1
|
Magondo N, Meintjes EM, Warton FL, Little F, van der Kouwe AJW, Laughton B, Jankiewicz M, Holmes MJ. Distinct alterations in white matter properties and organization related to maternal treatment initiation in neonates exposed to HIV but uninfected. Sci Rep 2024; 14:8822. [PMID: 38627570 PMCID: PMC11021525 DOI: 10.1038/s41598-024-58339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
HIV exposed-uninfected (HEU) infants and children are at risk of developmental delays as compared to HIV uninfected unexposed (HUU) populations. The effects of exposure to in utero HIV and ART regimens on the HEU the developing brain are not well understood. In a cohort of 2-week-old newborns, we used diffusion tensor imaging (DTI) tractography and graph theory to examine the influence of HIV and ART exposure in utero on neonate white matter integrity and organisation. The cohort included HEU infants born to mothers who started ART before conception (HEUpre) and after conception (HEUpost), as well as HUU infants from the same community. We investigated HIV exposure and ART duration group differences in DTI metrics (fractional anisotropy (FA) and mean diffusivity (MD)) and graph measures across white matter. We found increased MD in white matter connections involving the thalamus and limbic system in the HEUpre group compared to HUU. We further identified reduced nodal efficiency in the basal ganglia. Within the HEUpost group, we observed reduced FA in cortical-subcortical and cerebellar connections as well as decreased transitivity in the hindbrain area compared to HUU. Overall, our analysis demonstrated distinct alterations in white matter integrity related to the timing of maternal ART initiation that influence regional brain network properties.
Collapse
Affiliation(s)
- Ndivhuwo Magondo
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa.
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| | - Ernesta M Meintjes
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa.
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa.
| | - Fleur L Warton
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Andre J W van der Kouwe
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MI, USA
| | - Barbara Laughton
- Department of Paediatrics and Child Health and Tygerberg Children's Hospital, Faculty of Medicine and Health Sciences, Family Centre for Research with Ubuntu, Stellenbosch University, Stellenbosch, South Africa
| | - Marcin Jankiewicz
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| | - Martha J Holmes
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| |
Collapse
|
2
|
Azizpour Lindi S, Mallet NP, Leblois A. Synaptic Changes in Pallidostriatal Circuits Observed in the Parkinsonian Model Triggers Abnormal Beta Synchrony with Accurate Spatio-temporal Properties across the Basal Ganglia. J Neurosci 2024; 44:e0419232023. [PMID: 38123981 PMCID: PMC10903930 DOI: 10.1523/jneurosci.0419-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Excessive oscillatory activity across basal ganglia (BG) nuclei in the β frequencies (12-30 Hz) is a hallmark of Parkinson's disease (PD). While the link between oscillations and symptoms remains debated, exaggerated β oscillations constitute an important biomarker for therapeutic effectiveness in PD. The neuronal mechanisms of β-oscillation generation however remain unknown. Many existing models rely on a central role of the subthalamic nucleus (STN) or cortical inputs to BG. Contrarily, neural recordings and optogenetic manipulations in normal and parkinsonian rats recently highlighted the central role of the external pallidum (GPe) in abnormal β oscillations, while showing that the integrity of STN or motor cortex is not required. Here, we evaluate the mechanisms for the generation of abnormal β oscillations in a BG network model where neuronal and synaptic time constants, connectivity, and firing rate distributions are strongly constrained by experimental data. Guided by a mean-field approach, we show in a spiking neural network that several BG sub-circuits can drive oscillations. Strong recurrent STN-GPe connections or collateral intra-GPe connections drive γ oscillations (>40 Hz), whereas strong pallidostriatal loops drive low-β (10-15 Hz) oscillations. We show that pathophysiological strengthening of striatal and pallidal synapses following dopamine depletion leads to the emergence of synchronized oscillatory activity in the mid-β range with spike-phase relationships between BG neuronal populations in-line with experiments. Furthermore, inhibition of GPe, contrary to STN, abolishes oscillations. Our modeling study uncovers the neural mechanisms underlying PD β oscillations and may thereby guide the future development of therapeutic strategies.
Collapse
Affiliation(s)
- Shiva Azizpour Lindi
- CNRS, Institut des Maladies Neurodégénératives (IMN), UMR 5293, Université de Bordeaux, Bordeaux F-33000, France
| | - Nicolas P Mallet
- CNRS, Institut des Maladies Neurodégénératives (IMN), UMR 5293, Université de Bordeaux, Bordeaux F-33000, France
| | - Arthur Leblois
- CNRS, Institut des Maladies Neurodégénératives (IMN), UMR 5293, Université de Bordeaux, Bordeaux F-33000, France
| |
Collapse
|
3
|
Alavi SM, Mirzaei A, Valizadeh A, Ebrahimpour R. Excitatory deep brain stimulation quenches beta oscillations arising in a computational model of the subthalamo-pallidal loop. Sci Rep 2022; 12:7845. [PMID: 35552409 PMCID: PMC9098470 DOI: 10.1038/s41598-022-10084-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Parkinson’s disease (PD) is associated with abnormal \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β band oscillations (13–30 Hz) in the cortico-basal ganglia circuits. Abnormally increased striato-pallidal inhibition and strengthening the synaptic coupling between subthalamic nucleus (STN) and globus pallidus externa (GPe), due to the loss of dopamine, are considered as the potential sources of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β oscillations in the basal ganglia. Deep brain stimulation (DBS) of the basal ganglia subregions is known as a way to reduce the pathological \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β oscillations and motor deficits related to PD. Despite the success of the DBS, its underlying mechanism is poorly understood and, there is controversy about the inhibitory or excitatory role of the DBS in the literature. Here, we utilized a computational network model of basal ganglia which consists of STN, GPe, globus pallidus interna, and thalamic neuronal population. This model can reproduce healthy and pathological \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β oscillations similar to what has been observed in experimental studies. Using this model, we investigated the effect of DBS to understand whether its effect is excitatory or inhibitory. Our results show that the excitatory DBS is able to quench the pathological synchrony and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β oscillations, while, applying inhibitory DBS failed to quench the PD signs. In light of simulation results, we conclude that the effect of the DBS on its target is excitatory.
Collapse
Affiliation(s)
- Seyed Mojtaba Alavi
- Faculty of Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.,School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | | | - Alireza Valizadeh
- Department of Physics, Institute for Advance Studies in Basic Sciences (IASBS), Zanjan, Iran.,School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Reza Ebrahimpour
- Faculty of Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran. .,School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
4
|
Hennes M, Lombaert N, Wahis J, Van den Haute C, Holt MG, Arckens L. Astrocytes shape the plastic response of adult cortical neurons to vision loss. Glia 2020; 68:2102-2118. [PMID: 32237182 DOI: 10.1002/glia.23830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Maroussia Hennes
- Department of BiologyKU Leuven Leuven Belgium
- VIB KU Leuven Center for Brain & Disease Research Leuven Belgium
- Leuven Brain Institute Leuven Belgium
| | | | - Jérôme Wahis
- VIB KU Leuven Center for Brain & Disease Research Leuven Belgium
- Leuven Brain Institute Leuven Belgium
- Department of NeurosciencesKU Leuven Leuven Belgium
| | - Chris Van den Haute
- Department of Biomedical SciencesKU Leuven Leuven Belgium
- KU Leuven Viral Vector Core Leuven Belgium
| | - Matthew G. Holt
- VIB KU Leuven Center for Brain & Disease Research Leuven Belgium
- Leuven Brain Institute Leuven Belgium
- Department of NeurosciencesKU Leuven Leuven Belgium
| | - Lutgarde Arckens
- Department of BiologyKU Leuven Leuven Belgium
- Leuven Brain Institute Leuven Belgium
| |
Collapse
|
5
|
Scheyltjens I, Vreysen S, Van den Haute C, Sabanov V, Balschun D, Baekelandt V, Arckens L. Transient and localized optogenetic activation of somatostatin-interneurons in mouse visual cortex abolishes long-term cortical plasticity due to vision loss. Brain Struct Funct 2018; 223:2073-2095. [PMID: 29372324 PMCID: PMC5968055 DOI: 10.1007/s00429-018-1611-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/14/2018] [Indexed: 04/13/2023]
Abstract
Unilateral vision loss through monocular enucleation (ME) results in partial reallocation of visual cortical territory to another sense in adult mice. The functional recovery of the visual cortex occurs through a combination of spared-eye potentiation and cross-modal reactivation driven by whisker-related, somatosensory inputs. Brain region-specific intracortical inhibition was recently recognized as a crucial regulator of the cross-modal component, yet the contribution of specific inhibitory neuron subpopulations remains poorly understood. Somatostatin (SST)-interneurons are ideally located within the cortical circuit to modulate sensory integration. Here we demonstrate that optogenetic stimulation of visual cortex SST-interneurons prior to eye removal decreases ME-induced cross-modal recovery at the stimulation site. Our results suggest that SST-interneurons act as local hubs, which are able to control the influx and extent of cortical cross-modal inputs into the deprived cortex. These insights critically expand our understanding of SST-interneuron-specific regulation of cortical plasticity induced by sensory loss.
Collapse
Affiliation(s)
- Isabelle Scheyltjens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Naamsestraat 59, Box 2467, 3000, Leuven, Belgium.
| | - Samme Vreysen
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Naamsestraat 59, Box 2467, 3000, Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, 3000, Leuven, Belgium.,Leuven Viral Vector Core, KU Leuven, 3000, Leuven, Belgium
| | - Victor Sabanov
- Laboratory of Biological Psychology, KU Leuven, 3000, Leuven, Belgium
| | - Detlef Balschun
- Laboratory of Biological Psychology, KU Leuven, 3000, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, 3000, Leuven, Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Naamsestraat 59, Box 2467, 3000, Leuven, Belgium
| |
Collapse
|