1
|
Bergamino M, Fuentes A, Sandoval IM, Marmion DJ, Bishop C, Manfredsson FP, Stokes AM. Assessment of complementary white matter microstructural changes and grey matter atrophy in the 6-OHDA-induced model of Parkinson's disease. Neuroscience 2025; 568:2-11. [PMID: 39800048 PMCID: PMC11871993 DOI: 10.1016/j.neuroscience.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by motor symptoms such as tremors, rigidity, and bradykinesia. Magnetic resonance imaging (MRI) offers a non-invasive means to study PD and its progression. This study utilized the unilateral 6-hydroxydopamine (6-OHDA) rat model of parkinsonism to assess whether white matter microstructural integrity measured using advanced free-water diffusion tensor imaging metrics (fw-DTI) and gray matter density using voxel-based morphometry (VBM) can serve as imaging biomarkers of pathological changes following nigrostriatal denervation. By comparing the 6-OHDA-lesioned vs. sham-lesioned rats, we aimed to identify complementary gray matter and white matter changes indicative of disease pathophysiology. Results showed widespread gray matter atrophy and subtle changes in white matter integrity in the 6-OHDA lesioned rats. Gray matter atrophy predominantly affected ipsilateral cortical regions, with some bilateral regions also showing atrophy. Conversely, higher volumes were observed in some regions of the contralateral gray matter in the 6-OHDA model. Furthermore, increased fw-FA and fw-AX were observed in regions including the brainstem, thalamus, superior and inferior colliculus, and fornix. Smaller clusters of decreased fw-FA and fw-AX were found in the corpus callosum. Regions of both increased and decreased diffusivity were noted in fw-RD, primarily in the brainstem, while the f index was elevated in several regions in the 6-OHDA lesioned group, except for a cluster in the contralateral thalamus. In conclusion, this study underscores the significant potential role for gray and white matter imaging biomarkers in delineating disease pathology in parkinsonism.
Collapse
Affiliation(s)
- Maurizio Bergamino
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Alberto Fuentes
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Ivette M Sandoval
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - David J Marmion
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Christopher Bishop
- Department of Psychology, Binghamton University, Binghamton, NY, 13902, USA
| | - Fredric P Manfredsson
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Ashley M Stokes
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA.
| |
Collapse
|
2
|
Alimohammadi S, Mohaddes G, Keyhanmanesh R, Athari SZ, Azizifar N, Farajdokht F. Intranasal AdipoRon mitigates motor and cognitive deficits in hemiparkinsonian rats through neuroprotective mechanisms against oxidative stress and synaptic dysfunction. Neuropharmacology 2025; 262:110180. [PMID: 39393589 DOI: 10.1016/j.neuropharm.2024.110180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
While motor symptoms are the most well-known manifestation of Parkinson's disease (PD), patients may also suffer from non-motor signs like cognitive impairments. The adiponectin receptor agonist AdipoRon (Adipo) has shown neuroprotective effects in preclinical studies. The objective of this study was to determine the potential benefits of chronic intranasal treatment of Adipo on motor function and cognitive performance in a hemiparkinsonian rat model caused by injecting 6-hydroxydopamine (6-OHDA) into the left forebrain bundle. After one week, PD rats were given either a vehicle or one of three dosages of Adipo (0.1, 1, and 10 μg) or levodopa (10 mg/kg orally) daily for 21 days. Recognition and spatial memory were determined using the novel object recognition test (NORT) and the Barnes maze test, respectively. The hippocampal tissues of the animals were harvested to examine oxidative stress status as well as the protein expressions of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD-95). In hemiparkinsonian rats, motor impairments, recognition memory, and spatial memory were all improved by chronic intranasal Adipo at 1 and 10 μg. Furthermore, we found that unilateral 6-OHDA injection elevated hippocampal oxidative stress (ROS) while concurrently reducing total antioxidant capacity (TAC), BDNF, PSD-95, and antioxidant enzymes (SOD, GPx). However, Adipo 10 μg significantly reduced these biochemical alterations in the hippocampus of 6-OHDA-lesioned rats. Chronic intranasal Adipo ameliorated spatial and recognition memory deterioration in hemiparkinsonian rats, presumably by increasing hippocampal synaptic protein levels, reducing oxidative stress, and increasing BDNF.
Collapse
Affiliation(s)
- Soraya Alimohammadi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Zanyar Athari
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Azizifar
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Wu C, Wu H, Zhou C, Guo T, Guan X, Cao Z, Wu J, Liu X, Chen J, Wen J, Qin J, Tan S, Duanmu X, Gu L, Song Z, Zhang B, Huang P, Xu X, Zhang M. The effect of dopamine replacement therapy on cortical structure in Parkinson's disease. CNS Neurosci Ther 2024; 30:e14540. [PMID: 37994682 PMCID: PMC11017430 DOI: 10.1111/cns.14540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023] Open
Abstract
AIMS To explore the cortical structural reorganization in Parkinson's disease (PD) patients under chronic dopamine replacement therapy (DRT) in cross-sectional and longitudinal data and determine whether these changes were associated with clinical alterations. METHODS A total of 61 DRT-treated, 60 untreated PD patients, and 61 normal controls (NC) were retrospectively included. Structural MRI scans and neuropsychological tests were conducted. Cortical thickness and volume were extracted based on FreeSurfer and were analyzed using general linear model to find statistically significant differences among three groups. Correlation analyses were performed among significant cortical areas, medication treatment (duration and dosage), and neuropsychological tests. Longitudinal cortical structural changes of patients who initiated DRT were analyzed using linear mixed-effect model. RESULTS Significant cortical atrophy was primarily observed in the prefrontal cortex in treated patients, including the cortical thickness of right pars opercularis and the volume of bilateral superior frontal cortex (SFC), left rostral anterior cingulate cortex (rACC), right lateral orbital frontal cortex, right pars orbitalis, and right rostral middle frontal cortex. A negative correlation was detected between the left SFC volume and levodopa equivalent dose (LED) (r = -0.316, p = 0.016), as well as the left rACC volume and medication duration (r = -0.329, p = 0.013). In the patient group, the left SFC volume was positively associated with digit span forward score (r = 0.335, p = 0.017). The left SFC volume reduction was longitudinally correlated with increased LED (standardized coefficient = -0.077, p = 0.001). CONCLUSION This finding provided insights into the influence of DRT on cortical structure and highlighted the importance of drug dose titration in DRT.
Collapse
Affiliation(s)
- Chenqing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoting Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengye Cao
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmei Qin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sijia Tan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojie Duanmu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luyan Gu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Song
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Abe Y, Yagishita S, Sano H, Sugiura Y, Dantsuji M, Suzuki T, Mochizuki A, Yoshimaru D, Hata J, Matsumoto M, Taira S, Takeuchi H, Okano H, Ohno N, Suematsu M, Inoue T, Nambu A, Watanabe M, Tanaka KF. Shared GABA transmission pathology in dopamine agonist- and antagonist-induced dyskinesia. Cell Rep Med 2023; 4:101208. [PMID: 37774703 PMCID: PMC10591040 DOI: 10.1016/j.xcrm.2023.101208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Dyskinesia is involuntary movement caused by long-term medication with dopamine-related agents: the dopamine agonist 3,4-dihydroxy-L-phenylalanine (L-DOPA) to treat Parkinson's disease (L-DOPA-induced dyskinesia [LID]) or dopamine antagonists to treat schizophrenia (tardive dyskinesia [TD]). However, it remains unknown why distinct types of medications for distinct neuropsychiatric disorders induce similar involuntary movements. Here, we search for a shared structural footprint using magnetic resonance imaging-based macroscopic screening and super-resolution microscopy-based microscopic identification. We identify the enlarged axon terminals of striatal medium spiny neurons in LID and TD model mice. Striatal overexpression of the vesicular gamma-aminobutyric acid transporter (VGAT) is necessary and sufficient for modeling these structural changes; VGAT levels gate the functional and behavioral alterations in dyskinesia models. Our findings indicate that lowered type 2 dopamine receptor signaling with repetitive dopamine fluctuations is a common cause of VGAT overexpression and late-onset dyskinesia formation and that reducing dopamine fluctuation rescues dyskinesia pathology via VGAT downregulation.
Collapse
Affiliation(s)
- Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiromi Sano
- Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Division of Behavioral Pharmacology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masanori Dantsuji
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Toru Suzuki
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ayako Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Daisuke Yoshimaru
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Junichi Hata
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Mami Matsumoto
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima 960-1248, Japan
| | - Hiroyoshi Takeuchi
- Department of Psychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Nobuhiko Ohno
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Masahiko Watanabe
- Department of Anatomy and Embryology, University of Hokkaido, Sapporo, Hokkaido 060-8638, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
5
|
Elabi OF, Espa E, Skovgård K, Fanni S, Cenci MA. Ropinirole Cotreatment Prevents Perivascular Glial Recruitment in a Rat Model of L-DOPA-Induced Dyskinesia. Cells 2023; 12:1859. [PMID: 37508522 PMCID: PMC10378233 DOI: 10.3390/cells12141859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Dopamine replacement therapy for Parkinson's disease is achieved using L-DOPA or dopamine D2/3 agonists, such as ropinirole. Here, we compare the effects of L-DOPA and ropinirole, alone or in combination, on patterns of glial and microvascular reactivity in the striatum. Rats with unilateral 6-hydroxydopamine lesions were treated with therapeutic-like doses of L-DOPA (6 mg/kg), an equipotent L-DOPA-ropinirole combination (L-DOPA 3 mg/kg plus ropinirole 0.5 mg/kg), or ropinirole alone. Immunohistochemistry was used to examine the reactivity of microglia (ionized calcium-binding adapter molecule 1, IBA-1) and astroglia (glial fibrillary acidic protein, GFAP), as well as blood vessel density (rat endothelial cell antigen 1, RECA-1) and albumin extravasation. L-DOPA monotreatment and L-DOPA-ropinirole cotreatment induced moderate-severe dyskinesia, whereas ropinirole alone had negligible dyskinetic effects. Despite similar dyskinesia severity, striking differences in perivascular microglia and astroglial reactivity were found between animals treated with L-DOPA vs. L-DOPA-ropinirole. The former exhibited a marked upregulation of perivascular IBA-1 cells (in part CD68-positive) and IBA-1-RECA-1 contact points, along with an increased microvessel density and strong perivascular GFAP expression. None of these markers were significantly upregulated in animals treated with L-DOPA-ropinirole or ropinirole alone. In summary, although ropinirole cotreatment does not prevent L-DOPA-induced dyskinesia, it protects from maladaptive gliovascular changes otherwise associated with this disorder, with potential long-term benefits to striatal tissue homeostasis.
Collapse
Affiliation(s)
- Osama F Elabi
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Elena Espa
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Katrine Skovgård
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Silvia Fanni
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Maria Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
6
|
Su D, Gan Y, Zhang Z, Cui Y, Zhang Z, Liu Z, Wang Z, Zhou J, Sossi V, Stoessl AJ, Wu T, Jing J, Feng T. Multimodal Imaging of Substantia Nigra in Parkinson's Disease with Levodopa-Induced Dyskinesia. Mov Disord 2023; 38:616-625. [PMID: 36799459 DOI: 10.1002/mds.29320] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Degeneration of the substantia nigra (SN) may contribute to levodopa-induced dyskinesia (LID) in Parkinson's disease (PD), but the exact characteristics of SN in LID remain unclear. OBJECTIVE To further understand the pathogenesis of patients with PD with LID (PD-LID), we explored the structural and functional characteristics of SN in PD-LID using multimodal magnetic resonance imaging (MRI). METHODS Twenty-nine patients with PD-LID, 37 patients with PD without LID (PD-nLID), and 28 healthy control subjects underwent T1-weighted MRI, quantitative susceptibility mapping, neuromelanin-sensitive MRI, multishell diffusion MRI, and resting-state functional MRI. Different measures characterizing the SN were obtained using a region of interest-based approach. RESULTS Compared with patients with PD-nLID and healthy control subjects, the quantitative susceptibility mapping values of SN pars compacta (SNpc) were significantly higher (P = 0.049 and P = 0.00002), and the neuromelanin contrast-to-noise ratio values in SNpc were significantly lower (P = 0.012 and P = 0.000002) in PD-LID. The intracellular volume fraction of the posterior SN in PD-LID was significantly higher compared with PD-nLID (P = 0.037). Resting-state fMRI indicated that PD-LID in the medication off state showed higher functional connectivity between the SNpc and putamen compared with PD-nLID (P = 0.031), and the functional connectivity changes in PD-LID were positively correlated with Unified Dyskinesia Rating Scale total scores (R = 0.427, P = 0.042). CONCLUSIONS Our multimodal imaging findings highlight greater neurodegeneration in SN and the altered nigrostriatal connectivity in PD-LID. These characteristics provide a new perspective into the role of SN in the pathophysiological mechanisms underlying PD-LID. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dongning Su
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yawen Gan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhe Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yusha Cui
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhijin Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhu Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - A Jon Stoessl
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, British Columbia, Canada.,Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tao Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
7
|
Yuan Y, Zhang X, Wu Y, Lian P, Cao X, Xu Y. ONO-2506 Can Delay Levodopa-induced Dyskinesia in the Early Stage. Neuroscience 2023:S0306-4522(23)00068-4. [PMID: 36796751 DOI: 10.1016/j.neuroscience.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Levodopa-induced dyskinesia (LID) is a common motor complication of levodopa (L-DOPA) treatment for Parkinson's disease (PD). In recent years, the role of astrocytes in LID has increasingly attracted attention. OBJECTIVE To explore the effect of an astrocyte regulator (ONO-2506) on LID in a rat model and the potential underlying physiological mechanism. METHODS Unilateral LID rat models, established by administering 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle through stereotactic injection, were injected with ONO-2506 or saline into the striatum through brain catheterization and were administered L-DOPA to induce LID. Through a series of behavioral experiments, LID performance was observed. Relevant indicators were assessed through biochemical experiments. RESULTS In the LID model of 6-OHDA rats, ONO-2506 significantly delayed the development and reduced the degree of abnormal involuntary movement in the early stage of L-DOPA treatment and increased glial fibrillary acidic protein and glutamate transporter 1 (GLT-1) expression in the striatum compared to saline. However, there was no significant difference in the improvement in motor function between the ONO-2506 and saline groups. CONCLUSIONS ONO-2506 delays the emergence of L-DOPA-induced abnormal involuntary movements in the early stage of L-DOPA administration, without affecting the anti-PD effect of L-DOPA. The delaying effect of ONO-2506 on LID may be linked to the increased expression of GLT-1 in the rat striatum. Interventions targeting astrocytes and glutamate transporters are potential therapeutic strategies to delay the development of LID.
Collapse
Affiliation(s)
- Yuhao Yuan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Piaopiao Lian
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
8
|
Fan L, Chen H, Liu Y, Hou H, Hu Q. ERK signaling is required for nicotine-induced conditional place preference by regulating neuroplasticity genes expression in male mice. Pharmacol Biochem Behav 2023; 222:173510. [PMID: 36565790 DOI: 10.1016/j.pbb.2022.173510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Nicotine is an addictive compound that interacts with nicotinic acetylcholine receptors (nAChRs) in the ventral tegmental area (VTA), inducing a release of dopamine in the nucleus accumbens (NAc). When neurons undergo repeated exposure to nicotine, several adaptive changes in neuroplasticity occur. Activation of nAChRs involves numerous intracellular signaling cascades that likely contribute to neuroplasticity and ultimately the establishment of nicotine addiction. Nevertheless, the molecular mechanisms underlying this adaptation remain unclear. To explore the effects of nicotine on neuroplasticity, a stable nicotine-induced conditioned place preference (CPP) model was constructed by intravenous injection in mice. Using a PCR array, we observed significant changes in the expression of synaptic plasticity-related genes in the VTA (16 mRNAs) and NAc (40 mRNAs). When mice were pre-treated with PD98059, an extracellular signal-regulated kinase (ERK) inhibitor, more gene expression changes in the VTA (53 mRNAs) and NAc (60 mRNAs) were found. Moreover, PD98059 pre-treatment blocked the increased p-ERK/ERK and p-CREB/CREB ratios and decreased the expression of synaptic plasticity-related proteins such as SAP102, PSD95, synaptophysin, and BDNF, these changes might contribute to preventing the establishment of nicotine-induced CPP. Furthermore, neurons from the VTA and NAc of nicotine CPP mice had an increased dendritic spine density and complexity of dendritic morphology by Golgi staining. PD98059 also blocked this dynamic. These results demonstrate that repeated exposure to nicotine may remold the expression of neuroplasticity-related genes by activating the ERK signaling pathway in the VTA and NAc, and is related to the establishment of nicotine-induced CPP.
Collapse
Affiliation(s)
- Lei Fan
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China; University of Science and Technology of China, Hefei, PR China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, PR China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, PR China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, PR China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, PR China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China; University of Science and Technology of China, Hefei, PR China.
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, PR China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, PR China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China.
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, PR China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, PR China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China.
| |
Collapse
|