1
|
Liu X, Chen G, Cheng Z, Feng Y, Cui W, Gao L, Cai X, Wang Y. Increased iron deposition in subcortical nuclear mass in treatment naïve transgender women: An exploratory quantitative susceptibility mapping study. J Affect Disord 2025; 383:267-274. [PMID: 40294822 DOI: 10.1016/j.jad.2025.04.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/06/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
OBJECTIVE The aim of this study was to investigate altered iron deposition in deep brain regions of transgender women (TW) population using quantitative susceptibility mapping (QSM). MATERIAL & METHOD 45 TW, 28 cisgender men (CM) and 18 cisgender women (CW) were prospectively recruited. All participants underwent a 3.0T magnetic resonance imaging of the brain. QSM post-processing technique was applied to obtain susceptibility value for regions of the caudate, putamen, internal globus pallidus, external globus pallidus, ventral pallidum, nucleus accumbens, substantia nigra pars compacta, substantia nigra pars reticulata, red nucleus, subthalamic nucleus and dentate nucleus. The analysis of covariance was used to investigate the iron deposition differences between three groups controlling for age and education. The false discovery rate (FDR) was used for multiple comparison correction. RESULTS After correcting for FDR, the TW group showed increased susceptibility value in the left internal globus pallidus compared to the CM group. There were no significantly different susceptibility value between the TW and the CW groups after correcting for FDR. CONCLUSION The iron deposition in the internal globus pallidus region of TW was higher than that of CM, and there was no significant difference between TW and CW, Further investigation is warranted to gain a more comprehensive understanding of cerebral iron dysregulation in transgender people and its associated physiological mechanisms.
Collapse
Affiliation(s)
- Xu Liu
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Guanmao Chen
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of MR, Zhongshan City People's Hospital, Zhongshan, China
| | - Zhongyuan Cheng
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Youzhen Feng
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Wei Cui
- GE Healthcare, MR Research, China
| | - Lvfen Gao
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Xiangran Cai
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Mohammadi S, Ghaderi S, Mohammadi H, Fatehi F. Simultaneous Increase of Mean Susceptibility and Mean Kurtosis in the Substantia Nigra as an MRI Neuroimaging Biomarker for Early-Stage Parkinson's Disease: A Systematic Review and Meta-Analysis. J Magn Reson Imaging 2025; 61:1797-1809. [PMID: 39210501 DOI: 10.1002/jmri.29569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disorder. Early detection is crucial for treatment and slowing disease progression. HYPOTHESIS Simultaneous alterations in mean susceptibility (MS) from quantitative susceptibility mapping (QSM) and mean kurtosis (MK) from diffusion kurtosis imaging (DKI) can serve as reliable neuroimaging biomarkers for early-stage PD (ESPD) in the basal ganglia nuclei, including the substantia nigra (SN), putamen (PUT), globus pallidus (GP), and caudate nucleus (CN). STUDY TYPE Systematic review and meta-analysis. POPULATION One hundred eleven patients diagnosed with ESPD and 81 healthy controls (HCs) were included from four studies that utilized both QSM and DKI in both subject groups. FIELD STRENGTH/SEQUENCE Three-dimensional multi-echo gradient echo sequence for QSM and spin echo planar imaging sequence for DKI at 3 Tesla. ASSESSMENT A systematic review and meta-analysis using PRISMA guidelines searched PubMed, Web of Science, and Scopus. STATISTICAL TESTS Random-effects model, standardized mean difference (SMD) to compare MS and MK between ESPD patients and HCs, I2 statistic for heterogeneity, Newcastle-Ottawa Scale (NOS) for risk of bias, and Egger's test for publication bias. A P-value <0.05 was considered significant. RESULTS MS values were significantly higher in SN (SMD 0.72, 95% CI 0.31 to 1.12), PUT (SMD 0.68, 95% CI 0.29 to 1.07), and GP (SMD 0.53, 95% CI 0.19 to 0.87) in ESPD patients compared to HCs. CN did not show a significant difference in MS values (P = 0.15). MK values were significantly higher only in SN (SMD = 0.72, 95% CI 0.16 to 1.27). MK values were not significantly different in PUT (P = 1.00), GP (P = 0.97), and CN (P = 0.59). Studies had high quality (NOS 7-8) and no publication bias (P = 0.967). DATA CONCLUSION Simultaneous use of MS and MK may be useful as an early neuroimaging biomarker for ESPD detection and its differentiation from HCs, with significant differences observed in the SN. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Neurology Department, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
3
|
Ghaderi S, Mohammadi S, Ahmadzadeh AM, Darmiani K, Arab Bafrani M, Jashirenezhad N, Helfi M, Alibabaei S, Azadi S, Heidary S, Fatehi F. Thalamic Magnetic Susceptibility (χ) Alterations in Neurodegenerative Diseases: A Systematic Review and Meta-Analysis of Quantitative Susceptibility Mapping Studies. J Magn Reson Imaging 2025. [PMID: 39832811 DOI: 10.1002/jmri.29698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Quantitative Susceptibility Mapping (QSM) provides a non-invasive post-processing method to investigate alterations in magnetic susceptibility (χ), reflecting iron content within brain regions implicated in neurodegenerative diseases (NDDs). PURPOSE To investigate alterations in thalamic χ in patients with NDDs using QSM. STUDY TYPE Systematic review and meta-analysis. POPULATION A total of 696 patients with NDDs and 760 healthy controls (HCs) were included in 27 studies. FIELD STRENGTH/SEQUENCE Three-dimensional multi-echo gradient echo sequence for QSM at mostly 3 Tesla. ASSESSMENT Studies reporting QSM values in the thalamus of patients with NDDs were included. Following PRISMA 2020, we searched the four major databases including PubMed, Scopus, Web of Science, and Embase for peer-reviewed studies published until October 2024. STATISTICAL TESTS Meta-analysis was conducted using a random-effects model to calculate the standardized mean difference (SMD) between patients and HCs. RESULTS The pooled SMD indicated a significant increase in thalamic χ in NDDs compared to HCs (SMD = 0.42, 95% CI: 0.05-0.79; k = 27). Notably, amyotrophic lateral sclerosis patients showed a significant increase in thalamic χ (1.09, 95% CI: 0.65-1.53, k = 2) compared to HCs. Subgroup analyses revealed significant χ alterations in younger patients (mean age ≤ 62 years; 0.56, 95% CI: 0.10-1.02, k = 11) and studies using greater coil channels (coil channels > 16; 0.64, 95% CI: 0.28-1.00, k = 9). Publication bias was not detected and quality assessment indicated that studies with a lower risk of bias presented more reliable findings (0.75, 95% CI: 0.32-1.18, k = 9). Disease type was the primary driver of heterogeneity, while other factors, such as coil type and geographic location, also contributed to variability. DATA CONCLUSION Our findings support the potential of QSM for investigating thalamic involvement in NDDs. Future research should focus on disease-specific patterns, thalamic-specific nucleus analysis, and temporal evolution. PLAIN LANGUAGE SUMMARY Our research investigated changes in iron levels within the thalamus, a brain region crucial for motor and cognitive functions, in patients with various neurodegenerative diseases (NDDs). The study utilized a specific magnetic resonance imaging technique called Quantitative Susceptibility Mapping (QSM) to measure iron content. It identified a significant increase in thalamic iron levels in NDD patients compared to healthy individuals. This increase was particularly prominent in patients with Amyotrophic Lateral Sclerosis, younger individuals, and studies employing advanced imaging equipment. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mahmoud Ahmadzadeh
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kimia Darmiani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Arab Bafrani
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Jashirenezhad
- The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Helfi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Sanaz Alibabaei
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sareh Azadi
- Department of Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Sahar Heidary
- Health Institute, Medical Physics Department, Yeditepe University, Istanbul, Turkey
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Neurology Department, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
4
|
Segobin S, Haast RAM, Kumar VJ, Lella A, Alkemade A, Bach Cuadra M, Barbeau EJ, Felician O, Pergola G, Pitel AL, Saranathan M, Tourdias T, Hornberger M. A roadmap towards standardized neuroimaging approaches for human thalamic nuclei. Nat Rev Neurosci 2024; 25:792-808. [PMID: 39420114 DOI: 10.1038/s41583-024-00867-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 10/19/2024]
Abstract
The thalamus has a key role in mediating cortical-subcortical interactions but is often neglected in neuroimaging studies, which mostly focus on changes in cortical structure and activity. One of the main reasons for the thalamus being overlooked is that the delineation of individual thalamic nuclei via neuroimaging remains controversial. Indeed, neuroimaging atlases vary substantially regarding which thalamic nuclei are included and how their delineations were established. Here, we review current and emerging methods for thalamic nuclei segmentation in neuroimaging data and consider the limitations of existing techniques in terms of their research and clinical applicability. We address these challenges by proposing a roadmap to improve thalamic nuclei segmentation in human neuroimaging and, in turn, harmonize research approaches and advance clinical applications. We believe that a collective effort is required to achieve this. We hope that this will ultimately lead to the thalamic nuclei being regarded as key brain regions in their own right and not (as often currently assumed) as simply a gateway between cortical and subcortical regions.
Collapse
Affiliation(s)
- Shailendra Segobin
- Normandie University, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.
| | - Roy A M Haast
- Aix-Marseille University, CRMBM CNRS UMR 7339, Marseille, France
- APHM, La Timone Hospital, CEMEREM, Marseille, France
| | | | - Annalisa Lella
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Anneke Alkemade
- Integrative Model-based Cognitive Neuroscience Unit, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Meritxell Bach Cuadra
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Radiology Department, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Emmanuel J Barbeau
- Centre de recherche Cerveau et Cognition (Cerco), UMR5549, CNRS - Université de Toulouse, Toulouse, France
| | - Olivier Felician
- Aix Marseille Université, INSERM INS UMR 1106, APHM, Marseille, France
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne-Lise Pitel
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Caen, France
| | | | - Thomas Tourdias
- Neuroimagerie diagnostique et thérapeutique, CHU de Bordeaux, Bordeaux, France
- Neurocentre Magendie, University of Bordeaux, INSERM U1215, Bordeaux, France
| | | |
Collapse
|
5
|
Satoh R, Ali F, Botha H, Lowe VJ, Josephs KA, Whitwell JL. Direct comparison between 18F-Flortaucipir tau PET and quantitative susceptibility mapping in progressive supranuclear palsy. Neuroimage 2024; 286:120509. [PMID: 38184157 PMCID: PMC10868646 DOI: 10.1016/j.neuroimage.2024.120509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024] Open
Abstract
PURPOSE The pattern of flortaucipir tau PET uptake is topographically similar to the pattern of magnetic susceptibility in progressive supranuclear palsy (PSP); both with increased signal in subcortical structures such as the basal ganglia and midbrain, suggesting that they may be closely related. However, their relationship remains unknown since no studies have directly compared these two modalities in the same PSP cohort. We hypothesized that some flortaucipir uptake in PSP is associated with magnetic susceptibility, and hence iron deposition. The aim of this study was to evaluate the regional relationship between flortaucipir uptake and magnetic susceptibility and to examine the effects of susceptibility on flortaucipir uptake in PSP. METHODS Fifty PSP patients and 67 cognitively normal controls were prospectively recruited and underwent three Tesla MRI and flortaucipir tau PET scans. Quantitative susceptibility maps were reconstructed from multi-echo gradient-echo MRI images. Region of interest (ROI) analysis was performed to obtain flortaucipir and susceptibility values in the subcortical regions. Relationships between flortaucipir and susceptibility signals were evaluated using partial correlation analysis in the subcortical ROIs and voxel-based analysis in the whole brain. The effects of susceptibility on flortaucipir uptake were examined by using the framework of mediation analysis. RESULTS Both flortaucipir and susceptibility were greater in PSP compared to controls in the putamen, pallidum, subthalamic nucleus, red nucleus, and cerebellar dentate (p<0.05). The ROI-based and voxel-based analyses showed that these two signals were positively correlated in these five regions (r = 0.36-0.59, p<0.05). Mediation analysis showed that greater flortaucipir uptake was partially explained by susceptibility in the putamen, pallidum, subthalamic nucleus, and red nucleus, and fully explained in the cerebellar dentate. CONCLUSIONS These results suggest that some of the flortaucipir uptake in subcortical regions in PSP is related to iron deposition. These findings will contribute to our understanding of the mechanisms underlying flortaucipir tau PET findings in PSP and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Ryota Satoh
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, 200 1st St SW, 55905, Rochester, MN, USA
| | | | - Jennifer L Whitwell
- Department of Radiology, Mayo Clinic, 200 1st St SW, 55905, Rochester, MN, USA.
| |
Collapse
|
6
|
Ladopoulos T, Matusche B, Bellenberg B, Heuser F, Gold R, Lukas C, Schneider R. Relaxometry and brain myelin quantification with synthetic MRI in MS subtypes and their associations with spinal cord atrophy. Neuroimage Clin 2022; 36:103166. [PMID: 36081258 PMCID: PMC9463599 DOI: 10.1016/j.nicl.2022.103166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/31/2022] [Accepted: 08/22/2022] [Indexed: 01/18/2023]
Abstract
Immune-mediated demyelination and neurodegeneration are pathophysiological hallmarks of Multiple Sclerosis (MS) and main drivers of disease related disability. The principal method for evaluating qualitatively demyelinating events in the clinical context is contrast-weighted magnetic resonance imaging (MRI). Moreover, advanced MRI sequences provide reliable quantification of brain myelin offering new opportunities to study tissue pathology in vivo. Towards neurodegenerative aspects of the disease, spinal cord atrophy - besides brain atrophy - is a powerful and validated predictor of disease progression. The etiology of spinal cord volume loss is still a matter of research, as it remains unclear whether the impact of local lesion pathology or the interaction with supra- and infratentorial axonal degeneration and demyelination of the long descending and ascending fiber tracts are the determining factors. Quantitative synthetic MR using a multiecho acquisition of saturation recovery pulse sequence provides fast automatic brain tissue and myelin volumetry based on R1 and R2 relaxation rates and proton density quantification, making it a promising modality for application in the clinical routine. In this cross sectional study a total of 91 MS patients and 31 control subjects were included to investigate group differences of global and regional measures of brain myelin and relaxation rates, in different MS subtypes, using QRAPMASTER sequence and SyMRI postprocessing software. Furthermore, we examined associations between these quantitative brain parameters and spinal cord atrophy to draw conclusions about possible pathophysiological relationships. Intracranial myelin volume fraction of the global brain exhibited statistically significant differences between control subjects (10.4%) and MS patients (RRMS 9.4%, PMS 8.1%). In a LASSO regression analysis with total brain lesion load, intracranial myelin volume fraction and brain parenchymal fraction, the intracranial myelin volume fraction was the variable with the highest impact on spinal cord atrophy (standardized coefficient 4.52). Regional supratentorial MRI metrics showed altered average myelin volume fraction, R1, R2 and proton density in MS patients compared to controls most pronounced in PMS. Interestingly, quantitative MRI parameters in supratentorial regions showed strong associations with upper cord atrophy, suggesting an important role of brain diffuse demyelination on spinal cord pathology possibly in the context of global disease activity. R1, R2 or proton density of the thalamus, cerebellum and brainstem correlated with upper cervical cord atrophy, probably reflecting the direct functional connection between these brain structures and the spinal cord as well as the effects of retrograde and anterograde axonal degeneration. By using Synthetic MR-derived myelin volume fraction, we were able to effectively detect significant differences of myelination in relapsing and progressive MS subtypes. Total intracranial brain myelin volume fraction seemed to predict spinal cord volume loss better than brain atrophy or total lesion load. Furthermore, demyelination in highly myelinated supratentorial regions, as an indicator of diffuse disease activity, as well as alterations of relaxation parameters in adjacent infratentorial and midbrain areas were strongly associated with upper cervical cord atrophy.
Collapse
Affiliation(s)
- Theodoros Ladopoulos
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany,Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany,Corresponding authors at: St. Josef Hospital, Department of Neurology, Gudrunstr. 56, 44791 Bochum, Germany.
| | - Britta Matusche
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | - Barbara Bellenberg
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | - Florian Heuser
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | - Carsten Lukas
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany,Department of Diagnostic and Interventional Radiology and Nuclear Medicine, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | - Ruth Schneider
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany,Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| |
Collapse
|