1
|
Jiang P, Dickson DW. Correlative light and electron microscopy imaging of proteinaceous deposits in cell cultures and brain tissues. Acta Neuropathol Commun 2025; 13:53. [PMID: 40057802 PMCID: PMC11889819 DOI: 10.1186/s40478-025-01969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/20/2025] [Indexed: 05/13/2025] Open
Abstract
Identifying protein deposits and associated components is crucial for understanding the pathogenesis of neurodegenerative disorders with intracellular or extracellular deposits. Correlative light and electron microscopy (CLEM) has emerged as a powerful tool to accurately study tissue and cellular pathology by examination of the same target at both microstructural and ultrastructural levels. However, the technical challenges with CLEM have limited its application to neuropathology. Here, we developed a simplified efficient CLEM method and applied it to a cell model that produces a high proportion of α-synuclein (αS) inclusions with immunopositivity to phosphorylated αS and the synaptic vesicle marker SV2A and synaptophysin. This approach incorporates modifications in sample processing and innovative fiducial marking techniques, which enhance antigen preservation and improve target registration, respectively. These advancements achieve an optimal balance in sensitivity, accuracy, efficiency, and cost-effectiveness compared to current CLEM methods employing different strategies. Using this method, we identified and analyzed αS inclusions in cell cultures, as well as various pathological protein deposits in postmortem brain tissues from individuals with a range of neurodegenerative disorders. Our findings replicate recently reported new features of αS pathology and also reveal unrecognized a variety forms of small αS inclusions in human brain, which provide valuable insights into mechanisms underlying Lewy-related pathology. Application of this enhanced CLEM method is a powerful tool in research on neurodegenerative disorders, including αS-opathies.
Collapse
Affiliation(s)
- Peizhou Jiang
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| |
Collapse
|
2
|
Kim HU, Kim YK. Bispecific antibodies and CLEM: an analytical approach to advanced cell imaging for therapeutic strategies. Appl Microsc 2025; 55:1. [PMID: 39828773 PMCID: PMC11743405 DOI: 10.1186/s42649-024-00106-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/15/2024] [Indexed: 01/22/2025] Open
Abstract
The development of bispecific antibodies (BsAbs) represents a significant advancement in therapeutic antibody design, enabling the simultaneous targeting of two different antigens. This dual-targeting capability enhances therapeutic efficacy, particularly in complex diseases like cancer, where tumor heterogeneity presents a significant challenge for traditional treatments. By bridging two distinct pathways, BsAbs can improve specificity and minimize off-target effects, making them invaluable in therapeutic contexts. Integrating advanced imaging techniques, particularly Correlative Light and Electron Microscopy (CLEM), offers a unique opportunity to visualize the dynamic interactions of BsAbs within cellular environments. CLEM combines the strengths of optical and electron microscopy, allowing researchers to observe real-time antibody-antigen interactions at nanoscale resolution. This synergy not only deepens our understanding of BsAbs' mechanisms of action but also provides critical insights into their spatial distribution, binding kinetics, and functional dynamics in live cells. In this review, the integration of BsAbs and CLEM paves the way for targeted therapeutic strategies, fostering the development of more effective treatments that can adapt to the complexities of disease pathology.
Collapse
Affiliation(s)
- Han-Ul Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Kangwon Center for Systems Imaging, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Young Kwan Kim
- Kangwon Center for Systems Imaging, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
3
|
Bosch M, Castro J, Sur M, Hayashi Y. Photomarking Relocalization Technique for Correlated Two-Photon and Electron Microscopy Imaging of Single Stimulated Synapses. Methods Mol Biol 2025; 2910:145-175. [PMID: 40220099 DOI: 10.1007/978-1-0716-4446-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Synapses learn and remember by persistent modifications of their internal structures and composition but, due to their small size, it is difficult to observe these changes at the ultrastructural level in real time. Two-photon fluorescence microscopy (2PM) allows time-course live imaging of individual synapses but lacks ultrastructural resolution. Electron microscopy (EM) allows the ultrastructural imaging of subcellular components but cannot detect fluorescence and lacks temporal resolution. Here we describe a combination of procedures designed to achieve the correlated imaging of the same individual synapse under both 2PM and EM. This technique permits the selective stimulation and live imaging of a single dendritic spine and the subsequent localization of the same spine in EM ultrathin serial sections. Landmarks created through a photomarking method based on the 2-photon-induced precipitation of an electrodense compound are used to unequivocally localize the stimulated synapse. This technique was developed to image, for the first time, the ultrastructure of the postsynaptic density in which long-term potentiation was selectively induced just seconds or minutes before, but it can be applied for the study of any biological process that requires the precise relocalization of micron-wide structures for their correlated imaging with 2PM and EM.
Collapse
Affiliation(s)
- Miquel Bosch
- RIKEN-MIT Neuroscience Research Center, Saitama, Japan.
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Jorge Castro
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- MBF Bioscience, Williston, VT, USA
| | - Mriganka Sur
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yasunori Hayashi
- RIKEN-MIT Neuroscience Research Center, Saitama, Japan
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Brain Science Institute, RIKEN, Wako, Saitama, Japan
- Saitama University Brain Science Institute, Saitama University, Saitama, Japan
- School of Life Science, South China Normal University, Guangzhou, China
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Caznok Silveira AC, Antunes ASLM, Athié MCP, da Silva BF, Ribeiro dos Santos JV, Canateli C, Fontoura MA, Pinto A, Pimentel-Silva LR, Avansini SH, de Carvalho M. Between neurons and networks: investigating mesoscale brain connectivity in neurological and psychiatric disorders. Front Neurosci 2024; 18:1340345. [PMID: 38445254 PMCID: PMC10912403 DOI: 10.3389/fnins.2024.1340345] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
The study of brain connectivity has been a cornerstone in understanding the complexities of neurological and psychiatric disorders. It has provided invaluable insights into the functional architecture of the brain and how it is perturbed in disorders. However, a persistent challenge has been achieving the proper spatial resolution, and developing computational algorithms to address biological questions at the multi-cellular level, a scale often referred to as the mesoscale. Historically, neuroimaging studies of brain connectivity have predominantly focused on the macroscale, providing insights into inter-regional brain connections but often falling short of resolving the intricacies of neural circuitry at the cellular or mesoscale level. This limitation has hindered our ability to fully comprehend the underlying mechanisms of neurological and psychiatric disorders and to develop targeted interventions. In light of this issue, our review manuscript seeks to bridge this critical gap by delving into the domain of mesoscale neuroimaging. We aim to provide a comprehensive overview of conditions affected by aberrant neural connections, image acquisition techniques, feature extraction, and data analysis methods that are specifically tailored to the mesoscale. We further delineate the potential of brain connectivity research to elucidate complex biological questions, with a particular focus on schizophrenia and epilepsy. This review encompasses topics such as dendritic spine quantification, single neuron morphology, and brain region connectivity. We aim to showcase the applicability and significance of mesoscale neuroimaging techniques in the field of neuroscience, highlighting their potential for gaining insights into the complexities of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ana Clara Caznok Silveira
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | | | - Maria Carolina Pedro Athié
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Bárbara Filomena da Silva
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Camila Canateli
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Marina Alves Fontoura
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Allan Pinto
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Simoni Helena Avansini
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Murilo de Carvalho
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|