1
|
Krenz V, Alink A, Roozendaal B, Sommer T, Schwabe L. Memory Boost for Recurring Emotional Events Is Driven by Initial Amygdala Response Promoting Stable Neocortical Patterns across Repetitions. J Neurosci 2025; 45:e2406232025. [PMID: 39947923 PMCID: PMC11968526 DOI: 10.1523/jneurosci.2406-23.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 04/04/2025] Open
Abstract
Emotionally arousing events are typically vividly remembered, which is generally adaptive but may contribute to mental disorders such as post-traumatic stress disorder. Previous research on emotional memory focused primarily on events that were experienced only once, leaving the memory mechanisms underlying repeatedly encountered emotional events largely unexplored. Here, we aimed to elucidate the brain mechanisms associated with memory for recurring emotional events. Specifically, we sought to determine whether the memory enhancement for recurring emotional events is linked to more variable neural representations, as predicted by the encoding-variability hypothesis, or to more stable representations across repetitions, as suggested by a memory reinstatement account. To investigate this, we repeatedly presented healthy men and women with images of emotionally negative or neutral scenes during three consecutive runs in an MRI scanner. Subsequent free recall was, as expected, enhanced for emotional compared with neutral images. Neural data showed that this emotional enhancement of memory was linked to (1) activation of the amygdala and anterior hippocampus during the initial encounter of the emotional event and (2) increased neural pattern similarity in frontoparietal cortices across event repetitions. Most importantly, a multilevel-moderated mediation analysis revealed that the impact of neocortical pattern stability across repetitions on emotional memory enhancement was moderated by amygdala activity during the initial exposure to the emotional event. Together, our findings show that the amygdala response during the initial encounter of an emotional event boosts subsequent remembering through a more precise reinstatement of the event representation during subsequent encounters of the same event.
Collapse
Affiliation(s)
- Valentina Krenz
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, Hamburg 20146, Germany
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts 02467
| | - Arjen Alink
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, 6500 HB, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Tobias Sommer
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, Hamburg 20146, Germany
| |
Collapse
|
2
|
Zareba MR, Bielski K, Costumero V, Visser M. Graph analysis of guilt processing network highlights links with subclinical anxiety and self-blame. Soc Cogn Affect Neurosci 2024; 19:nsae092. [PMID: 39671692 PMCID: PMC11642621 DOI: 10.1093/scan/nsae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/21/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024] Open
Abstract
Maladaptive forms of guilt, such as excessive self-blame, are common characteristics of anxiety and depressive disorders. The underlying network consists of multiple associative areas, including the superior anterior temporal lobe (sATL), underlying the conceptual representations of social meaning, and fronto-subcortical areas involved in the affective dimension of guilt. Nevertheless, despite understanding the circuitry's anatomy, network-level changes related to subclinical anxiety and self-blaming behaviour have not been depicted. To fill this gap, we used graph theory analyses on a resting-state functional and diffusion-weighted magnetic resonance imaging dataset of 78 healthy adults (20 females, 20-35 years old). Within the guilt network, we found increased functional contributions of the left sATL for individuals with higher self-blaming, while functional isolation of the left pars opercularis and insula was related to higher trait anxiety. Trait anxiety was also linked to the structural network's mean clustering coefficient, with the circuitry's architecture favouring increased local information processing in individuals with increased anxiety levels, however, only when a highly specific subset of connections was considered. Previous research suggests that aberrant interactions between conceptual (sATL) and affective (fronto-limbic) regions underlie maladaptive guilt, and the current results align and expand on this theory by detailing network changes associated with self-blame and trait anxiety.
Collapse
Affiliation(s)
- Michal Rafal Zareba
- Neuropsychology and Functional Neuroimaging Group, Department of Basic and Clinical Psychology and Psychobiology, Jaume I University, Castellon de la Plana 12-006, Spain
| | - Krzysztof Bielski
- Institute of Psychology, Jagiellonian University, Krakow 30-060, Poland
- Doctoral School of Social Sciences, Jagiellonian University, Krakow 30-060, Poland
| | - Victor Costumero
- Neuropsychology and Functional Neuroimaging Group, Department of Basic and Clinical Psychology and Psychobiology, Jaume I University, Castellon de la Plana 12-006, Spain
| | - Maya Visser
- Neuropsychology and Functional Neuroimaging Group, Department of Basic and Clinical Psychology and Psychobiology, Jaume I University, Castellon de la Plana 12-006, Spain
| |
Collapse
|
3
|
Mou X, Ji D. Observational activation of anterior cingulate cortical neurons coordinates hippocampal replay in social learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587484. [PMID: 38617364 PMCID: PMC11014478 DOI: 10.1101/2024.03.31.587484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Social learning enables a subject to make decisions by observing the actions of another. How neural circuits acquire relevant information during observation to guide subsequent behavior is unknown. Utilizing an observational spatial working memory task, we show that neurons in the rat anterior cingulate cortex (ACC) associated with spatial trajectories during self-running in a maze are activated when observing another rat running the same maze. The observation-induced ACC activities are reduced in error trials and are correlated with activities of hippocampal place cells representing the same trajectories. The ACC activities during observation also predict subsequent hippocampal place cell activities during sharp-wave ripples and spatial contents of hippocampal replay prior to self-running. The results support that ACC neurons involved in decisions during self-running are reactivated during observation and coordinate hippocampal replay to guide subsequent spatial navigation.
Collapse
Affiliation(s)
- Xiang Mou
- Department of Neuroscience, Baylor College of Medicine; One Baylor Plaza, Houston, TX 77030, USA
| | - Daoyun Ji
- Department of Neuroscience, Baylor College of Medicine; One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine; One Baylor Plaza, Houston, TX 77030, USA
- Lead Contact
| |
Collapse
|
4
|
Kong MS, Kim N, Jo KI, Kim SP, Choi JS. Differential Encoding of Trace and Delay Fear Memory in the Entorhinal Cortex. Exp Neurobiol 2023; 32:20-30. [PMID: 36919333 PMCID: PMC10017844 DOI: 10.5607/en22042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/03/2023] [Accepted: 02/18/2023] [Indexed: 03/16/2023] Open
Abstract
Trace fear conditioning is characterized by a stimulus-free trace interval (TI) between the conditioned stimulus (CS) and the unconditioned stimulus (US), which requires an array of brain structures to support the formation and storage of associative memory. The entorhinal cortex (EC) has been proposed to provide essential neural code for resolving temporal discontinuity in conjunction with the hippocampus. However, how the CS and TI are encoded at the neuronal level in the EC is not clear. In Exp. 1, we tested the effect of bilateral pre-training electrolytic lesions of EC on trace vs. delay fear conditioning using rats as subjects. We found that the lesions impaired the acquisition of trace but not delay fear conditioning confirming that EC is a critical brain area for trace fear memory formation. In Exp. 2, single-unit activities from EC were recorded during the pre-training baseline and post-training retention sessions following trace or delay conditioning. The recording results showed that a significant proportion of the EC neurons modulated their firing during TI after the trace conditioning, but not after the delay fear conditioning. Further analysis revealed that the majority of modulated units decreased the firing rate during the TI or the CS. Taken together, these results suggest that EC critically contributes to trace fear conditioning by modulating neuronal activity during the TI to facilitate the association between the CS and US across a temporal gap.
Collapse
Affiliation(s)
- Mi-Seon Kong
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle 98195, WA, USA
| | - Namsoo Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn 20147, VA, USA
| | - Kyeong Im Jo
- School of Psychology, Korea University, Seoul 02841, Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - June-Seek Choi
- School of Psychology, Korea University, Seoul 02841, Korea
| |
Collapse
|
5
|
Zhang J, Sun Z, Duan F, Shi L, Zhang Y, Solé‐Casals J, Caiafa CF. Cerebral cortex layer segmentation using diffusion magnetic resonance imaging in vivo with applications to laminar connections and working memory analysis. Hum Brain Mapp 2022; 43:5220-5234. [PMID: 35778791 PMCID: PMC9812233 DOI: 10.1002/hbm.25998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/15/2023] Open
Abstract
Understanding the laminar brain structure is of great help in further developing our knowledge of the functions of the brain. However, since most layer segmentation methods are invasive, it is difficult to apply them to the human brain in vivo. To systematically explore the human brain's laminar structure noninvasively, the K-means clustering algorithm was used to automatically segment the left hemisphere into two layers, the superficial and deep layers, using a 7 Tesla (T) diffusion magnetic resonance imaging (dMRI)open dataset. The obtained layer thickness was then compared with the layer thickness of the BigBrain reference dataset, which segmented the neocortex into six layers based on the von Economo atlas. The results show a significant correlation not only between our automatically segmented superficial layer thickness and the thickness of layers 1-3 from the reference histological data, but also between our automatically segmented deep layer thickness and the thickness of layers 4-6 from the reference histological data. Second, we constructed the laminar connections between two pairs of unidirectional connected regions, which is consistent with prior research. Finally, we conducted the laminar analysis of the working memory, which was challenging to do in the past, and explained the conclusions of the functional analysis. Our work successfully demonstrates that it is possible to segment the human cortex noninvasively into layers using dMRI data and further explores the mechanisms of the human brain.
Collapse
Affiliation(s)
- Jie Zhang
- College of Artificial IntelligenceNankai UniversityTianjinChina
| | - Zhe Sun
- Computational Engineering Applications UnitHead Office for Information Systems and Cybersecurity, RIKENSaitamaJapan
| | - Feng Duan
- College of Artificial IntelligenceNankai UniversityTianjinChina
| | - Liang Shi
- College of Artificial IntelligenceNankai UniversityTianjinChina
| | - Yu Zhang
- Department of Bioengineering and Department of Electrical and Computer EngineeringLehigh UniversityBethlehemPennsylvaniaUSA
| | - Jordi Solé‐Casals
- College of Artificial IntelligenceNankai UniversityTianjinChina,Department of PsychiatryUniversity of CambridgeCambridgeUK,Data and Signal Processing Research GroupUniversity of Vic‐Central University of CataloniaVicCataloniaSpain
| | - Cesar F. Caiafa
- College of Artificial IntelligenceNankai UniversityTianjinChina,Instituto Argentino de Radioastronomía‐ CCT La Plata, CONICET/CIC‐PBA/UNLP, 1894 V.ElisaArgentina
| |
Collapse
|
6
|
Giarrocco F, Averbeck B. Organization of Parieto-Prefrontal and Temporo-Prefrontal Networks in the Macaque. J Neurophysiol 2021; 126:1289-1309. [PMID: 34379536 DOI: 10.1152/jn.00092.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The connectivity among architectonically defined areas of the frontal, parietal, and temporal cortex of the macaque has been extensively mapped through tract tracing methods. To investigate the statistical organization underlying this connectivity, and identify its underlying architecture, we performed a hierarchical cluster analysis on 69 cortical areas based on their anatomically defined inputs. We identified 10 frontal, 4 parietal, and 5 temporal hierarchically related sets of areas (clusters), defined by unique sets of inputs and typically composed of anatomically contiguous areas. Across cortex, clusters that share functional properties were linked by dominant information processing circuits in a topographically organized manner that reflects the organization of the main fiber bundles in the cortex. This led to a dorsal-ventral subdivision of the frontal cortex, where dorsal and ventral clusters showed privileged connectivity with parietal and temporal areas, respectively. Ventrally, temporo-frontal circuits encode information to discriminate objects in the environment, their value, emotional properties, and functions such as memory and spatial navigation. Dorsal parieto-frontal circuits encode information for selecting, generating, and monitoring appropriate actions based on visual-spatial and somatosensory information. This organization may reflect evolutionary antecedents, in which the vertebrate pallium, which is the ancestral cortex, was defined by a ventral and lateral olfactory region and a medial hippocampal region.
Collapse
Affiliation(s)
- Franco Giarrocco
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
7
|
Vos de Wael R, Royer J, Tavakol S, Wang Y, Paquola C, Benkarim O, Eichert N, Larivière S, Xu T, Misic B, Smallwood J, Valk SL, Bernhardt BC. Structural Connectivity Gradients of the Temporal Lobe Serve as Multiscale Axes of Brain Organization and Cortical Evolution. Cereb Cortex 2021; 31:5151-5164. [PMID: 34148082 PMCID: PMC8491677 DOI: 10.1093/cercor/bhab149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The temporal lobe is implicated in higher cognitive processes and is one of the regions that underwent substantial reorganization during primate evolution. Its functions are instantiated, in part, by the complex layout of its structural connections. Here, we identified low-dimensional representations of structural connectivity variations in human temporal cortex and explored their microstructural underpinnings and associations to macroscale function. We identified three eigenmodes which described gradients in structural connectivity. These gradients reflected inter-regional variations in cortical microstructure derived from quantitative magnetic resonance imaging and postmortem histology. Gradient-informed models accurately predicted macroscale measures of temporal lobe function. Furthermore, the identified gradients aligned closely with established measures of functional reconfiguration and areal expansion between macaques and humans, highlighting their potential role in shaping temporal lobe function throughout primate evolution. Findings were replicated in several datasets. Our results provide robust evidence for three axes of structural connectivity in human temporal cortex with consistent microstructural underpinnings and contributions to large-scale brain network function.
Collapse
Affiliation(s)
- Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Shahin Tavakol
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Yezhou Wang
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Oualid Benkarim
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY, NY 10022, USA
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | | - Sofie L Valk
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany
| | - Boris C Bernhardt
- Address correspondence to Boris C. Bernhardt, McConnell Brain Imaging Centre, Montreal Neurological Institute (NW-256), McGill University, 3801 Rue University, Montréal, QC H3A2B4, Canada.
| |
Collapse
|
8
|
Up-regulation of HTR1A reverses stress-induced visceral hypersensitivity through modulating interactions among the anterior cingulate cortex, insular cortex and hippocampus. Pteridines 2020. [DOI: 10.1515/pteridines-2020-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background: This study aimed to explore the effect of 5-HT1A receptors (HTR1A) on activation of the anterior cingulate cortex and simultaneous regulation of neural activity in the insular cortex and hippocampus.
Methods: The IBS rat model was established via chronic water avoidance stress (WAS). Visceral sensitivity was measured by electromyogram, and anxiety-like behaviours were evaluated by the open field test. HTR1A-specific lentivirus expressing green fluorescent protein was used to overexpress or down-regulate HTR1A expression. Protein expression levels were detected by western blot.
Results: Up-regulation of HTR1A in ACC could inhibit ACC sensitization and reverse the visceral hypersensitivity and anxiety-like behaviours induced by chronic psychological stress. In contrast, down-regulation of HTR1A in ACC might promote these behaviors in IBS rats. Additionally, up-regulation of HTR1A in ACC could inhibit IC and hippocampus sensitization, while down-regulation might have the opposite effect.
Conclusions: In IBS rats, HTR1A could modulate ACC activation and interactions among the ACC, IC and hippocampus. These effects might in turn contribute to the development of visceral hypersensitivity and anxiety-like behaviours induced by chronic psychological stress.
Collapse
|