1
|
Xiang Y, Xing X, Hua X, Zhang Y, Xue X, Wu J, Zheng M, Wang H, Xu J. Resting-state brain network remodeling after different nerve reconstruction surgeries: a functional magnetic resonance imaging study in brachial plexus injury rats. Neural Regen Res 2025; 20:1495-1504. [PMID: 39075915 PMCID: PMC11624879 DOI: 10.4103/nrr.nrr-d-23-00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/07/2023] [Accepted: 12/29/2023] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00031/figure1/v/2024-07-28T173839Z/r/image-tiff Distinct brain remodeling has been found after different nerve reconstruction strategies, including motor representation of the affected limb. However, differences among reconstruction strategies at the brain network level have not been elucidated. This study aimed to explore intra-network changes related to altered peripheral neural pathways after different nerve reconstruction surgeries, including nerve repair, end-to-end nerve transfer, and end-to-side nerve transfer. Sprague-Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight: no nerve repair, grafted nerve repair, phrenic nerve end-to-end transfer, and end-to-side transfer with a graft sutured to the anterior upper trunk. Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery. The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component. Alterations in intra-network resting-state functional connectivity were compared among the groups. Target muscle reinnervation was assessed by behavioral observation (elbow flexion) and electromyography. The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway. Nerve repair was related to enhanced connectivity within the sensorimotor network, while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation. The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer. Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer. Our study revealed important brain networks related to different nerve reconstructions. These networks may be potential targets for enhancing motor recovery.
Collapse
Affiliation(s)
- Yunting Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Xiangxin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuyun Hua
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xin Xue
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiajia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mouxiong Zheng
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jianguang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Liu Y, Xin H, Shu Y, Li L, Long T, Zeng L, Huang L, Liu X, Deng Y, Zhu Y, Li H, Peng D. Altered Density of Resting-State Long- and Short-Range Functional Connectivity in Patients with Moderate-to-Severe Obstructive Sleep Apnea. Nat Sci Sleep 2024; 16:1891-1904. [PMID: 39655313 PMCID: PMC11625638 DOI: 10.2147/nss.s483030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
PURPOSE This study is to evaluate the altered number of functional connection (s) in patients with obstructive sleep apnea (OSA) by functional connectivity density (FCD), to investigate its relationship with cognitive function, and to explore whether these features could be used to distinguish OSA from healthy controls (HCs). METHODS Seventy-six OSA patients and 72 HCs were included in the analysis. All participants underwent resting-state functional magnetic resonance imaging scan. Subsequently, intergroup differences between long-and short-range FCD groups were obtained in the Matlab platform by using the degree centrality option with a 75 mm cutoff. The partial correlation analysis were used to assess the relationship between the altered FCD value and clinical assessments in OSA patients. The FCD values of the different brain regions were used as classification features to distinguish the two groups by support vector machine (SVM). RESULTS Compared to HCs, OSA patients had decreased long-range FCD in the right superior frontal gyrus (SFG), right precuneus, and left middle frontal gyrus (MFG). Simultaneously, increased long-range FCD in the right cingulate gyrus (CG). Meanwhile, the short-range FCD were decreased in the right postcentral gyrus (PoCG), right SFG, left MFG, and right CG. The short-range FCD values of the right PoCG were correlated with the Montreal Cognitive Assessment scores in OSA patients. SVM analysis showed that FCD in differential brain regions could differentiate OSA patients from HCs. CONCLUSION Long- and short-range FCD values in different brain regions of OSA patients may be related to cognitive decline, and also be effective in distinguishing OSA patients from HCs. These findings provide new perspectives on neurocognition in OSA patients.
Collapse
Affiliation(s)
- Yumeng Liu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Huizhen Xin
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Yongqiang Shu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
- PET Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Lifeng Li
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Ting Long
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Li Zeng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Ling Huang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Xiang Liu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Yingke Deng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Yu Zhu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Haijun Li
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
- PET Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Dechang Peng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
- PET Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| |
Collapse
|
3
|
Li T, Chen J, Zhao B, Garden GA, Giovanello KS, Wu G, Zhu H. The Interaction Effects of Sex, Age, APOE and Common Health Risk Factors on Human Brain Functions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.05.24311482. [PMID: 39148839 PMCID: PMC11326347 DOI: 10.1101/2024.08.05.24311482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Importance Nonlinear changes in brain function during aging are shaped by a complex interplay of factors, including sex, age, genetics, and modifiable health risk factors. However, the combined effects and underlying mechanisms of these factors on brain functional connectivity remain poorly understood. Objective To comprehensively investigate the combined associations of sex, age, APOE genotypes, and ten common modifiable health risk factors with brain functional connectivities during aging. Design Setting and Participants This analysis used data from 36,630 UK Biobank participants, aged 44-81, who were assessed for sex, age, APOE genotypes, 10 health risk factors, and brain functional connectivities through resting-state functional magnetic resonance imaging. Main Outcomes and Measures Brain functional connectivities were evaluated through within- and between-network functional connectivities and connectivity strength. Associations between risk factors and brain functional connectivities, including their interaction effects, were analyzed. Results Hypertension, BMI, and education were the top three influential factors. Sex-specific effects were also observed in interactions involving APOE4 gene, smoking, alcohol consumption, diabetes, BMI, and education. Notably, a negative sex-excessive alcohol interaction showed a stronger negative effect on functional connectivities in males, particularly between the dorsal attention network and the language network, while moderate alcohol consumption appeared to have protective effects. A significant negative interaction between sex and APOE4 revealed a greater reduction in functional connectivity between the cingulo-opercular network and the posterior multimodal network in male APOE4 carriers. Additional findings included a negative age-BMI interaction between the visual and dorsal attention networks, and a positive age-hypertension interaction between the frontoparietal and default mode networks. Conclusions and Relevance The findings highlight significant sex disparities in the associations between age, the APOE-ε4 gene, modifiable health risk factors, and brain functional connectivity, emphasizing the necessity of jointly considering these factors to gain a deeper understanding of the complex processes underlying brain aging.
Collapse
Affiliation(s)
- Tengfei Li
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jie Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, the Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Gwenn A. Garden
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kelly S. Giovanello
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guorong Wu
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Statistics and Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Insititute for Developmental Disabilities, Chapel Hill, NC, USA
| | - Hongtu Zhu
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Statistics and Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Departments of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Zhang D, Huang Y, Liu S, Gao J, Liu W, Liu W, Ai K, Lei X, Zhang X. Structural and functional connectivity alteration patterns of the cingulate gyrus in Type 2 diabetes. Ann Clin Transl Neurol 2023; 10:2305-2315. [PMID: 37822294 PMCID: PMC10723245 DOI: 10.1002/acn3.51918] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVE We aimed to reveal the role of structural and functional alterations of cingulate gyrus in early cognitive impairment in Type 2 diabetes mellitus (T2DM) patients. METHODS Fifty-six T2DM patients and 60 healthy controls (HCs) underwent a neuropsychological assessment and sagittal three-dimensional T1-weighted and resting-state functional MRI. Differences in the cortical thickness of the cingulate cortex and the functional connectivity (FC) of the nine subregions of the cingulate gyrus and the whole brain were compared between T2DM patients and HCs. Correlation analysis was performed between cortex thickness and FC and the participants' clinical/cognitive variables. RESULTS The cortical thickness of the cingulate gyrus was not significantly different between T2DM patients and HCs. However, the T2DM patients showed significantly lower FC between the pregenual ACC (pACC) and the bilateral hippocampus, significantly higher FC between the pACC and bilateral lateral prefrontal cortex (LPFC) and left precentral gyrus, and significantly lower FC between the retrosplenial cortex (RSC) and right cerebellar Crus I. The FC between the pACC and the left hippocampus was negatively correlated with the FC between the pACC and LPFC (r = -0.306, p = 0.022). INTERPRETATION The pACC and the RSC show dysfunctional connectivity before the appearance of structural abnormalities in T2DM patients. Abnormal FC of the pACC with the bilateral hippocampus and LPFC may imply a neural compensatory mechanism for memory function. These findings provide valuable information and new directions for possible interventions for the T2DM-related cognitive impairment.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Yang Huang
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Shasha Liu
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Jie Gao
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Weirui Liu
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Wanting Liu
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Kai Ai
- Department of Clinical SciencePhilips HealthcareXi'an710000China
| | - Xiaoyan Lei
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Xiaoling Zhang
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| |
Collapse
|
5
|
Asano S, Ogawa A, Osada T, Oka S, Nakajima K, Oshima Y, Tanaka S, Kaga H, Tamura Y, Watada H, Kawamori R, Konishi S. Reduced gray matter volume in the default-mode network associated with insulin resistance. Cereb Cortex 2023; 33:11225-11234. [PMID: 37757477 DOI: 10.1093/cercor/bhad358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Insulin resistance may lead to structural and functional abnormalities of the human brain. However, the mechanism by which insulin resistance impairs the brain remains elusive. In this study, we used two large neuroimaging databases to investigate the brain regions where insulin resistance was associated with the gray matter volume and to examine the resting-state functional connectivity between these brain regions and each hypothalamic nucleus. Insulin resistance was associated with reduced gray matter volume in the regions of the default-mode and limbic networks in the cerebral cortex in older adults. Resting-state functional connectivity was prominent between these networks and the paraventricular nucleus of the hypothalamus, a hypothalamic interface connecting functionally with the cerebral cortex. Furthermore, we found a significant correlation in these networks between insulin resistance-related gray matter volume reduction and network paraventricular nucleus of the hypothalamus resting-state functional connectivity. These results suggest that insulin resistance-related gray matter volume reduction in the default-mode and limbic networks emerged through metabolic homeostasis mechanisms in the hypothalamus.
Collapse
Affiliation(s)
- Saki Asano
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Satoshi Oka
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Koji Nakajima
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasushi Oshima
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideyoshi Kaga
- Department of Metabolism and Endocrinology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshifumi Tamura
- Department of Metabolism and Endocrinology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ryuzo Kawamori
- Department of Metabolism and Endocrinology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Science, Juntendo University School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
6
|
de Bartolomeis A, De Simone G, De Prisco M, Barone A, Napoli R, Beguinot F, Billeci M, Fornaro M. Insulin effects on core neurotransmitter pathways involved in schizophrenia neurobiology: a meta-analysis of preclinical studies. Implications for the treatment. Mol Psychiatry 2023; 28:2811-2825. [PMID: 37085712 PMCID: PMC10615753 DOI: 10.1038/s41380-023-02065-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/23/2023]
Abstract
Impairment of insulin action and metabolic dysregulation have traditionally been associated with schizophrenia, although the molecular basis of such association remains still elusive. The present meta-analysis aims to assess the impact of insulin action manipulations (i.e., hyperinsulinemia, hypoinsulinemia, systemic or brain insulin resistance) on glutamatergic, dopaminergic, γ-aminobutyric acid (GABA)ergic, and serotonergic pathways in the central nervous system. More than one hundred outcomes, including transcript or protein levels, kinetic parameters, and other components of the neurotransmitter pathways, were collected from cultured cells, animals, or humans, and meta-analyzed by applying a random-effects model and adopting Hedges'g to compare means. Two hundred fifteen studies met the inclusion criteria, of which 180 entered the quantitative synthesis. Significant impairments in key regulators of synaptic plasticity processes were detected as the result of insulin handlings. Specifically, protein levels of N-methyl-D-aspartate receptor (NMDAR) subunits including type 2A (NR2A) (Hedges' g = -0.95, 95%C.I. = -1.50, -0.39; p = 0.001; I2 = 47.46%) and 2B (NR2B) (Hedges'g = -0.69, 95%C.I. = -1.35, -0.02; p = 0.043; I2 = 62.09%), and Postsynaptic density protein 95 (PSD-95) (Hedges'g = -0.91, 95%C.I. = -1.51, -0.32; p = 0.003; I2 = 77.81%) were found reduced in insulin-resistant animal models. Moreover, insulin-resistant animals showed significantly impaired dopamine transporter activity, whereas the dopamine D2 receptor mRNA expression (Hedges'g = 3.259; 95%C.I. = 0.497, 6.020; p = 0.021; I2 = 90.61%) increased under insulin deficiency conditions. Insulin action modulated glutamate and GABA release, as well as several enzymes involved in GABA and serotonin synthesis. These results suggest that brain neurotransmitter systems are susceptible to insulin signaling abnormalities, resembling the discrete psychotic disorders' neurobiology and possibly contributing to the development of neurobiological hallmarks of treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy.
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
| | - Michele De Prisco
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel st, 12-0, 08036, Barcelona, Catalonia, Spain
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
| | - Raffaele Napoli
- Department of Translational Medical Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medical Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Martina Billeci
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
| | - Michele Fornaro
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|