1
|
Yang Y, Xu Z, Li C, Wang C, Zhao H, Xu Z. Utilizing combined quantitative multiparametric MRI as potential biomarkers for improved early-stage parkinson's disease diagnosis. Neurol Sci 2025; 46:2103-2113. [PMID: 39724321 DOI: 10.1007/s10072-024-07956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Identifying Parkinson's disease (PD) during its initial phases presents considerable hurdles for clinicians. PURPOSE To examine the feasibility and efficacy of a machine learning model based on quantitative multiparametric magnetic resonance imaging (MRI) features in identifying early-stage PD. METHODS We recruited 33 participants, including 19 with early-stage PD, 14 with advanced-stage PD and 20 healthy control subjects. Each participant underwent both quantitative susceptibility mapping (QSM) and diffusion kurtosis imaging (DKI). We utilized combined QSM and DKI features to establish a support vector machine (SVM) model to identify early-stage PD. RESULTS When comparing early-stage PD with healthy controls, the SVM model exhibited moderate performance, achieving a training set accuracy of 0.78 and an area under the receiver operating characteristic curve (AUC) of 0.90, and the accuracy of 0.77 (AUC = 0.87) in the test set. When comparing advanced-stage PD with healthy controls, the SVM model exhibited equally high accuracy in both training (0.97, AUC = 0.97) and test (0.94, AUC = 0.94) sets. In discriminating between early-stage PD and advanced-stage PD, the SVM model achieved an accuracy of 0.80 (AUC = 0.81) in the training set and an accuracy of 0.71 (AUC = 0.72) in the test set. The mean kurtosis feature of DKI in the substantia nigra, played a significant role in classification. CONCLUSION These findings suggest that early PD is associated with specific MRI features reflecting magnetic susceptibility and microstructural changes. The SVM model combining quantitative QSM and DKI features holds promise for improving early PD diagnosis.
Collapse
Affiliation(s)
- Yunjun Yang
- Department of Radiology, The First People's Hospital of Foshan, #81 North Lingnan Avenue, Foshan, Guangdong, China
| | - Zhenyu Xu
- Department of Radiology, The First People's Hospital of Foshan, #81 North Lingnan Avenue, Foshan, Guangdong, China
| | - Cheng Li
- Department of Radiology, The First People's Hospital of Foshan, #81 North Lingnan Avenue, Foshan, Guangdong, China
| | - Chengming Wang
- Department of Radiology, The First People's Hospital of Foshan, #81 North Lingnan Avenue, Foshan, Guangdong, China
| | - Hai Zhao
- Department of Radiology, The First People's Hospital of Foshan, #81 North Lingnan Avenue, Foshan, Guangdong, China
| | - Zhifeng Xu
- Department of Radiology, The First People's Hospital of Foshan, #81 North Lingnan Avenue, Foshan, Guangdong, China.
| |
Collapse
|
2
|
Lin H, Cheng X, Xu Y, Wu J, Zhu J, Mao C, Jiang Z. Multimodal MRI changes associated with non-motor symptoms of rapid eye movement sleep behaviour disorder in Parkinson's disease patients. Neuroradiology 2025; 67:153-162. [PMID: 39476126 DOI: 10.1007/s00234-024-03492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/11/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND AND OBJECTIVE Parkinson's disease (PD), a prevalent neurodegenerative disorder, assumes a more adverse prognosis when accompanied by rapid eye movement sleep disorder (RBD). Non-motor symptoms, particularly sleep and emotional disturbances, significantly impair patients' quality of life. This study aimed to investigate the neuroimaging underpinnings of PD-RBD using structural and functional magnetic resonance imaging (MRI) and to explore the associations between these imaging biomarkers and non-motor symptoms. METHOD Brain scans were acquired from 33 PD patients without and 21 with probable RBD (PD-pRBD). Comparative analyses were performed to evaluate structural and functional alterations between the two groups. Additionally, the correlations between neuroimaging metrics and clinical assessment scales were assessed. RESULTS PD-pRBD patients demonstrated more pronounced grey matter atrophy, particularly in the putamen and insula. Functional MRI revealed decreased amplitude of low-frequency fluctuations (ALFF) in the bilateral posterior cingulate cortex and left precuneus of PD-pRBD patients. Furthermore, reduced functional connectivity (FC) was observed in specific regions of the whole brain and within the default mode network (DMN) in PD-pRBD. Notably, a negative correlation was found between mean ALFF values in the left posterior cingulate cortex of PD-pRBD patients and Hamilton Depression Rating Scale scores. CONCLUSION PD-pRBD is characterized by more severe grey matter loss and functional MRI abnormalities compared to PD alone. Dysfunction of the posterior cingulate cortex is implicated in more pronounced affective impairments, providing novel insights into the complex pathophysiology of PD-RBD.
Collapse
Affiliation(s)
- Huihui Lin
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Xiaoyu Cheng
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Yiwen Xu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Jiayu Wu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Jiangtao Zhu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Chengjie Mao
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China.
| | - Zhen Jiang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Shimozono T, Shiiba T, Takano K. Radiomics score derived from T1-w/T2-w ratio image can predict motor symptom progression in Parkinson's disease. Eur Radiol 2024; 34:7921-7933. [PMID: 38958697 DOI: 10.1007/s00330-024-10886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVES To clarify the association between a radiomics score (Rad-score) derived from T1-weighted signal intensity to T2-weighted signal intensity (T1-w/T2-w) ratio images and the progression of motor symptoms in Parkinson's disease (PD). MATERIALS AND METHODS This retrospective study included patients with PD enrolled in the Parkinson's Progression Markers Initiative. The Movement Disorders Society-Unified Parkinson's Disease Rating Scale Part III score ≥ 33 and/or Hoehn and Yahr stage ≥ 3 indicated motor function decline. The Rad-score was constructed using radiomics features extracted from T1-w/T2-w ratio images. The Kaplan-Meier analysis and Cox regression analyses were used to assess the time differences in motor function decline between the high and low Rad-score groups. RESULTS A total of 171 patients with PD were divided into training (n = 101, mean age at baseline, 61.6 ± 9.3 years) and testing (n = 70, mean age at baseline, 61.6 ± 10 years). The patients in the high Rad-score group had a shorter time to motor function decline than those in the low Rad-score group in the training dataset (log-rank test, p < 0.001) and testing dataset (log-rank test, p < 0.001). The multivariate Cox regression using the Rad-score and clinical factors revealed a significant association between the Rad-score and motor function decline in the training dataset (HR = 2.368, 95%CI:1.423-3.943, p < 0.001) and testing dataset (HR = 2.931, 95%CI:1.472-5.837, p = 0.002). CONCLUSION Rad-scores based on radiomics features derived from T1-w/T2-w ratio images were associated with the progression of motor symptoms in PD. CLINICAL RELEVANCE STATEMENT The radiomics score derived from the T1-weighted/T2-weighted ratio images offers a predictive tool for assessing the progression of motor symptom in patients with PD. KEY POINTS Radiomics score derived from T1-weighted/T2-weighted ratio images is correlated with the motor symptoms of Parkinson's disease. A high radiomics score correlated with faster motor function decline in patients with Parkinson's disease. The proposed radiomics score offers predictive insight into the progression of motor symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Takuya Shimozono
- Department of Neuroimaging and Brain Science, Major in Health Science, Graduate School of Health Sciences, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Takuro Shiiba
- Department of Molecular Imaging, Clinical Collaboration Unit, School of Medical Sciences, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Kazuki Takano
- Department of Molecular Imaging, Clinical Collaboration Unit, School of Medical Sciences, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
4
|
Shi D, Wu S, Zhuang C, Mao Y, Wang Q, Zhai H, Zhao N, Yan G, Wu R. Multimodal data fusion reveals functional and neurochemical correlates of Parkinson's disease. Neurobiol Dis 2024; 197:106527. [PMID: 38740347 DOI: 10.1016/j.nbd.2024.106527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Neurotransmitter deficits and spatial associations among neurotransmitter distribution, brain activity, and clinical features in Parkinson's disease (PD) remain unclear. Better understanding of neurotransmitter impairments in PD may provide potential therapeutic targets. Therefore, we aimed to investigate the spatial relationship between PD-related patterns and neurotransmitter deficits. METHODS We included 59 patients with PD and 41 age- and sex-matched healthy controls (HCs). The voxel-wise mean amplitude of the low-frequency fluctuation (mALFF) was calculated and compared between the two groups. The JuSpace toolbox was used to test whether spatial patterns of mALFF alterations in patients with PD were associated with specific neurotransmitter receptor/transporter densities. RESULTS Compared to HCs, patients with PD showed reduced mALFF in the sensorimotor- and visual-related regions. In addition, mALFF alteration patterns were significantly associated with the spatial distribution of the serotonergic, dopaminergic, noradrenergic, glutamatergic, cannabinoid, and acetylcholinergic neurotransmitter systems (p < 0.05, false discovery rate-corrected). CONCLUSIONS Our results revealed abnormal brain activity patterns and specific neurotransmitter deficits in patients with PD, which may provide new insights into the mechanisms and potential targets for pharmacotherapy.
Collapse
Affiliation(s)
- Dafa Shi
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| | - Shuohua Wu
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Caiyu Zhuang
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yumeng Mao
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Qianqi Wang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Huige Zhai
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, China
| | - Nannan Zhao
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, China
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China.
| | - Renhua Wu
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
5
|
Chen Y, Qi Y, Li T, Lin A, Ni Y, Pu R, Sun B. A more objective PD diagnostic model: integrating texture feature markers of cerebellar gray matter and white matter through machine learning. Front Aging Neurosci 2024; 16:1393841. [PMID: 38912523 PMCID: PMC11190310 DOI: 10.3389/fnagi.2024.1393841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Objective The purpose of this study is to explore whether machine learning can be used to establish an effective model for the diagnosis of Parkinson's disease (PD) by using texture features extracted from cerebellar gray matter and white matter, so as to identify subtle changes that cannot be observed by the naked eye. Method This study involved a data collection period from June 2010 to March 2023, including 374 subjects from two cohorts. The Parkinson's Progression Markers Initiative (PPMI) served as the training set, with control group and PD patients (HC: 102 and PD: 102) from 24 global sites. Our institution's data was utilized as the test set (HC: 91 and PD: 79). Machine learning was employed to establish multiple models for PD diagnosis based on texture features of the cerebellum's gray and white matter. Results underwent evaluation through 5-fold cross-validation analysis, calculating the area under the receiver operating characteristic curve (AUC) for each model. The performance of each model was compared using the Delong test, and the interpretability of the optimized model was further augmented by employing Shapley additive explanations (SHAP). Results The AUCs for all pipelines in the validation dataset were compared using FeAture Explorer (FAE) software. Among the models established by Kruskal-Wallis (KW) and logistic regression via Lasso (LRLasso), the AUC was highest using the "one-standard error" rule. 'WM_original_glrlm_GrayLevelNonUniformity' was considered the most stable and predictive feature. Conclusion The texture features of cerebellar gray matter and white matter combined with machine learning may have potential value in the diagnosis of Parkinson's disease, in which the heterogeneity of white matter may be a more valuable imaging marker.
Collapse
Affiliation(s)
- Yini Chen
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yiwei Qi
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tianbai Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Andong Lin
- Department of Neurology, Zhejiang Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Yang Ni
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Renwang Pu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Sun
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Solana-Lavalle G, Cusimano MD, Steeves T, Rosas-Romero R, Tyrrell PN. Causal Forest Machine Learning Analysis of Parkinson's Disease in Resting-State Functional Magnetic Resonance Imaging. Tomography 2024; 10:894-911. [PMID: 38921945 PMCID: PMC11209036 DOI: 10.3390/tomography10060068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
In recent years, Artificial Intelligence has been used to assist healthcare professionals in detecting and diagnosing neurodegenerative diseases. In this study, we propose a methodology to analyze functional Magnetic Resonance Imaging signals and perform classification between Parkinson's disease patients and healthy participants using Machine Learning algorithms. In addition, the proposed approach provides insights into the brain regions affected by the disease. The functional Magnetic Resonance Imaging from the PPMI and 1000-FCP datasets were pre-processed to extract time series from 200 brain regions per participant, resulting in 11,600 features. Causal Forest and Wrapper Feature Subset Selection algorithms were used for dimensionality reduction, resulting in a subset of features based on their heterogeneity and association with the disease. We utilized Logistic Regression and XGBoost algorithms to perform PD detection, achieving 97.6% accuracy, 97.5% F1 score, 97.9% precision, and 97.7%recall by analyzing sets with fewer than 300 features in a population including men and women. Finally, Multiple Correspondence Analysis was employed to visualize the relationships between brain regions and each group (women with Parkinson, female controls, men with Parkinson, male controls). Associations between the Unified Parkinson's Disease Rating Scale questionnaire results and affected brain regions in different groups were also obtained to show another use case of the methodology. This work proposes a methodology to (1) classify patients and controls with Machine Learning and Causal Forest algorithm and (2) visualize associations between brain regions and groups, providing high-accuracy classification and enhanced interpretability of the correlation between specific brain regions and the disease across different groups.
Collapse
Affiliation(s)
- Gabriel Solana-Lavalle
- Department of Computing, Electronics, and Mechatronics, Universidad de las Américas Puebla Santa Catarina Mártir, San Andrés Cholula, Puebla 78210, Mexico; (G.S.-L.); (R.R.-R.)
- Department of Medical Imaging, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Michael D. Cusimano
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Division of Neurosurgery, Unity Health Toronto, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Thomas Steeves
- Division of Neurology, Unity Health Toronto, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
| | - Roberto Rosas-Romero
- Department of Computing, Electronics, and Mechatronics, Universidad de las Américas Puebla Santa Catarina Mártir, San Andrés Cholula, Puebla 78210, Mexico; (G.S.-L.); (R.R.-R.)
| | - Pascal N. Tyrrell
- Department of Medical Imaging, University of Toronto, Toronto, ON M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Department of Statistical Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
7
|
Patil P, Ford WR. Parkinson's Disease Recognition Using Decorrelated Convolutional Neural Networks: Addressing Imbalance and Scanner Bias in rs-fMRI Data. BIOSENSORS 2024; 14:259. [PMID: 38785733 PMCID: PMC11117585 DOI: 10.3390/bios14050259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative and progressive disease that impacts the nerve cells in the brain and varies from person to person. The exact cause of PD is still unknown, and the diagnosis of PD does not include a specific objective test with certainty. Although deep learning has made great progress in medical neuroimaging analysis, these methods are very susceptible to biases present in neuroimaging datasets. An innovative decorrelated deep learning technique is introduced to mitigate class bias and scanner bias while simultaneously focusing on finding distinguishing characteristics in resting-state functional MRI (rs-fMRI) data, which assists in recognizing PD with good accuracy. The decorrelation function reduces the nonlinear correlation between features and bias in order to learn bias-invariant features. The publicly available Parkinson's Progression Markers Initiative (PPMI) dataset, referred to as a single-scanner imbalanced dataset in this study, was used to validate our method. The imbalanced dataset problem affects the performance of the deep learning framework by overfitting to the majority class. To resolve this problem, we propose a new decorrelated convolutional neural network (DcCNN) framework by applying decorrelation-based optimization to convolutional neural networks (CNNs). An analysis of evaluation metrics comparisons shows that integrating the decorrelation function boosts the performance of PD recognition by removing class bias. Specifically, our DcCNN models perform significantly better than existing traditional approaches to tackle the imbalance problem. Finally, the same framework can be extended to create scanner-invariant features without significantly impacting the performance of a model. The obtained dataset is a multiscanner dataset, which leads to scanner bias due to the differences in acquisition protocols and scanners. The multiscanner dataset is a combination of two publicly available datasets, namely, PPMI and FTLDNI-the frontotemporal lobar degeneration neuroimaging initiative (NIFD) dataset. The results of t-distributed stochastic neighbor embedding (t-SNE) and scanner classification accuracy of our proposed feature extraction-DcCNN (FE-DcCNN) model validated the effective removal of scanner bias. Our method achieves an average accuracy of 77.80% on a multiscanner dataset for differentiating PD from a healthy control, which is superior to the DcCNN model trained on a single-scanner imbalanced dataset.
Collapse
Affiliation(s)
- Pranita Patil
- Department of Analytics, Harrisburg University of Science and Technology, Harrisburg, PA 17101, USA;
| | | |
Collapse
|
8
|
Awomuti A, Alimo PK, Lartey-Young G, Agyeman S, Akintunde TY, Agbeja AO, Oderinde O, Samuel OW, Otobrise H. Towards adequate policy enhancement: An AI-driven decision tree model for efficient recognition and classification of EPA status via multi-emission parameters. CITY AND ENVIRONMENT INTERACTIONS 2023; 20:100127. [DOI: 10.1016/j.cacint.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/14/2024]
|
9
|
Gore S, Dhole A, Kumbhar S, Jagtap J. Radiomics for Parkinson's disease classification using advanced texture-based biomarkers. MethodsX 2023; 11:102359. [PMID: 37791007 PMCID: PMC10543659 DOI: 10.1016/j.mex.2023.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
Parkinson's disease (PD) is one of the neurodegenerative diseases and its manual diagnosis leads to time-consuming process. MRI-based computer-aided diagnosis helps medical experts to diagnose PD more precisely and fast. Texture-based radiomic analysis is carried out on 3D MRI scans of T1 weighted and resting-state modalities. 43 subjects from Neurocon and 40 subjects from Tao-Wu dataset were examined, which consisted of 36 scans of healthy controls and 47 scans of Parkinson's patients. Total 360 2D MRI images are selected among around 17000 slices of T1-weighted and resting scans of selected 72 subjects. Local binary pattern (LBP) method was applied with custom variants to acquire advanced textural biomarkers from MRI images. LBP histogram helped to learn discriminative local patterns to detect and classify Parkinson's disease. Using recursive feature elimination, data dimensions of around 150-300 LBP histogram features were reduced to 13-21 most significant features based on score, and important features were analysed using SVM and random forest algorithms. Variant-I of LBP has performed well with highest test accuracy of 83.33%, precision of 84.62%, recall of 91.67%, and f1-score of 88%. Classification accuracies were obtained from 61.11% to 83.33% and AUC-ROC values range from 0.43 to 0.86 using four variants of LBP.•Parkinson's classification is carried out using an advanced biomedical texture feature. Texture extraction using four variants of uniform, rotation invariant LBP method is performed for radiomic analysis of Parkinson's disorder.•Proposed method with support vector machine classifier is experimented and an accuracy of 83.33% is achieved with 10-fold cross validation for detection of Parkinson's patients from MRI-based radiomic analysis.•The proposed predictive model has proved the potential of textures of extended version of LBP, which have demonstrated subtle variations in local appearance for Parkinson's detection.
Collapse
Affiliation(s)
- Sonal Gore
- Pimpri Chinchwad College of Engineering, Nigdi, Pune, Maharashtra, India
| | - Aniket Dhole
- Pimpri Chinchwad College of Engineering, Nigdi, Pune, Maharashtra, India
| | - Shrishail Kumbhar
- Pimpri Chinchwad College of Engineering, Nigdi, Pune, Maharashtra, India
| | - Jayant Jagtap
- Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), (SIU), Lavale, Pune, Maharashtra, India
| |
Collapse
|
10
|
Gupta R, Kumari S, Senapati A, Ambasta RK, Kumar P. New era of artificial intelligence and machine learning-based detection, diagnosis, and therapeutics in Parkinson's disease. Ageing Res Rev 2023; 90:102013. [PMID: 37429545 DOI: 10.1016/j.arr.2023.102013] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of neuronal cells, which leads to synaptic dysfunction and cognitive defects. Despite the advancements in treatment strategies, the management of PD is still a challenging event. Early prediction and diagnosis of PD are of utmost importance for effective management of PD. In addition, the classification of patients with PD as compared to normal healthy individuals also imposes drawbacks in the early diagnosis of PD. To address these challenges, artificial intelligence (AI) and machine learning (ML) models have been implicated in the diagnosis, prediction, and treatment of PD. Recent times have also demonstrated the implication of AI and ML models in the classification of PD based on neuroimaging methods, speech recording, gait abnormalities, and others. Herein, we have briefly discussed the role of AI and ML in the diagnosis, treatment, and identification of novel biomarkers in the progression of PD. We have also highlighted the role of AI and ML in PD management through altered lipidomics and gut-brain axis. We briefly explain the role of early PD detection through AI and ML algorithms based on speech recordings, handwriting patterns, gait abnormalities, and neuroimaging techniques. Further, the review discuss the potential role of the metaverse, the Internet of Things, and electronic health records in the effective management of PD to improve the quality of life. Lastly, we also focused on the implementation of AI and ML-algorithms in neurosurgical process and drug discovery.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA.
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA
| | | | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA.
| |
Collapse
|
11
|
Teng J, Mi C, Shi J, Li N. Brain disease research based on functional magnetic resonance imaging data and machine learning: a review. Front Neurosci 2023; 17:1227491. [PMID: 37662098 PMCID: PMC10469689 DOI: 10.3389/fnins.2023.1227491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 09/05/2023] Open
Abstract
Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis.
Collapse
Affiliation(s)
- Jing Teng
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | - Chunlin Mi
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | - Jian Shi
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Na Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
12
|
Bian J, Wang X, Hao W, Zhang G, Wang Y. The differential diagnosis value of radiomics-based machine learning in Parkinson's disease: a systematic review and meta-analysis. Front Aging Neurosci 2023; 15:1199826. [PMID: 37484694 PMCID: PMC10357514 DOI: 10.3389/fnagi.2023.1199826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Background In recent years, radiomics has been increasingly utilized for the differential diagnosis of Parkinson's disease (PD). However, the application of radiomics in PD diagnosis still lacks sufficient evidence-based support. To address this gap, we carried out a systematic review and meta-analysis to evaluate the diagnostic value of radiomics-based machine learning (ML) for PD. Methods We systematically searched Embase, Cochrane, PubMed, and Web of Science databases as of November 14, 2022. The radiomics quality assessment scale (RQS) was used to evaluate the quality of the included studies. The outcome measures were the c-index, which reflects the overall accuracy of the model, as well as sensitivity and specificity. During this meta-analysis, we discussed the differential diagnostic value of radiomics-based ML for Parkinson's disease and various atypical parkinsonism syndromes (APS). Results Twenty-eight articles with a total of 6,057 participants were included. The mean RQS score for all included articles was 10.64, with a relative score of 29.56%. The pooled c-index, sensitivity, and specificity of radiomics for predicting PD were 0.862 (95% CI: 0.833-0.891), 0.91 (95% CI: 0.86-0.94), and 0.93 (95% CI: 0.87-0.96) in the training set, and 0.871 (95% CI: 0.853-0.890), 0.86 (95% CI: 0.81-0.89), and 0.87 (95% CI: 0.83-0.91) in the validation set, respectively. Additionally, the pooled c-index, sensitivity, and specificity of radiomics for differentiating PD from APS were 0.866 (95% CI: 0.843-0.889), 0.86 (95% CI: 0.84-0.88), and 0.80 (95% CI: 0.75-0.84) in the training set, and 0.879 (95% CI: 0.854-0.903), 0.87 (95% CI: 0.85-0.89), and 0.82 (95% CI: 0.77-0.86) in the validation set, respectively. Conclusion Radiomics-based ML can serve as a potential tool for PD diagnosis. Moreover, it has an excellent performance in distinguishing Parkinson's disease from APS. The support vector machine (SVM) model exhibits excellent robustness when the number of samples is relatively abundant. However, due to the diverse implementation process of radiomics, it is expected that more large-scale, multi-class image data can be included to develop radiomics intelligent tools with broader applicability, promoting the application and development of radiomics in the diagnosis and prediction of Parkinson's disease and related fields. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=383197, identifier ID: CRD42022383197.
Collapse
Affiliation(s)
- Jiaxiang Bian
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xiaoyang Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Wei Hao
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Guangjian Zhang
- Department of Neurosurgery, Weifang People’s Hospital, Weifang, China
| | - Yuting Wang
- Department of Neurosurgery, Weifang People’s Hospital, Weifang, China
| |
Collapse
|
13
|
Xiao P, Tao L, Zhang X, Li Q, Gui H, Xu B, Zhang X, He W, Chen H, Wang H, Lv F, Luo T, Cheng O, Luo J, Man Y, Xiao Z, Fang W. Using histogram analysis of the intrinsic brain activity mapping to identify essential tremor. Front Neurol 2023; 14:1165603. [PMID: 37404943 PMCID: PMC10317178 DOI: 10.3389/fneur.2023.1165603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/23/2023] [Indexed: 07/06/2023] Open
Abstract
Background Essential tremor (ET) is one of the most common movement disorders. Histogram analysis based on brain intrinsic activity imaging is a promising way to identify ET patients from healthy controls (HCs) and further explore the spontaneous brain activity change mechanisms and build the potential diagnostic biomarker in ET patients. Methods The histogram features based on the Resting-state functional magnetic resonance imaging (Rs-fMRI) data were extracted from 133 ET patients and 135 well-matched HCs as the input features. Then, a two-sample t-test, the mutual information, and the least absolute shrinkage and selection operator methods were applied to reduce the feature dimensionality. Support vector machine (SVM), logistic regression (LR), random forest (RF), and k-nearest neighbor (KNN) were used to differentiate ET and HCs, and classification performance of the established models was evaluated by the mean area under the curve (AUC). Moreover, correlation analysis was carried out between the selected histogram features and clinical tremor characteristics. Results Each classifier achieved a good classification performance in training and testing sets. The mean accuracy and area under the curve (AUC) of SVM, LR, RF, and KNN in the testing set were 92.62%, 0.948; 92.01%, 0.942; 93.88%, 0.941; and 92.27%, 0.939, respectively. The most power-discriminative features were mainly located in the cerebello-thalamo-motor and non-motor cortical pathways. Correlation analysis showed that there were two histogram features negatively and one positively correlated with tremor severity. Conclusion Our findings demonstrated that the histogram analysis of the amplitude of low-frequency fluctuation (ALFF) images with multiple machine learning algorithms could identify ET patients from HCs and help to understand the spontaneous brain activity pathogenesis mechanisms in ET patients.
Collapse
Affiliation(s)
- Pan Xiao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Tao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Honge Gui
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bintao Xu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueyan Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wanlin He
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huiyue Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hansheng Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyou Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Man
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weidong Fang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Manikantan K, Jaganathan S. A Model for Diagnosing Autism Patients Using Spatial and Statistical Measures Using rs-fMRI and sMRI by Adopting Graphical Neural Networks. Diagnostics (Basel) 2023; 13:1143. [PMID: 36980452 PMCID: PMC10047680 DOI: 10.3390/diagnostics13061143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
This article proposes a model to diagnose autism patients using graphical neural networks. A graphical neural network relates the subjects (nodes) using the features (edges). In our model, radiomic features obtained from sMRI are used as edges, and spatial-temporal data obtained through rs-fMRI are used as nodes. The similarity between first-order and texture features from the sMRI data of subjects are derived using radiomics to construct the edges of a graph. The features from brain summaries are assembled and learned using 3DCNN to represent the features of each node of the graph. Using the structural similarities of the brain rather than phenotypic data or graph kernel functions provides better accuracy. The proposed model was applied to a standard dataset, ABIDE, and it was shown that the classification results improved with the use of both spatial (sMRI) and statistical measures (brain summaries of rs-fMRI) instead of using only medical images.
Collapse
|
15
|
Shi D, Ren Z, Zhang H, Wang G, Guo Q, Wang S, Ding J, Yao X, Li Y, Ren K. Amplitude of low-frequency fluctuation-based regional radiomics similarity network: Biomarker for Parkinson's disease. Heliyon 2023; 9:e14325. [PMID: 36950566 PMCID: PMC10025115 DOI: 10.1016/j.heliyon.2023.e14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/18/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Parkinson's disease (PD) is a highly heterogeneous disorder that is difficult to diagnose. Therefore, reliable biomarkers are needed. We implemented a method constructing a regional radiomics similarity network (R2SN) based on the amplitude of low-frequency fluctuation (ALFF). We classified patients with PD and healthy individuals by using a machine learning approach in accordance with the R2SN connectome. The ALFF-based R2SN exhibited great reproducibility with different brain atlases and datasets. Great classification performances were achieved both in primary (AUC = 0.85 ± 0.02 and accuracy = 0.81 ± 0.03) and independent external validation (AUC = 0.77 and accuracy = 0.70) datasets. The discriminative R2SN edges correlated with the clinical evaluations of patients with PD. The nodes of discriminative R2SN edges were primarily located in the default mode, sensorimotor, executive control, visual and frontoparietal network, cerebellum and striatum. These findings demonstrate that ALFF-based R2SN is a robust potential neuroimaging biomarker for PD and could provide new insights into connectome reorganization in PD.
Collapse
Affiliation(s)
- Dafa Shi
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhendong Ren
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haoran Zhang
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guangsong Wang
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qiu Guo
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Siyuan Wang
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jie Ding
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiang Yao
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yanfei Li
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ke Ren
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory for Endocrine-Related Cancer Precision Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
McCague C, Ramlee S, Reinius M, Selby I, Hulse D, Piyatissa P, Bura V, Crispin-Ortuzar M, Sala E, Woitek R. Introduction to radiomics for a clinical audience. Clin Radiol 2023; 78:83-98. [PMID: 36639175 DOI: 10.1016/j.crad.2022.08.149] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Radiomics is a rapidly developing field of research focused on the extraction of quantitative features from medical images, thus converting these digital images into minable, high-dimensional data, which offer unique biological information that can enhance our understanding of disease processes and provide clinical decision support. To date, most radiomics research has been focused on oncological applications; however, it is increasingly being used in a raft of other diseases. This review gives an overview of radiomics for a clinical audience, including the radiomics pipeline and the common pitfalls associated with each stage. Key studies in oncology are presented with a focus on both those that use radiomics analysis alone and those that integrate its use with other multimodal data streams. Importantly, clinical applications outside oncology are also presented. Finally, we conclude by offering a vision for radiomics research in the future, including how it might impact our practice as radiologists.
Collapse
Affiliation(s)
- C McCague
- Department of Radiology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - S Ramlee
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - M Reinius
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - I Selby
- Department of Radiology, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - D Hulse
- Department of Radiology, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - P Piyatissa
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - V Bura
- Department of Radiology, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Radiology and Medical Imaging, County Clinical Emergency Hospital, Cluj-Napoca, Romania
| | - M Crispin-Ortuzar
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK; Department of Oncology, University of Cambridge, Cambridge, UK
| | - E Sala
- Department of Radiology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - R Woitek
- Department of Radiology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Research Centre for Medical Image Analysis and Artificial Intelligence (MIAAI), Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| |
Collapse
|
17
|
Wen ZY, Zhang Y, Feng MH, Wu YC, Fu CW, Deng K, Lin QZ, Liu B. Identification of discriminative neuroimaging markers for patients on hemodialysis with insomnia: a fractional amplitude of low frequency fluctuation-based machine learning analysis. BMC Psychiatry 2023; 23:9. [PMID: 36600230 PMCID: PMC9811801 DOI: 10.1186/s12888-022-04490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Insomnia is one of the common problems encountered in the hemodialysis (HD) population, but the mechanisms remain unclear. we aimed to (1) detect the spontaneous brain activity pattern in HD patients with insomnia (HDWI) by using fractional fractional amplitude of low frequency fluctuation (fALFF) method and (2) further identify brain regions showing altered fALFF as neural markers to discriminate HDWI patients from those on hemodialysis but without insomnia (HDWoI) and healthy controls (HCs). METHOD We compared fALFF differences among HDWI subjects (28), HDWoI subjects (28) and HCs (28), and extracted altered fALFF features for the subsequent discriminative analysis. Then, we constructed a support vector machine (SVM) classifier to identify distinct neuroimaging markers for HDWI. RESULTS Compared with HCs, both HDWI and HDWoI patients exhibited significantly decreased fALFF in the bilateral calcarine (CAL), right middle occipital gyrus (MOG), left precentral gyrus (PreCG), bilateral postcentral gyrus (PoCG) and bilateral temporal middle gyrus (TMG), whereas increased fALFF in the bilateral cerebellum and right insula. Conversely, increased fALFF in the bilateral CAL/right MOG and decreased fALFF in the right cerebellum was observed in HDWI patients when compared with HDWoI patients. Moreover, the SVM classification achieved a good performance [accuracy = 82.14%, area under the curve (AUC) = 0.8202], and the consensus brain regions with the highest contributions to classification were located in the right MOG and right cerebellum. CONCLUSION Our result highlights that HDWI patients had abnormal neural activities in the right MOG and right cerebellum, which might be potential neural markers for distinguishing HDWI patients from non-insomniacs, providing further support for the pathological mechanism of HDWI.
Collapse
Affiliation(s)
- Ze-Ying Wen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Radiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Meng-Han Feng
- R&D Support Group, Xin-Huangpu Joint Innovation Institute of Chinese Medicine in Guangdong Province, Guangzhou, 510700, China
| | - Yu-Chi Wu
- Hemodialysis Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Cheng-Wei Fu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Kan Deng
- Philips Healthcare, Guangzhou, 510120, China
| | - Qi-Zhan Lin
- Hemodialysis Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| | - Bo Liu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
18
|
Shi D, Zhang H, Wang G, Yao X, Li Y, Wang S, Ren K. Neuroimaging biomarkers for detecting schizophrenia: A resting-state functional MRI-based radiomics analysis. Heliyon 2022; 8:e12276. [PMID: 36582679 PMCID: PMC9793282 DOI: 10.1016/j.heliyon.2022.e12276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/19/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia (SZ) is a common psychiatric disorder that is difficult to accurately diagnose in clinical practice. Quantifiable biomarkers are urgently required to explore the potential physiological mechanism of SZ and improve its diagnostic accuracy. Thus, this study aimed to identify biomarkers that classify SZ patients and healthy control subjects and investigate the potential neural mechanisms of SZ using degree centrality (DC)- and voxel-mirrored homotopic connectivity (VMHC)-based radiomics. Radiomics features were extracted from DC and VMHC metrics generated via resting-state functional magnetic resonance imaging, and significant features were selected and dimensionality was reduced using t-tests and least absolute shrinkage and selection operator. Subsequently, we built our model using a support vector machine classifier. We observed that our method obtained great classification performance (area under the curve, 0.808; accuracy, 74.02%), and it could be generalized to different brain atlases. The regions that we identified as discriminative features mainly included bilateral dorsal caudate and front-parietal, somatomotor, limbic, and default mode networks. Our findings showed that the radiomics-based machine learning method could facilitate us to understand the potential pathological mechanism of SZ more comprehensively and contribute to the accurate diagnosis of patients with SZ.
Collapse
Affiliation(s)
- Dafa Shi
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Guangsong Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Xiang Yao
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Yanfei Li
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Siyuan Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| |
Collapse
|
19
|
Li Q, Tao L, Xiao P, Gui H, Xu B, Zhang X, Zhang X, Chen H, Wang H, He W, Lv F, Cheng O, Luo J, Man Y, Xiao Z, Fang W. Combined brain network topological metrics with machine learning algorithms to identify essential tremor. Front Neurosci 2022; 16:1035153. [PMID: 36408403 PMCID: PMC9667093 DOI: 10.3389/fnins.2022.1035153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Essential tremor (ET) is a common movement syndrome, and the pathogenesis mechanisms, especially the brain network topological changes in ET are still unclear. The combination of graph theory (GT) analysis with machine learning (ML) algorithms provides a promising way to identify ET from healthy controls (HCs) at the individual level, and further help to reveal the topological pathogenesis in ET. METHODS Resting-state functional magnetic resonance imaging (fMRI) data were obtained from 101 ET and 105 HCs. The topological properties were analyzed by using GT analysis, and the topological metrics under every single threshold and the area under the curve (AUC) of all thresholds were used as features. Then a Mann-Whitney U-test and least absolute shrinkage and selection operator (LASSO) were conducted to feature dimensionality reduction. Four ML algorithms were adopted to identify ET from HCs. The mean accuracy, mean balanced accuracy, mean sensitivity, mean specificity, and mean AUC were used to evaluate the classification performance. In addition, correlation analysis was carried out between selected topological features and clinical tremor characteristics. RESULTS All classifiers achieved good classification performance. The mean accuracy of Support vector machine (SVM), logistic regression (LR), random forest (RF), and naïve bayes (NB) was 84.65, 85.03, 84.85, and 76.31%, respectively. LR classifier achieved the best classification performance with 85.03% mean accuracy, 83.97% sensitivity, and an AUC of 0.924. Correlation analysis results showed that 2 topological features negatively and 1 positively correlated with tremor severity. CONCLUSION These results demonstrated that combining topological metrics with ML algorithms could not only achieve high classification accuracy for discrimination ET from HCs but also help us to reveal the potential topological pathogenesis of ET.
Collapse
Affiliation(s)
- Qin Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Tao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pan Xiao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Honge Gui
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bintao Xu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueyan Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huiyue Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hansheng Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wanlin He
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Man
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weidong Fang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|