one and the same person may develop a repertoire of postural strategies among which the central nervous system will choose, according to the personal fitness and the constraints in which the action is performed.
Collapse
Affiliation(s)
- Jorge L. Storniolo
- Human Physiology Section of the Department of Pathophysiology and Transplantation, Università Degli Studi, Milano, Italy
- Laboratorio Sperimentale di Fisiopatologia Neuromotoria, IRCCS Istituto Auxologico Italiano, Meda, Italy
| | - Veronica Farinelli
- Human Physiology Section of the Department of Pathophysiology and Transplantation, Università Degli Studi, Milano, Italy
| | - Roberto Esposti
- Human Physiology Section of the Department of Pathophysiology and Transplantation, Università Degli Studi, Milano, Italy
| | - Paolo Cavallari
- Human Physiology Section of the Department of Pathophysiology and Transplantation, Università Degli Studi, Milano, Italy
- Laboratorio Sperimentale di Fisiopatologia Neuromotoria, IRCCS Istituto Auxologico Italiano, Meda, Italy
| |
Collapse
|
2
|
Moura LDA, Scardovelli TA, Fernandes da Silva AR, da Palma Valério M, Barreto Campos H, de Camargo MLA, Moraes IT, Martini SC, da Silva Boschi SRM, de Oliveira Gonzalez T, Pereira da Silva A. Analysis of anticipatory and compensatory postural adjustment in women of different age groups using surface electromyography. Biomed Phys Eng Express 2024; 11:015022. [PMID: 39476426 DOI: 10.1088/2057-1976/ad8ce2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024]
Abstract
Postural balance is crucial for daily activities, relying on the coordination of sensory systems. Balance impairment, common in the elderly, is a leading cause of mortality in this population. To analyze balance, methods like postural adjustment analysis using electromyography (EMG) have been developed. With age, women tend to experience reduced mobility and greater muscle loss compared to men. However, few studies have focused on postural adjustments in women of different ages using EMG of the lower limbs during laterolateral and anteroposterior movements. This gap could reveal a decrease in muscle activation time with aging, as activation time is vital for postural adjustments. This study aimed to analyze muscle activation times in women of different ages during postural adjustments. Thirty women were divided into two groups: young and older women. A controlled biaxial force platform was used for static and dynamic balance tests while recording lower limb muscle activity using EMG. Data analysis focused on identifying muscle activation points and analyzing postural adjustment times. Results showed significant differences in muscle activation times between the two groups across various muscles and platform tilt conditions. Younger women had longer muscle activation times than older women, particularly during laterolateral platform inclinations. In anteroposterior movements, older women exhibited longer activation times compared to their laterolateral performance, with fewer differences between the groups. Overall, older women had shorter muscle activation times than younger women, suggesting a potential indicator of imbalance and increased fall risk.
Collapse
|
3
|
Chiou S, Unwin C, Lilley A. Age-related changes in reticulospinal contributions to anticipatory postural adjustments between back extensors and abdominal muscles. Exp Physiol 2024; 109:1177-1187. [PMID: 38745546 PMCID: PMC11215469 DOI: 10.1113/ep091698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Anticipatory postural adjustments (APAs) give feedforward postural control of the trunk, but they are delayed with ageing, affecting balance and mobility in older individuals. The reticulospinal tract contributes to postural control of the trunk; however, the extent to which age-related changes affect the reticulospinal contributions to APAs of the trunk remains unknown in humans. Here, we tested the hypothesis that a startling acoustic sound, which activates the reticulospinal tract, improves delayed APAs in older individuals. Twenty-two old (75 ± 6 years) and 20 healthy young adults (21 ± 4 years) performed a self-initiated fast bilateral shoulder flexion or shoulder extension task in response to visual, visual and auditory (80 dB), or visual and startling (115 dB) cues. Electromyography (EMG) was recorded from bilateral anterior deltoid (AD) and erector spinae (ES) during shoulder flexion and from bilateral posterior deltoid (PD) and rectus abdominis (RA) during shoulder extension. EMG onset of all muscles shortened during the startling cue in both age groups, suggesting a non-specific modulation of the reticulospinal tract on prime movers (AD or PD) and non-prime movers (ES or RA). Interestingly, APAs of the ES were accelerated in older participants to a similar degree as in younger participants during the startling cue. Conversely, APAs of the RA were not influenced by the startling cue in older participants. Our results suggest differential effects of ageing on functional contributions of the reticulospinal tract to APAs between back extensors and abdominal muscles.
Collapse
Affiliation(s)
- Shin‐Yi Chiou
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Catherine Unwin
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
- Sandwell and West Birmingham NHS TrustTreatment centre, City HospitalBirminghamUK
| | - Alice Lilley
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
- Musculoskeletal Outpatients DepartmentQueen's Hospital BurtonBurton‐On‐TrentStaffordshireUK
| |
Collapse
|
4
|
Desmons M, Cherif A, Rohel A, de Oliveira FCL, Mercier C, Massé-Alarie H. Corticomotor Control of Lumbar Erector Spinae in Postural and Voluntary Tasks: The Influence of Transcranial Magnetic Stimulation Current Direction. eNeuro 2024; 11:ENEURO.0454-22.2023. [PMID: 38167617 PMCID: PMC10883751 DOI: 10.1523/eneuro.0454-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/30/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
Lumbar erector spinae (LES) contribute to spine postural and voluntary control. Transcranial magnetic stimulation (TMS) preferentially depolarizes different neural circuits depending on the direction of electrical currents evoked in the brain. Posteroanterior current (PA-TMS) and anteroposterior (AP-TMS) current would, respectively, depolarize neurons in the primary motor cortex (M1) and the premotor cortex. These regions may contribute differently to LES control. This study examined whether responses evoked by PA- and AP-TMS are different during the preparation and execution of LES voluntary and postural tasks. Participants performed a reaction time task. A Warning signal indicated to prepare to flex shoulders (postural; n = 15) or to tilt the pelvis (voluntary; n = 13) at the Go signal. Single- and paired-pulse TMS (short-interval intracortical inhibition-SICI) were applied using PA- and AP-TMS before the Warning signal (baseline), between the Warning and Go signals (preparation), or 30 ms before the LES onset (execution). Changes from baseline during preparation and execution were calculated in AP/PA-TMS. In the postural task, MEP amplitude was higher during the execution than that during preparation independently of the current direction (p = 0.0002). In the voluntary task, AP-MEP amplitude was higher during execution than that during preparation (p = 0.016). More PA inhibition (SICI) was observed in execution than that in preparation (p = 0.028). Different neural circuits are preferentially involved in the two motor tasks assessed, as suggested by different patterns of change in execution of the voluntary task (AP-TMS, increase; PA-TMS, no change). Considering that PA-TMS preferentially depolarize neurons in M1, it questions their importance in LES voluntary control.
Collapse
Affiliation(s)
- Mikaël Desmons
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec City, Quebec G1M 2S8, Canada
- Rehabilitation Department, University Laval, Quebec City, Quebec G1V 0A6, Canada, G1V 0A6
| | - Amira Cherif
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec City, Quebec G1M 2S8, Canada
- Rehabilitation Department, University Laval, Quebec City, Quebec G1V 0A6, Canada, G1V 0A6
| | - Antoine Rohel
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec City, Quebec G1M 2S8, Canada
- Rehabilitation Department, University Laval, Quebec City, Quebec G1V 0A6, Canada, G1V 0A6
| | - Fábio Carlos Lucas de Oliveira
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec City, Quebec G1M 2S8, Canada
- Rehabilitation Department, University Laval, Quebec City, Quebec G1V 0A6, Canada, G1V 0A6
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec City, Quebec G1M 2S8, Canada
- Rehabilitation Department, University Laval, Quebec City, Quebec G1V 0A6, Canada, G1V 0A6
| | - Hugo Massé-Alarie
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec City, Quebec G1M 2S8, Canada
- Rehabilitation Department, University Laval, Quebec City, Quebec G1V 0A6, Canada, G1V 0A6
| |
Collapse
|
5
|
Hayek R, Gottlieb U, Gutman I, Springer S. Peroneal muscle response to single-leg drop-jump and unexpected leg-drop in young and middle-aged adults before and after one session of neuromuscular training. Eur Rev Aging Phys Act 2023; 20:11. [PMID: 37330500 DOI: 10.1186/s11556-023-00321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/11/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Changes in neuromuscular ability in middle age (MA) may lead to deterioration of postural control. The aim of this study was to investigate the anticipatory response of the peroneus longus muscle (PL) to landing after a single-leg drop-jump (SLDJ), and its postural response after an unexpected leg-drop in MA and young adults. A second aim was to investigate the influence of neuromuscular training on PL postural responses in both age groups. METHODS Twenty-six healthy MA (55.3 ± 4 years) and 26 healthy young adults (26.3 ± 3.6 years) participated in the study. Assessments were performed before (T0) and after (T1) PL EMG biofeedback (BF) neuromuscular training. Subjects performed SLDJ, and PL EMG activity in preparation for landing (% of flight time) was calculated. To measure PL time to activation onset and time to peak activation in response to an unexpected leg-drop, subjects stood on a customized trapdoor device that produced a sudden 30° ankle inversion. RESULTS Before training, the MA group showed significantly shorter PL activity in preparation for landing compared to the young adults (25.0% vs. 30.0%, p = 0.016), while after training there was no difference between the groups (28.0% vs. 29.0%, p = 0.387). There were no differences between groups in peroneal activity after the unexpected leg-drop before and after training. CONCLUSIONS Our results suggest that automatic anticipatory peroneal postural responses are decreased at MA, whereas reflexive postural responses appear to be intact in this age group. A short PL EMG-BF neuromuscular training may have an immediate positive effect on PL muscle activity at MA. This should encourage the development of specific interventions to ensure better postural control in this group. TRIAL REGISTRATION ClinicalTrials.gov NCT05006547.
Collapse
Affiliation(s)
- Roee Hayek
- Faculty of Health Sciences, Department of Physical Therapy, The Neuromuscular & Human Performance Laboratory, Ariel University, Medicine and Health Science Building, Rm 30, 40700, Ariel, Israel
| | - Uri Gottlieb
- Faculty of Health Sciences, Department of Physical Therapy, The Neuromuscular & Human Performance Laboratory, Ariel University, Medicine and Health Science Building, Rm 30, 40700, Ariel, Israel
| | - Itai Gutman
- Faculty of Health Sciences, Department of Physical Therapy, The Neuromuscular & Human Performance Laboratory, Ariel University, Medicine and Health Science Building, Rm 30, 40700, Ariel, Israel
| | - Shmuel Springer
- Faculty of Health Sciences, Department of Physical Therapy, The Neuromuscular & Human Performance Laboratory, Ariel University, Medicine and Health Science Building, Rm 30, 40700, Ariel, Israel.
| |
Collapse
|
6
|
Ma W, Nemdharry S, Elgueta Cancino E, Chiou SY. Influence of coil orientation on corticospinal excitability of trunk muscles during postural and volitional tasks in healthy adults. Front Hum Neurosci 2023; 17:1108169. [PMID: 36816500 PMCID: PMC9929149 DOI: 10.3389/fnhum.2023.1108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Trunk muscles play a role in maintaining postural stability and performing goal-directed voluntary movements in activities of daily living. Evidence has shown that the primary motor cortex (M1) is involved in modulation of postural control and voluntary movements of the trunk. However, it remains unknown whether the neural circuits within the M1 were recruited to the same extent between a postural task and a goal-directed voluntary task. Methods To address this, we examined latencies and amplitudes of motor evoked potentials (MEPs) of the erector spinae (ES) with transcranial magnetic stimulation (TMS) figure-of-eight coil oriented to induce latero-medial (LM), posterior-anterior (PA), and anterior-posterior (AP) currents in the M1 in twenty healthy participants during a dynamic shoulder flexion (DSF) task, a postural task requiring anticipatory postural adjustments (APAs), and during a static trunk extension (STE) task, a voluntary task without involvement of APAs. Results We found that differences in the AP-LM latency of ES MEP were longer compared with the PA-LM latency in both tasks. Corticospinal excitability was overall greater during the DSF task than during the STE task irrespective of the coil orientation. Discussion Our findings suggest that while the same neural circuits in the M1 were recruited to modulate both postural and voluntary control of the trunk, the contribution was greater to the postural task than the voluntary task, possibly due to the requirement of APAs in the task.
Collapse
Affiliation(s)
- Wesley Ma
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, United Kingdom
| | - Sheanil Nemdharry
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, United Kingdom
| | - Edith Elgueta Cancino
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, United Kingdom,Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Science, Universidad Andrés Bello, Santiago, Chile
| | - Shin-Yi Chiou
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, United Kingdom,*Correspondence: Shin-Yi Chiou ✉
| |
Collapse
|