1
|
He X, Cui J, Li H, Zhou Y, Wu X, Jiang C, Xu Z, Wang R, Xiong L. Antipyretic effects of Xiangqin Jiere granules on febrile young rats revealed by combining pharmacodynamics, metabolomics, network pharmacology, molecular biology experiments and molecular docking strategies. J Biomol Struct Dyn 2025; 43:4183-4200. [PMID: 38197809 DOI: 10.1080/07391102.2024.2301761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
Xiangqin Jiere granules (XQJRG) is a proprietary Chinese medicine treating children's colds and fevers, but its mechanism of action is unclear. The aim of this study was to explore the antipyretic mechanisms of XQJRG based on pharmacodynamics, non-targeted metabolomics, network pharmacology, molecular biology experiments, molecular docking, and molecular dynamics (MD) simulation. Firstly, the yeast-induced fever model was constructed in young rats to study antipyretic effect of XQJRG. Metabolomics and network pharmacology studies were performed to identify the key compounds, targets and pathways involved in the antipyretic of XQJRG. Subsequently, MetScape was used to jointly analyze targets from network pharmacology and metabolites from metabolomics. Finally, the key targets were validated by enzyme-linked immunosorbent assay (ELISA), and the affinity and stability of key ingredient and targets were evaluated by molecular docking and MD simulation. The animal experimental results showed that after XQJRG treatment, body temperature of febrile rats was significantly reduced, 13 metabolites were significantly modulated, and pathways of differential metabolite enrichment were mainly related to amino acid and lipid metabolism. Network pharmacology results indicated that quercetin and kaempferol were the key active components of XQJRG, TNF, AKT1, IL6, IL1B and PTGS2 were core targets. ELISA confirmed that XQJRG significantly reduced the plasma concentrations of IL-1β, IL-6, and TNF-α, and the hypothalamic concentrations of COX-2 and PGE2. Molecular docking demonstrated that the binding energies of kaempferol to the core targets were all below -5.0 kcal/mol. MD simulation results showed that the binding free energies of TNF-kaempferol, IL6-kaempferol, IL1B-kaempferol and PTGS2-kaempferol were -87.86 kcal/mol, -70.41 kcal/mol, -69.95 kcal/mol and -106.67 kcal/mol, respectively. In conclusion, XQJRG has antipyretic effects on yeast-induced fever in young rats, and its antipyretic mechanisms may be related to the inhibition of peripheral pyrogenic cytokines release by constituents such as kaempferol, the reduction of hypothalamic fever mediator production, and the amelioration of disturbances in amino acid and lipid metabolism.
Collapse
Affiliation(s)
- Xiying He
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Jieqiong Cui
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Huayan Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xinchen Wu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Chunrong Jiang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhichang Xu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Ruirui Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Lei Xiong
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
2
|
Srikanth Y, Julius T, Gayathri M, Tuyishime HS, Gelege MD, Kumar SS, Reddy DH, Chakravarthi G, Ramakrishna K. Indole 3 carbinol attenuated memory impairment, oxidative stress, inflammation, and apoptosis in bilateral common carotid artery occlusion induced brain damage in rats. 3 Biotech 2025; 15:51. [PMID: 39898236 PMCID: PMC11780242 DOI: 10.1007/s13205-024-04199-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/17/2024] [Indexed: 02/04/2025] Open
Abstract
Global cerebral ischemia (GCI) is associated with a multifaceted etiology, including increased oxidative stress, inflammation, and elevated acetylcholinesterase (AChE) activity, ultimately leading to cognitive and memory impairments. This study aimed to evaluate the neuroprotective, cognitive, and memory-enhancing effects of indole 3-carbinol (I3C), a phytochemical found in cruciferous vegetables. Additionally, network pharmacology analyses were conducted to identify potential molecular targets of I3C in GCI. Bilateral common carotid artery occlusion (BCCAO) surgery was performed to induce GCI. I3C was administered orally for 14 days, and cognitive and memory functions were assessed using the Y-maze and Morris water maze paradigms. Biomarkers of oxidative stress (MDA, Nrf2, SOD, and CAT), inflammatory markers (NF-κB, TNF-α, and IL-10), and AChE enzyme activity were evaluated. The results demonstrated that I3C treatment significantly inhibited AChE activity, improved spontaneous alternation (%) in the Y-maze test, increased the number of entries and time spent in the platform zone, and reduced escape latency in the Morris water maze test, indicating enhanced cognitive and memory functions. I3C treatment also increased brain levels of Nrf2, SOD, and CAT while reducing MDA levels. Furthermore, it decreased pro-inflammatory markers such as NF-κB and TNF-α and elevated the anti-inflammatory marker IL-10, suggesting neuroprotection through the mitigation of oxidative stress and inflammation. Histopathological analysis revealed improved integrity of CA1 neurons in BCCAO rats treated with I3C. Network pharmacology studies identified TP53, AKT1, TNF, STAT3, BCL2, SRC, ESR1, CCND1, CASP8, and CASP3 as the top ten molecular targets for I3C in the context of GCI. Our in vivo data, supported by network pharmacology studies, suggest that I3C's neuroprotective and cognitive-enhancing effects are driven by its ability to alleviate oxidative stress, inflammation, and apoptosis. Overall, this study suggests that I3C is a promising neuroprotective and memory-enhancing agent for global cerebral ischemia.
Collapse
Affiliation(s)
- Yadava Srikanth
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302 India
| | - Tuwune Julius
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302 India
| | - Meda Gayathri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302 India
| | - Honnete Samuel Tuyishime
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302 India
| | - Mtemi Daudi Gelege
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302 India
| | - Suda Satish Kumar
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302 India
| | | | - Guntupalli Chakravarthi
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302 India
| | - Kakarla Ramakrishna
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302 India
| |
Collapse
|
3
|
Wang X, Wu L, Yu M, Wang H, He L, Hu Y, Li Z, Zheng Y, Peng B. Exploring the molecular mechanism of Epimedium for the treatment of ankylosing spondylitis based on network pharmacology, molecular docking, and molecular dynamics simulations. Mol Divers 2025; 29:591-606. [PMID: 38734868 DOI: 10.1007/s11030-024-10877-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
Ankylosing spondylitis (AS) is a rheumatic disease that causes inflammation and bone formation in the spine. Despite significant advances in treatment, adverse side effects have triggered research into natural compounds. Epimedium (EP) is a traditional Chinese herb with a variety of pharmacological activities, including antirheumatic, anti-inflammatory, and immunomodulatory activities; however, its direct effects on AS treatment and the underlying molecular mechanisms have not been systematically studied. Thus, here, we used network pharmacology, molecular docking, and molecular dynamics simulations to explore the targets of EP for treating AS. We constructed an interaction network to elucidate the complex relationship between EP and AS. Sixteen active ingredients in EP were screened; 80 potential targets were identified. In particular, 8-(3-methylbut-2-enyl)-2-phenylchromone, anhydroicaritin, and luteolin were the core components and TNF, IL-6, IL-1β, MMP9, and PTGS2 were the core targets. The GO and KEGG analyses indicated that EP may modulate multiple biological processes and pathways, including the AGE-RAGE, TNF, NF-κB/MAPK, and TLR signaling pathways, for AS treatment. Molecular docking and molecular dynamics simulations showed good affinity between the active components and core targets of EP, with stable binding within 100 nanoseconds. In particular, 8-(3-methylbut-2-enyl)-2-phenylchromone possessed the highest free energy of binding to PTGS2 and TNF (-115.575 and - 87.676 kcal/mol, respectively). Thus, EP may affect AS through multiple pathways, including the alleviation of inflammation, oxidative stress, and immune responses. In summary, we identified the active components and potential targets of EP, highlighting new strategies for the further experimental validation and exploration of lead compounds for treating AS.
Collapse
Affiliation(s)
- Xiangjin Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Lijiao Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Maobin Yu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Hao Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Langyu He
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Yilang Hu
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Zhaosen Li
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Yuqin Zheng
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Bo Peng
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China.
| |
Collapse
|
4
|
Long L, Tang X, Wang Y, Gu J, Xiong J, Luo H, Lv H, Zhou F, Cao K, Lin S. Network Pharmacology and Experimental Validation to Elucidate the Pharmacological Mechanisms of Luteolin Against Chondrocyte Senescence. Comb Chem High Throughput Screen 2025; 28:291-305. [PMID: 38299289 DOI: 10.2174/0113862073273675231114112804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Luteolin, a flavonoid found in various medicinal plants, has shown promising antioxidant, anti-inflammatory, and anti-aging properties. The cartilaginous endplate (CEP) represents a crucial constituent of the intervertebral disc (IVD), assuming a pivotal responsibility in upholding both the structural and functional stability of the IVD. OBJECTIVE Exploring the precise mechanism underlying the protective effects of luteolin against senescence and degeneration of endplate chondrocytes (EPCs). METHODS Relevant targets associated with luteolin and aging were obtained from publicly available databases. To ascertain cellular functions and signaling pathways, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed. Core genes were identified through the construction of a protein-protein interaction (PPI) network. Molecular docking (MD) was utilized to assess the binding affinity of luteolin to these core genes. Finally, the impact of luteolin on the senescence and degeneration of EPCs was evaluated in an in vitro cellular senescence model induced by tert-butyl hydroperoxide (TBHP). RESULTS There are 145 overlapping targets between luteolin and senescence. Analysis using GO revealed that these targets primarily participate in cellular response to oxidative stress and reactive oxygen species. KEGG analysis demonstrated that these markers mainly associate with signaling pathways such as p53 and PI3K-Akt. MD simulations exhibited luteolin's binding affinity to P53, Cyclin-dependent kinase (CDK)2, and CDK4. Cell cycle, cell proliferation, and β- galactosidase assays confirmed that luteolin mitigated senescence in SW1353 cells. Western blot assays exhibited that luteolin significantly suppressed the expression of Matrix Metallopeptidase (MMP) 13, P53, and P21, while concurrently promoting CDK2, CDK4, and Collagen Type II Alpha 1 (COL2A1) expression. CONCLUSION In summary, luteolin demonstrated beneficial properties against aging and degeneration in EPCs, offering novel insights to mitigate the progression of intervertebral disc degeneration (IVDD).
Collapse
Affiliation(s)
- Ling Long
- Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
| | - Xiaokai Tang
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330209, China
| | - Yi Wang
- Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
| | - Jiaxiang Gu
- Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
| | - Jiachao Xiong
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330209, China
| | - Hao Luo
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330209, China
| | - Hao Lv
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330209, China
| | - Faxin Zhou
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330209, China
| | - Kai Cao
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330209, China
| | - Sijian Lin
- The Rehabilitation Medicine Department, The Second Affiliated Hospital of Nanchang University, 330006, China
| |
Collapse
|
5
|
Fang F, Bao S, Chen D, Duan X, Zhao Y, Ma Y. Protective effects and mechanism of quercetin from Rhododendron dauricum against cerebral ischemia-reperfusion injury. Eur J Pharmacol 2024; 985:177126. [PMID: 39532226 DOI: 10.1016/j.ejphar.2024.177126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/18/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
METHODS This study seeks to identify the bioactive compounds within Rhododendron dauricum and explore potential mechanisms for treating cerebral I/R injury through a comprehensive analysis employing network pharmacology, complemented by experimental validation. RESULTS The core targets associated with quercetin in the treatment of cerebral I/R injury are TNF-α, IL-6, IL-1β, and AKT1. Notably, we propose for the first time that its mode of action primarily involves the inhibition of the TNF-α/RhoA/ROCK2 pathway. CONCLUSION Our findings reveal that quercetin emerges as a pivotal bioactive component of Rhododendron dauricum in the context of cerebral I/R injury treatment.
Collapse
Affiliation(s)
- Fang Fang
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Siwei Bao
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Danxia Chen
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xiaofeng Duan
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuefen Zhao
- Department of Pharmacy, Chinese medicine hospitals Changji Hui Autonomous Prefecture, Xinjiang, 831100, China.
| | - Yabin Ma
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
6
|
Yang Y, Yuan L, Liu W, Lu D, Meng F, Yang Y, Zhou Z, Ma P, Nan Y. Banxia-Shengjiang drug pair inhibits gastric cancer development and progression by improving body immunity. Medicine (Baltimore) 2024; 103:e36303. [PMID: 38457601 PMCID: PMC10919495 DOI: 10.1097/md.0000000000036303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 03/10/2024] Open
Abstract
To investigate the mechanism of action of Banxia-Shengjiang drug pair on the inhibition of gastric cancer (GC) using network pharmacology and bioinformatics techniques. The action targets of the Banxia (Pinellia ternata (Thunb.) Makino) -Shengjiang (Zingiber officinale Roscoe) drug pair obtained from the TCMSP database were intersected with differentially expressed genes (DEGs) and GC-related genes, and the intersected genes were analyzed for pathway enrichment to identify the signaling pathways and core target genes. Subsequently, the core target genes were analyzed for clinical relevance gene mutation analysis, methylation analysis, immune infiltration analysis and immune cell analysis. Finally, by constructing the PPI network of hub genes and corresponding active ingredients, the key active ingredients of the Banxia-Shengjiang drug pair were screened for molecular docking with the hub genes. In this study, a total of 557 target genes of Banxia-Shengjiang pairs, 7754 GC-related genes and 1799 DEGs in GC were screened. Five hub genes were screened, which were PTGS2, MMP9, PPARG, MMP2, and CXCR4. The pathway enrichment analyses showed that the intersecting genes were associated with RAS/MAPK signaling pathway. In addition, the clinical correlation analysis showed that hub genes were differentially expressed in GC and was closely associated with immune infiltration and immunotherapy. The results of single nucleotide variation (SNV) and copy number variation (CNV) indicated that mutations in the hub genes were associated with the survival of gastric cancer patients. Finally, the PPI network and molecular docking results showed that PTGS2 and MMP9 were potentially important targets for the inhibition of GC by Banxia-Shengjiang drug pair, while cavidine was an important active ingredient for the inhibition of GC by Banxia-Shengjiang drug pair. Banxia-Shengjiang drug pair may regulate the immune function and inhibit GC by modulating the expression of core target genes such as RAS/MAPK signaling pathway, PTGS2 and MMP9.
Collapse
Affiliation(s)
- Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenjing Liu
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fandi Meng
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yi Yang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ziying Zhou
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ping Ma
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yi Nan
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
7
|
Chen K, Yu G. Tetrahydroalstonine possesses protective potentials on palmitic acid stimulated SK-N-MC cells by suppression of Aβ1-42 and tau through regulation of PI3K/Akt signaling pathway. Eur J Pharmacol 2024; 962:176251. [PMID: 38061471 DOI: 10.1016/j.ejphar.2023.176251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. The morbidity of Alzheimer's disease is currently on the rise worldwide, but no effective treatment is available. Cornus officinalis is an herb and edible plant used in traditional Chinese medicine, whose extract has neuroprotective properties. In this investigation, we endeavored to refine a systems pharmacology strategy combining bioinformatics analysis, drug prediction, network pharmacology, and molecular docking to screen tetrahydroalstonine (THA) from Cornus officinalis as a therapeutic component for AD. Subsequent in vitro experiments were validated using MTT assay, Annexin V-PI flow cytometry, Western blotting, and immunofluorescence analysis. In Palmitate acid-induced SK-N-MC cells, THA restored the impaired PI3K/AKT signaling pathway, regulated insulin resistance, and attenuated BACE1 and GSK3β activity. In addition, THA significantly reduced cell apoptosis rate, down-regulated relative levels of p-JNK/JNK, Bax/Bcl-2, cytochrome C, active caspase-3 and caspase-3, and attenuated Palmitate acid-induced Aβ1-42 and Tau generation. THA may regulate the phenotype of AD and reduce cell apoptosis by modulating the PI3K/AKT signaling pathway. This systematic analysis provides new ramifications concerning the therapeutic utility of tetrahydroalstonine for AD.
Collapse
Affiliation(s)
- Kang Chen
- Department of Neurology, Jiangsu Traditional Chinese Medicine Hospital, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, 210029, PR China
| | - Guran Yu
- Department of Neurology, Jiangsu Traditional Chinese Medicine Hospital, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, 210029, PR China.
| |
Collapse
|
8
|
Lv S, Wang Q, Zhang X, Ning F, Liu W, Cui M, Xu Y. Mechanisms of multi-omics and network pharmacology to explain traditional chinese medicine for vascular cognitive impairment: A narrative review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155231. [PMID: 38007992 DOI: 10.1016/j.phymed.2023.155231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND The term "vascular cognitive impairment" (VCI) describes various cognitive conditions that include vascular elements. It increases the risk of morbidity and mortality in the elderly population and is the most common cognitive impairment associated with cerebrovascular disease. Understanding the etiology of VCI may aid in identifying approaches to target its possible therapy for the condition. Treatment of VCI has focused on vascular risk factors. There are no authorized conventional therapies available right now. The medications used to treat VCI are solely approved for symptomatic relief and are not intended to prevent or slow the development of VCI. PURPOSE The function of Chinese medicine in treating VCI has not yet been thoroughly examined. This review evaluates the preclinical and limited clinical evidence to comprehend the "multi-component, multi-target, multi-pathway" mechanism of Traditional Chinese medicine (TCM). It investigates the various multi-omics approaches in the search for the pathological mechanisms of VCI, as well as the new research strategies, in the hopes of supplying supportive evidence for the clinical treatment of VCI. METHODS This review used the Preferred Reporting Items for Preferred reporting items for systematic reviews and meta-analyses (PRISMA) statements. Using integrated bioinformatics and network pharmacology approaches, a thorough evaluation and analysis of 25 preclinical studies published up to July 1, 2023, were conducted to shed light on the mechanisms of TCM for vascular cognitive impairment. The studies for the systematic review were located using the following databases: PubMed, Web of Science, Scopus, Cochrane, and ScienceDirect. RESULTS We discovered that the multi-omics analysis approach would hasten the discovery of the role of TCM in the treatment of VCI. It will explore components, compounds, targets, and pathways, slowing the progression of VCI from the perspective of inhibiting oxidative stress, stifling neuroinflammation, increasing cerebral blood flow, and inhibiting iron deposition by a variety of molecular mechanisms, which have significant implications for the treatment of VCI. CONCLUSION TCM is a valuable tool for developing dementia therapies, and further research is needed to determine how TCM components may affect the operation of the neurovascular unit. There are still some limitations, although several research have offered invaluable resources for searching for possible anti-dementia medicines and treatments. To gain new insights into the molecular mechanisms that precisely modulate the key molecules at different levels during pharmacological interventions-a prerequisite for comprehending the mechanism of action and determining the potential therapeutic value of the drugs-further research should employ more standardized experimental methods as well as more sophisticated science and technology. Given the results of this review, we advocate integrating chemical and biological component analysis approaches in future research on VCI to provide a more full and objective assessment of the standard of TCM. With the help of bioinformatics, a multi-omics analysis approach will hasten the discovery of the role of TCM in the treatment of VCI, which has significant implications for the treatment of VCI.
Collapse
Affiliation(s)
- Shi Lv
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Xinlei Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Fangli Ning
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Wenxin Liu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Mengmeng Cui
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China.
| |
Collapse
|
9
|
Wang Y, Pei H, Chen W, Du R, Li J, He Z. Palmatine Protects PC12 Cells and Mice from Aβ25-35-Induced Oxidative Stress and Neuroinflammation via the Nrf2/HO-1 Pathway. Molecules 2023; 28:7955. [PMID: 38138445 PMCID: PMC10745955 DOI: 10.3390/molecules28247955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease is a common degenerative disease which has a great impact on people's daily lives, but there is still a certain market gap in the drug research about it. Palmatine, one of the main components of Huangteng, the rattan stem of Fibraurea recisa Pierre (Menispermaceae), has potential in the treatment of Alzheimer's disease. The aim of this study was to evaluate the neuroprotective effect of palmatine on amyloid beta protein 25-35-induced rat pheochromocytoma cells and AD mice and to investigate its mechanism of action. CCK8 assays, ELISA, the Morris water maze assay, fluorescent probes, calcein/PI staining, immunofluorescent staining and Western blot analysis were used. The experimental results show that palmatine can increase the survival rate of Aβ25-35-induced PC12 cells and mouse hippocampal neurons, reduce apoptosis, reduce the content of TNF-α, IL-1β, IL-6, GSH, SOD, MDA and ROS, improve the learning and memory ability of AD mice, inhibit the expression of Keap-1 and Bax, and promote the expression of Nrf2, HO-1 and Bcl-2. We conclude that palmatine can ameliorate oxidative stress and neuroinflammation produced by Aβ25-35-induced PC12 cells and mice by modulating the Nrf2/HO-1 pathway. In conclusion, our results suggest that palmatine may have a potential therapeutic effect on AD and could be further investigated as a promising therapeutic agent for AD. It provides a theoretical basis for the development of related drugs.
Collapse
Affiliation(s)
- Yu Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
10
|
Wang X, Chen W, Yuan P, Xu H. RAGE acted as a new anti-inflammatory target for Icariin's treatment against vascular dementia based on network pharmacology-directed verification. J Biomol Struct Dyn 2023; 42:10189-10209. [PMID: 37768122 DOI: 10.1080/07391102.2023.2256409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Vascular dementia (VaD) ranks as the second most prevalent form of dementia and poses a considerable global health challenge. Icariin has been recognized for its robust neuroprotective effects in combating VaD. Nonetheless, the underlying mechanisms have not been fully elucidated. An integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulations (MDS) was employed to systematically investigate the potential pharmacological actions of Icariin in counteracting VaD. The AGE/RAGE pathway was identified as a promising anti-inflammatory pathway. A chronic cerebral hypoperfusion mouse model was utilized to establish VaD. Both Icariin and FP S-ZM1 (a RAGE inhibitor) were administered through oral gavage and intraperitoneal injection, respectively. The Morris water maze (MWZ) was used to evaluate cognitive functions. Moreover, immunofluorescence, RT-qP CR, and Western blot analyses were carried out to evaluate the effects of FP S-ZM1 on neuroinflammation. Network analysis identified 14 crucial targets and highlighted the AGE-RAGE signaling cascade in diabetic complications as the foremost KEGG pathway with potential anti-neuroinflammatory property. MDS results suggested a stable binding of the RAGE-Icariin complex. Remarkably, Icariin was found to effectively mitigate cognitive deficits in VaD mice, which was correlated with the upregulation of the P I3K/AKT pathway and downregulation of the JNK/cJUN signaling cascade. Critically, co-administration of FP S-ZM1 enhanced Icariin's ameliorative effects on cognitive deficits, owing to bolstered anti-neuroinflammatory action. This study unveils the potential of Icariin in alleviating cognitive dysfunction and neuroinflammation in VaD, which may be attributed to the modulation of the AGE/RAGE pathway.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaohu Wang
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Wei Chen
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Ping Yuan
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Hongbei Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| |
Collapse
|
11
|
Yuan P, Chen W, Wang X, Li L, Peng Z, Mu S, You M, Xu H. RAGE: a potential target for Epimedium's anti-neuroinflammation role in vascular dementia-insights from network pharmacology and molecular simulation. J Biomol Struct Dyn 2023; 42:10856-10875. [PMID: 37732621 DOI: 10.1080/07391102.2023.2259480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Vascular dementia (VaD), a cognitive impairment resulting from cerebrovascular issues, could be mitigated by Epimedium. This study investigates Epimedium's efficacy in VaD management through a systematic review, network pharmacology, molecular docking, and molecular dynamic simulations (MDS). Comprehensive literature searches were conducted across various databases. Epimedium's pharmacological properties were analyzed using the TCMSP database. Integration with the Aging Atlas database enabled the identification of shared targets between Epimedium and VaD. A protein-protein interaction (PPI) network was constructed, and central targets' topological attributes were analyzed using Cytoscape 3.9.1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using "ClusterProfiler" R package. The interactions between Epimedium and central targets were assessed by Molecular docking and MDS. Epimedium and its 23 bioactive components counteracted oxidative stress, neuroinflammation, and neuronal damage, thereby attenuating cognitive deterioration in VaD. A total of 78 common targets were identified, with 22 being significantly related to aging. Enrichment analysis identified 1769 GO terms and 139 KEGG pathways, highlighting the AGE-RAGE signaling pathway. Molecular docking revealed that 23 bioactive components, except Linoleyl acetate, effectively interacted with top central targets (JUN, MAPK14, IL6, FOS, TNF). MDS demonstrated that flavonoids Icariin, Kaempferol, Luteolin, and Quercetin formed stable complexes with RAGE. The study identifies RAGE as a novel therapeutic target for Epimedium in the mitigation of VaD via its anti-inflammatory properties.
Collapse
Affiliation(s)
- Ping Yuan
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Wei Chen
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Xiaohu Wang
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Liangqian Li
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Zijun Peng
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Song Mu
- Department of Colorectal Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Mingyao You
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Hongbei Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| |
Collapse
|
12
|
Duan H, Zhang R, Yuan L, Liu Y, Asikaer A, Liu Y, Shen Y. Exploring the therapeutic mechanisms of Gleditsiae Spina acting on pancreatic cancer via network pharmacology, molecular docking and molecular dynamics simulation. RSC Adv 2023; 13:13971-13984. [PMID: 37181515 PMCID: PMC10167735 DOI: 10.1039/d3ra01761c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive tumors and also has a low survival rate. The dried spines of Gleditsia sinensis Lam are known as "Gleditsiae Spina" and they mostly contain flavonoids, phenolic acids, terpenoids, steroids, and other chemical components. In this study, the potential active components and molecular mechanisms of Gleditsiae Spina for treating pancreatic cancer were systematically revealed by network pharmacology, molecular docking and molecular dynamics simulations (MDs). RAC-alpha serine/threonine-protein kinase (AKT1), cellular tumor antigen p53 (TP53), tumor necrosis factor α (TNFα), interleukin-6 (IL6) and vascular endothelial growth factor A (VEGFA) were common targets of Gleditsiae Spina, human cytomegalovirus infection signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and MAPK signaling pathway were critical pathways of fisetin, eriodyctiol, kaempferol and quercetin in the treatment of pancreatic cancer. Molecular dynamics simulations (MDs) results showed that eriodyctiol and kaempferol have long-term stable hydrogen bonds and high binding free energy for TP53 (-23.64 ± 0.03 kcal mol-1 and -30.54 ± 0.02 kcal mol-1, respectively). Collectively, our findings identify active components and potential targets in Gleditsiae Spina for the treatment of pancreatic cancer, which may help to explore leading compounds and potential drugs for pancreatic cancer.
Collapse
Affiliation(s)
- Hongtao Duan
- School of Pharmacy and Bioengineering, Chongqing University of Technology Chongqing 405400 China
| | - Rui Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital 550002 Guiyang China
| | - Lu Yuan
- School of Pharmacy and Bioengineering, Chongqing University of Technology Chongqing 405400 China
| | - Yiyuan Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology Chongqing 405400 China
| | - Aiminuer Asikaer
- School of Pharmacy and Bioengineering, Chongqing University of Technology Chongqing 405400 China
| | - Yang Liu
- Department of Hepatobiliary Surgery II, Guizhou Provincial People's Hospital 550002 Guiyang China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology Chongqing 405400 China
| |
Collapse
|
13
|
Xie C, Gao X, Liu G, Tang H, Li C. USP10 is a potential mediator for vagus nerve stimulation to alleviate neuroinflammation in ischaemic stroke by inhibiting NF-κB signalling pathway. Front Immunol 2023; 14:1130697. [PMID: 37153558 PMCID: PMC10157167 DOI: 10.3389/fimmu.2023.1130697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Background Vagus nerve stimulation (VNS) has a protective effect on neurological recovery in ischaemic stroke. However, its underlying mechanism remains to be clarified. Ubiquitin-specific protease 10 (USP10), a member of the ubiquitin-specific protease family, has been shown to inhibit the activation of the NF-κB signalling pathway. Therefore, this study investigated whether USP10 plays a key role in the protective effect of VNS against ischemic stroke and explore its mechanism. Methods Ischaemic stroke model was constructed by transient middle cerebral artery occlusion (tMCAO) in mice. VNS was performed at 30 min, 24hr, and 48hr after the establishment of tMCAO model. USP10 expression induced by VNS after tMCAO was measured. LV-shUSP10 was used to establish the model with low expression of USP10 by stereotaxic injection technique. The effects of VNS with or without USP10 silencing on neurological deficits, cerebral infarct volume, NF-κB pathway activation, glial cell activation, and release of pro-inflammation cytokines were assessed. Results VNS enhanced the expression of USP10 following tMCAO. VNS ameliorated neurological deficits and reduced cerebral infarct volume, but this effect was inhibited by silencing of USP10. Activation of the NF-κB pathway and the expression of inflammatory cytokines induced by tMCAO were suppressed by VNS. Moreover, VNS promoted the pro-to-anti-inflammatory response of microglia and inhibited activation of astrocytes, while silencing of USP10 prevented the neuroprotective and anti-neuroinflammatory effects of VNS. Conclusion USP10 is a potential mediator for VNS to alleviate neurological deficits, neuroinflammation, and glial cell activation in ischaemic stroke by inhibiting NF-κB signalling pathway.
Collapse
Affiliation(s)
- Chenchen Xie
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
- Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Gao
- Department of Geriatrics, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
| | - Gang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Tang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changqing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Changqing Li,
| |
Collapse
|
14
|
Xu H, You M, Xiang X, Zhao J, Yuan P, Chu L, Xie C. Molecular Mechanism of Epimedium Extract against Ischemic Stroke Based on Network Pharmacology and Experimental Validation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3858314. [PMID: 36338345 PMCID: PMC9633197 DOI: 10.1155/2022/3858314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/29/2022] [Indexed: 02/05/2024]
Abstract
Ischemic stroke exhibits high morbidity, disability, and mortality, and treatments for ischemic stroke are limited despite intensive research. The potent neuroprotective benefits of Epimedium against ischemic stroke have gained lots of interest. Nevertheless, systematic research on the direct role and mechanisms of Epimedium in ischemic stroke is still lacking. Network pharmacology analysis coupled with experimental verification was utilized to systematically evaluate the potential pharmacological mechanism of Epimedium against ischemic stroke. The TCMSP database was used to mine the bioactive ingredients and Epimedium's targets. The DrugBank, OMIM, and GeneCards databases were employed to identify potential targets of ischemic stroke. GO and KEGG pathway analyses were also carried out. The interaction between active components and hub targets was confirmed via molecular docking. An experimental ischemic stroke model was used to evaluate the possible therapeutic mechanism of Epimedium. As a result, 23 bioactive compounds of Epimedium were selected, and 30 hub targets of Epimedium in its function against ischemic stroke were identified, and molecular docking results demonstrated good binding. The IL-17 signaling pathway was revealed as a potentially significant pathway, with the NF-κB and MAPK/ERK signaling pathways being involved. Furthermore, in vivo experiments demonstrated that Epimedium treatment could improve neurological function and reduce infarct volume. Additionally, Epimedium reduced the activation of microglia and astrocytes in both the ischemic penumbra of the hippocampus and cerebral cortex following ischemic stroke. Western blot and RT-qPCR analyses demonstrated that Epimedium not only depressed the expression of IL-1β, TNF-α, IL-6, and IL-4 but also inhibited the NF-κB and MAPK/ERK signaling pathways. This study applied network pharmacology and in vivo experiment to explore possible mechanism of Epimedium's role against ischemic stroke, which provides insight into the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hongbei Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Mingyao You
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Xiang Xiang
- Neurosurgery Department of Chongqing University, Three Gorges Hospital, Chongqing 400010, China
| | - Jun Zhao
- Department of Neurosurgery, Dazhou Hospital of Integrated Traditional and Western Medicine, 635000, China
| | - Ping Yuan
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Lan Chu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Chenchen Xie
- Department of Neurology, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|