1
|
Tatarsky RL, Akbari N, Wang K, Xu C, Bass AH. Label-Free Multiphoton Imaging Reveals Volumetric Shifts Across Development in Sensory-Related Brain Regions of a Miniature Transparent Vertebrate. J Comp Neurol 2025; 533:e70048. [PMID: 40205747 PMCID: PMC12016040 DOI: 10.1002/cne.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
Animals integrate information from different sensory modalities as they mature and perform increasingly complex behaviors. This may parallel differential investment in specific brain regions depending on the changing demands of sensory inputs. To investigate developmental changes in the volume of canonical sensory regions, we used third harmonic generation imaging for morphometric analysis of forebrain and midbrain regions from larval through juvenile and adult stages in Danionella dracula, a transparent, miniature teleost fish whose brain is optically accessible throughout its lifespan. Relative to whole-brain volume, increased volume or investment in the telencephalon, a higher order sensory integration center, shows the most dramatic increases between 30-60 days postfertilization (dpf) and again at 90 dpf as animals reach adulthood. The torus longitudinalis (TL), a midbrain visuomotor integration center, also significantly increases between 60 and 90 dpf. In contrast, investment in the midbrain optic tectum (TeO), a retinal-recipient target, progressively decreases from 30 to 90 dpf, whereas investment is relatively consistent across all stages for the midbrain torus semicircularis (TS), a secondary auditory and mechanosensory lateral line center, and the olfactory bulb (OB), a direct target of the olfactory epithelium. In sum, increased investment in higher-order integration centers (telencephalon, TL) occurs as juveniles reach adulthood (60-90 dpf) and exhibit more complex cognitive tasks, whereas investment in modality-dominant regions occurs earlier (TeO) or is relatively consistent across development (TS, OB). Complete optical access throughout Danionella's lifespan provides a unique opportunity to investigate how changing brain structure over development correlates with changes in connectivity, microcircuitry, or behavior.
Collapse
Affiliation(s)
- Rose L. Tatarsky
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY USA 14850
| | - Najva Akbari
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY USA 14850
| | - Ke Wang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY USA 14850
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY USA 14850
| | - Andrew H. Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY USA 14850
| |
Collapse
|
2
|
Tatarsky RL, Akbari N, Wang K, Xu C, Bass AH. Label-free multiphoton imaging reveals volumetric shifts across development in sensory-related brain regions of a miniature transparent vertebrate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604134. [PMID: 39091824 PMCID: PMC11291088 DOI: 10.1101/2024.07.18.604134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Animals integrate information from different sensory modalities as they mature and perform increasingly complex behaviors. This may parallel differential investment in specific brain regions depending on the demands of changing sensory inputs. To investigate developmental changes in the volume of canonical sensory integration brain regions, we used third harmonic generation imaging for morphometric analysis of forebrain and midbrain regions from 5 to 90 days post fertilization (dpf) in Danionella dracula , a transparent, miniature teleost fish whose brain is optically accessible throughout its lifespan. Relative to whole brain volume, increased volume or investment in telencephalon, a higher order sensory integration center, and torus longitudinalis (TL), a midbrain visuomotor integration center, is relatively consistent from 5 to 30 dpf, until it increases at 60 dpf, followed by another increase at 90 dpf, as animals reach adulthood. In contrast, investment in midbrain optic tectum (TeO), a retinal-recipient target, progressively decreases from 30-90 dpf, whereas investment is relatively consistent across all stages for the midbrain torus semicircularis (TS), a secondary auditory and mechanosensory lateral line center, and the olfactory bulb (OB), a direct target of the olfactory epithelium. In sum, increased investment in higher order integration centers (telencephalon, TL) occurs as juveniles reach adulthood and exhibit more complex cognitive tasks, whereas investment in modality-dominant regions occurs in earlier stages (TeO) or is relatively consistent across development (TS, OB). Complete optical access throughout Danionella 's lifespan provides a unique opportunity to investigate how changing brain structure over development correlates with changes in connectivity, microcircuitry, or behavior.
Collapse
|
3
|
Zabegalov KN, Costa FV, Kolesnikova TO, de Abreu MS, Petersen EV, Yenkoyan KB, Kalueff AV. Can we gain translational insights into the functional roles of cerebral cortex from acortical rodent and naturally acortical zebrafish models? Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110964. [PMID: 38354895 DOI: 10.1016/j.pnpbp.2024.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/11/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Cerebral cortex is found only in mammals and is particularly prominent and developed in humans. Various rodent models with fully or partially ablated cortex are commonly used to probe the role of cortex in brain functions and its multiple subcortical projections, including pallium, thalamus and the limbic system. Various rodent models are traditionally used to study the role of cortex in brain functions. A small teleost fish, the zebrafish (Danio rerio), has gained popularity in neuroscience research, and albeit (like other fishes) lacking cortex, its brain performs well some key functions (e.g., memory, consciousness and motivation) with complex, context-specific and well-defined behaviors. Can rodent and zebrafish models help generate insights into the role of cortex in brain functions, and dissect its cortex-specific (vs. non-cortical) functions? To address this conceptual question, here we evaluate brain functionality in intact vs. decorticated rodents and further compare it in the zebrafish, a naturally occurring acortical species. Overall, comparing cortical and acortical rodent models with naturally acortical zebrafish reveals both distinct and overlapping contributions of neocortex and 'precortical' zebrafish telencephalic regions to higher brain functions. Albeit morphologically different, mammalian neocortex and fish pallium may possess more functional similarities than it is presently recognized, calling for further integrative research utilizing both cortical and decorticated/acortical vertebrate model organisms.
Collapse
Affiliation(s)
- Konstantin N Zabegalov
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan; Life Improvement by Future Technologies (LIFT) Center, LLC, Moscow, Russia
| | - Fabiano V Costa
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | | | | | | | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University named after M. Heratsi, Yerevan, Armenia; Department of Biochemistry, Yerevan State Medical University named after M. Heratsi, Yerevan, Armenia.
| | - Allan V Kalueff
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
| |
Collapse
|
4
|
Northmore DPM. Visual shape discrimination in goldfish, modelled with the neural circuitry of optic tectum and torus longitudinalis. Vision Res 2024; 217:108374. [PMID: 38452566 DOI: 10.1016/j.visres.2024.108374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
There is no satisfactory neurally-based theory as to how vertebrates that lack a neocortex discriminate even simple geometric shapes. In fishes, an intact optic tectum is necessary for such discriminations, but physiological studies of it have found nothing like the hierarchically arranged feature detecting neurons of mammalian visual cortex. Here, a neural model attempts a solution by basing shape discrimination upon the responses of only those elementary detectors (e.g. of size) that are within a focus of attention, formed by a winner-take-all arrangement of retinotopically mapped units representing tectal pyramidal cells. While this relatively primitive mechanism could recognize an object irrespective of position in space, it fails to distinguish patterns that differ only in their features' spatial relationships. The model's solution - imitating goldfish that naturally attend to the top of shapes - is to shift attention to the edges of a shape by spatially offsetting inputs to the pyramidal neurons, effected by the torus longitudinalis and its prolific synapses on pyramidal dendrites. The model's shape discrimination was compared to an extensive behavioral study using shapes with points and projections. In one test series fish were sensitive to the relative number of points on the tops of shapes. In another, fish were trained to discriminate points on the sides. By using different offset connections and only one elementary feature detector for small dark spots, the model successfully emulated the two sets of goldfish data, as judged by significant correlations between model response and fish discrimination.
Collapse
Affiliation(s)
- D P M Northmore
- Department of Psychological and Brain Sciences, University of Delaware, United States of America.
| |
Collapse
|
5
|
Ali MA, Lischka K, Preuss SJ, Trivedi CA, Bollmann JH. A synaptic corollary discharge signal suppresses midbrain visual processing during saccade-like locomotion. Nat Commun 2023; 14:7592. [PMID: 37996414 PMCID: PMC10667368 DOI: 10.1038/s41467-023-43255-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
In motor control, the brain not only sends motor commands to the periphery, but also generates concurrent internal signals known as corollary discharge (CD) that influence sensory information processing around the time of movement. CD signals are important for identifying sensory input arising from self-motion and to compensate for it, but the underlying mechanisms remain unclear. Using whole-cell patch clamp recordings from neurons in the zebrafish optic tectum, we discovered an inhibitory synaptic signal, temporally locked to spontaneous and visually driven locomotion. This motor-related inhibition was appropriately timed to counteract visually driven excitatory input arising from the fish's own motion, and transiently suppressed tectal spiking activity. High-resolution calcium imaging revealed localized motor-related signals in the tectal neuropil and the upstream torus longitudinalis, suggesting that CD enters the tectum via this pathway. Together, our results show how visual processing is suppressed during self-motion by motor-related phasic inhibition. This may help explain perceptual saccadic suppression observed in many species.
Collapse
Affiliation(s)
- Mir Ahsan Ali
- Developmental Biology, Institute of Biology I, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Katharina Lischka
- Developmental Biology, Institute of Biology I, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Stephanie J Preuss
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Springer Nature Group, Heidelberg, Germany
| | - Chintan A Trivedi
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Dept Cell and Developmental Biology, University College London, London, UK
| | - Johann H Bollmann
- Developmental Biology, Institute of Biology I, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany.
- Bernstein Center Freiburg, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
6
|
Zhu SI, Goodhill GJ. From perception to behavior: The neural circuits underlying prey hunting in larval zebrafish. Front Neural Circuits 2023; 17:1087993. [PMID: 36817645 PMCID: PMC9928868 DOI: 10.3389/fncir.2023.1087993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
A key challenge for neural systems is to extract relevant information from the environment and make appropriate behavioral responses. The larval zebrafish offers an exciting opportunity for studying these sensing processes and sensory-motor transformations. Prey hunting is an instinctual behavior of zebrafish that requires the brain to extract and combine different attributes of the sensory input and form appropriate motor outputs. Due to its small size and transparency the larval zebrafish brain allows optical recording of whole-brain activity to reveal the neural mechanisms involved in prey hunting and capture. In this review we discuss how the larval zebrafish brain processes visual information to identify and locate prey, the neural circuits governing the generation of motor commands in response to prey, how hunting behavior can be modulated by internal states and experience, and some outstanding questions for the field.
Collapse
Affiliation(s)
- Shuyu I. Zhu
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | | |
Collapse
|
7
|
Svara F, Förster D, Kubo F, Januszewski M, Dal Maschio M, Schubert PJ, Kornfeld J, Wanner AA, Laurell E, Denk W, Baier H. Automated synapse-level reconstruction of neural circuits in the larval zebrafish brain. Nat Methods 2022; 19:1357-1366. [PMID: 36280717 PMCID: PMC9636024 DOI: 10.1038/s41592-022-01621-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/22/2022] [Indexed: 12/29/2022]
Abstract
Dense reconstruction of synaptic connectivity requires high-resolution electron microscopy images of entire brains and tools to efficiently trace neuronal wires across the volume. To generate such a resource, we sectioned and imaged a larval zebrafish brain by serial block-face electron microscopy at a voxel size of 14 × 14 × 25 nm3. We segmented the resulting dataset with the flood-filling network algorithm, automated the detection of chemical synapses and validated the results by comparisons to transmission electron microscopic images and light-microscopic reconstructions. Neurons and their connections are stored in the form of a queryable and expandable digital address book. We reconstructed a network of 208 neurons involved in visual motion processing, most of them located in the pretectum, which had been functionally characterized in the same specimen by two-photon calcium imaging. Moreover, we mapped all 407 presynaptic and postsynaptic partners of two superficial interneurons in the tectum. The resource developed here serves as a foundation for synaptic-resolution circuit analyses in the zebrafish nervous system.
Collapse
Affiliation(s)
- Fabian Svara
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
- ariadne.ai ag, Buchrain, Switzerland
| | - Dominique Förster
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fumi Kubo
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Center for Frontier Research, National Institute of Genetics, Mishima, Japan
| | | | - Marco Dal Maschio
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Jörgen Kornfeld
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Adrian A Wanner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Eva Laurell
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Winfried Denk
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Martinsried, Germany.
| |
Collapse
|
8
|
DeMarco EC, Stoner GR, Robles E. A genetic labeling system to study dendritic spine development in zebrafish models of neurodevelopmental disorders. Dis Model Mech 2022; 15:276065. [PMID: 35875841 PMCID: PMC9403749 DOI: 10.1242/dmm.049507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Abstract
Dendritic spines are the principal site of excitatory synapse formation in the human brain. Several neurodevelopmental disorders cause spines to develop abnormally, resulting in altered spine number and morphology. Although spine development has been thoroughly characterized in the mammalian brain, spines are not unique to mammals. We have developed a genetic system in zebrafish to enable high-resolution in vivo imaging of spine dynamics during larval development. Although spiny neurons are rare in the larval zebrafish, pyramidal neurons (PyrNs) of the zebrafish tectum form an apical dendrite containing a dense array of dendritic spines. To characterize dendritic spine development, we performed mosaic genetic labeling of individual PyrNs labeled by an id2b:gal4 transgene. Our findings identify a developmental period during which PyrN dendrite growth is concurrent with spine formation. Throughout this period, motile, transient filopodia gradually transform into stable spines containing postsynaptic specializations. The utility of this system to study neurodevelopmental disorders was validated by examining spine development in fmr1 mutant zebrafish, a model of fragile X syndrome. PyrNs in fmr1 mutants exhibited pronounced defects in dendrite growth and spine stabilization. Taken together, these findings establish a genetic labeling system to study dendritic spine development in larval zebrafish. In the future, this system could be combined with high-throughput screening approaches to identify genes and drug targets that regulate spine formation. Summary: We have developed a genetic labeling system in zebrafish to enable high-resolution in vivo imaging of dendritic spine dynamics during larval development.
Collapse
Affiliation(s)
- Elisabeth C DeMarco
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - George R Stoner
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Estuardo Robles
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
9
|
Plata ALD, Robles E. NMDA Receptor Antagonist MK801 Reduces Dendritic Spine Density and Stability in Zebrafish Pyramidal Neurons. Neuroscience 2022; 498:50-63. [PMID: 35718218 DOI: 10.1016/j.neuroscience.2022.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
NMDA-type glutamate receptors play a critical role in activity-dependent neurite growth. We employed cell type-specific genetic labeling in zebrafish to examine the effects of NMDA receptor antagonism on the morphological development of tectal pyramidal neurons (PyrNs). Our data demonstrate that the NMDA receptor antagonist MK801 reduces PyrN spine density and stability without significantly altering dendritic growth and branching. However, the axons that synapse onto PyrN dendritic spines do exhibit reduced arbor growth and branching in response to MK801 treatment. Axons that synapse with PyrNs, but not on spines, are unaffected by MK801 treatment. These findings may reflect different roles for NMDARs during the development of spiny and aspiny dendrites.
Collapse
Affiliation(s)
- Amanda Lamarca Dela Plata
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Estuardo Robles
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
10
|
Tesmer AL, Fields NP, Robles E. Input from torus longitudinalis drives binocularity and spatial summation in zebrafish optic tectum. BMC Biol 2022; 20:24. [PMID: 35073895 PMCID: PMC8788132 DOI: 10.1186/s12915-021-01222-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Background A continued effort in neuroscience aims to understand the way brain circuits consisting of diverse neuronal types generate complex behavior following sensory input. A common feature of vertebrate visual systems is that lower-order and higher-order visual areas are reciprocally connected. Feedforward projections confer visual responsiveness to higher-order visual neurons while feedback projections likely serve to modulate responses of lower-order visual neurons in a context-dependent manner. Optic tectum is the largest first-order visual brain area in zebrafish and is reciprocally connected with the torus longitudinalis (TL), a second-order visual brain area that does not receive retinal input. A functional role for feedback projections from TL to tectum has not been identified. Here we aim to understand how this feedback contributes to visual processing. Results In this study, we demonstrate that TL feedback projections to tectum drive binocular integration and spatial summation in a defined tectal circuit. We performed genetically targeted, cell type-specific functional imaging in tectal pyramidal neurons (PyrNs) and their two input neuron populations: retinal ganglion cells (RGCs) and neurons in TL. We find that PyrNs encode gradual changes in scene luminance using a complement of three distinct response classes that encode different light intensity ranges. Functional imaging of RGC inputs to tectum suggest that these response classes originate in the retina and RGC input specifies PyrN functional classes. In contrast, TL input serves to endow PyrNs with large, compound receptive fields that span both retinal hemifields. Conclusions These findings reveal a novel role for the zebrafish TL in driving binocular integration and spatial summation in tectal PyrNs. The neural circuit we describe generates a population of tectal neurons with large receptive fields tailored for detecting changes in the visual scene. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01222-x.
Collapse
|