1
|
Ma Y, Xu Y, Tang K. Olfactory perception complexity induced by key odorants perceptual interactions of alcoholic beverages: Wine as a focus case example. Food Chem 2025; 463:141433. [PMID: 39362100 DOI: 10.1016/j.foodchem.2024.141433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/30/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
The odorants in alcoholic beverages are frequently experienced as complex mixtures, and there is a complex array of influence factors and interactions involved during consumption that deeply increase its olfactory perception complexity, especially the complexity induced by perceptual interactions between different odorants. In this review, the effect of olfactory perceptual interactions and other factors related to the complexity of olfactory perception of alcoholic beverages are discussed. The classification, influencing factors, and mechanisms of olfactory perceptual interactions are outlined. Recent research progress as well as the methodologies applied in these studies on perceptual interactions between odorants observed in representative alcoholic beverages, especially wine, are briefly summarized. In the future, unified theory or systematic research methodology need to be established, since up to now, the rules of perceptual interaction between multiple odorants, which is critical to the alcoholic beverage industry to improve the flavor of their products, are still not revealed.
Collapse
Affiliation(s)
- Yue Ma
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China; China Key Laboratory of microbiomics and Eco-brewing Technology for Light Industry, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China; China Key Laboratory of microbiomics and Eco-brewing Technology for Light Industry, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| | - Ke Tang
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China; China Key Laboratory of microbiomics and Eco-brewing Technology for Light Industry, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
2
|
Carreiras M, Quiñones I, Chen HA, Vázquez‐Araujo L, Small D, Frost R. Sniffing out meaning: Chemosensory and semantic neural network changes in sommeliers. Hum Brain Mapp 2024; 45:e26564. [PMID: 38339911 PMCID: PMC10823763 DOI: 10.1002/hbm.26564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 10/03/2023] [Accepted: 12/02/2023] [Indexed: 02/12/2024] Open
Abstract
Wine tasting is a very complex process that integrates a combination of sensation, language, and memory. Taste and smell provide perceptual information that, together with the semantic narrative that converts flavor into words, seem to be processed differently between sommeliers and naïve wine consumers. We investigate whether sommeliers' wine experience shapes only chemosensory processing, as has been previously demonstrated, or if it also modulates the way in which the taste and olfactory circuits interact with the semantic network. Combining diffusion-weighted images and fMRI (activation and connectivity) we investigated whether brain response to tasting wine differs between sommeliers and nonexperts (1) in the sensory neural circuits representing flavor and/or (2) in the neural circuits for language and memory. We demonstrate that training in wine tasting shapes the microstructure of the left and right superior longitudinal fasciculus. Using mediation analysis, we showed that the experience modulates the relationship between fractional anisotropy and behavior: the higher the fractional anisotropy the higher the capacity to recognize wine complexity. In addition, we found functional differences between sommeliers and naïve consumers affecting the flavor sensory circuit, but also regions involved in semantic operations. The former reflects a capacity for differential sensory processing, while the latter reflects sommeliers' ability to attend to relevant sensory inputs and translate them into complex verbal descriptions. The enhanced synchronization between these apparently independent circuits suggests that sommeliers integrated these descriptions with previous semantic knowledge to optimize their capacity to distinguish between subtle differences in the qualitative character of the wine.
Collapse
Affiliation(s)
- Manuel Carreiras
- BCBL, Basque center of Cognition, Brain and LanguageDonostia‐San SebastianSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
- Department of Basque Language and CommunicationUniversity of the Basque Country EHU/UPVBilbaoSpain
| | - Ileana Quiñones
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
- Biodonostia Health Research InstituteDonostia‐San SebastianSpain
| | - H. Alexander Chen
- Yale School of MedicineNew HavenConnecticutUSA
- The Modern Diet and Physiology Research CenterNew HavenConnecticutUSA
| | | | - Dana Small
- Yale School of MedicineNew HavenConnecticutUSA
- The Modern Diet and Physiology Research CenterNew HavenConnecticutUSA
| | - Ram Frost
- BCBL, Basque center of Cognition, Brain and LanguageDonostia‐San SebastianSpain
- The Hebrew UniversityJerusalemIsrael
- Haskins LaboratoriesNew HavenConnecticutUSA
| |
Collapse
|
3
|
Study on Masking the Bitterness of Chinese Medicine Decoction-Mate. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3701288. [PMID: 36118083 PMCID: PMC9481366 DOI: 10.1155/2022/3701288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
Background Traditional Chinese medicine decoction (TCMD) is an oral liquid made by decocting crude medicinal compounds with water. It has complex compositions and diverse odor and taste, most of which have an unacceptable level of bitterness which seriously affects patients' medication compliance. To solve this problem, a variety of taste-masking pathways and different types of taste-masking excipients were combined, using the application of coffee-mate to mask the bitterness of coffee as an existing example. Three composite taste-masking adjuvants were developed to improve the taste of TCMD, referred to as the Chinese Medicine Decoction-Mate (CMD-M). However, whether CMD-M has a good taste-masking effect and whether it affects the chemical compositions and pharmacological effects of the medicine remain unclear. Method The commonly used pediatric medicine Qingre Huazhi Decoction (QRHZD) and the personalized decoctions used in clinical practices were used as the masking research carriers. The taste-masking effect of CMD-M on QRHZD was evaluated by both healthy volunteers and an electronic tongue, and the personalized decoctions were evaluated by clinical subjects. The changes of chemical components of QRHZD before and after taste-masking were evaluated by HPLC. The changes in anti-inflammatory effects were evaluated by establishing mice as an acute inflammatory model. Results The taste-masking effect evaluation results showed that the bitterness of QRHZD was significantly reduced after adding CMD-M. There was no significant difference in the relative peak areas change rate and total peak areas ratio of common peaks of QRHZD before and after taste-masking (P > 0.05), shown by HPLC analysis. The inhibitory rates of QRHZD on ear swelling in mice before and after taste-masking also showed no significant difference (P > 0.05). Conclusions CMD-M can effectively mask the bitterness of decoctions while bringing no significant difference overall in chemical compositions and pharmacological effects before and after QRHZD masking.
Collapse
|
4
|
Yeung AWK. Differences in Brain Responses to Food or Tastants Delivered with and Without Swallowing: a Meta-analysis on Functional Magnetic Resonance Imaging (fMRI) Studies. CHEMOSENS PERCEPT 2022. [DOI: 10.1007/s12078-022-09299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Hinojosa-Aguayo I, Garcia-Burgos D, Catena A, González F. Implicit and explicit measures of the sensory and hedonic analysis of beer: The role of tasting expertise. Food Res Int 2022; 152:110873. [DOI: 10.1016/j.foodres.2021.110873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 11/29/2022]
|
6
|
Malfeito-Ferreira M. Fine wine flavour perception and appreciation: Blending neuronal processes, tasting methods and expertise. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Suen JLK, Yeung AWK, Wu EX, Leung WK, Tanabe HC, Goto TK. Effective Connectivity in the Human Brain for Sour Taste, Retronasal Smell, and Combined Flavour. Foods 2021; 10:foods10092034. [PMID: 34574144 PMCID: PMC8466623 DOI: 10.3390/foods10092034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 01/01/2023] Open
Abstract
The anterior insula and rolandic operculum are key regions for flavour perception in the human brain; however, it is unclear how taste and congruent retronasal smell are perceived as flavours. The multisensory integration required for sour flavour perception has rarely been studied; therefore, we investigated the brain responses to taste and smell in the sour flavour-processing network in 35 young healthy adults. We aimed to characterise the brain response to three stimulations applied in the oral cavity—sour taste, retronasal smell of mango, and combined flavour of both—using functional magnetic resonance imaging. Effective connectivity of the flavour-processing network and modulatory effect from taste and smell were analysed. Flavour stimulation activated middle insula and olfactory tubercle (primary taste and olfactory cortices, respectively); anterior insula and rolandic operculum, which are associated with multisensory integration; and ventrolateral prefrontal cortex, a secondary cortex for flavour perception. Dynamic causal modelling demonstrated that neural taste and smell signals were integrated at anterior insula and rolandic operculum. These findings elucidated how neural signals triggered by sour taste and smell presented in liquid form interact in the brain, which may underpin the neurobiology of food appreciation. Our study thus demonstrated the integration and synergy of taste and smell.
Collapse
Affiliation(s)
- Justin Long Kiu Suen
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (J.L.K.S.); (A.W.K.Y.); (W.K.L.)
- Department of Oral and Maxillofacial Radiology, Tokyo Dental College, 2-9-18, Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Andy Wai Kan Yeung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (J.L.K.S.); (A.W.K.Y.); (W.K.L.)
| | - Ed X. Wu
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China;
| | - Wai Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (J.L.K.S.); (A.W.K.Y.); (W.K.L.)
| | - Hiroki C. Tanabe
- Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Tazuko K. Goto
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (J.L.K.S.); (A.W.K.Y.); (W.K.L.)
- Department of Oral and Maxillofacial Radiology, Tokyo Dental College, 2-9-18, Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
- Tokyo Dental College Research Branding Project, Tokyo Dental College, 2-9-18, Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
- Correspondence:
| |
Collapse
|
8
|
Rezaeyan A, Asadi S, Kamrava SK, Khoei S, Zare-Sadeghi A. Reorganizing brain structure through olfactory training in post-traumatic smell impairment: An MRI study. J Neuroradiol 2021; 49:333-342. [PMID: 33957160 DOI: 10.1016/j.neurad.2021.04.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/01/2021] [Accepted: 04/24/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE AND BACKGROUND Post-traumatic olfactory dysfunction (PTOD), mostly caused by head injury, is thought to be associated with changes in the structure and function of the brain olfactory processing areas. Training and repeated exposure to odorants lead to enhanced olfactory capability. This study investigated the effects of a 16-weeks olfactory training (OT) on olfactory function and brain structure. METHODS Twenty-five patients with PTOD were randomly divided in three groups: (1) 9 control patients who did not receive any training, (2) 9 patients underwent classical OT by 4 fixed odors, and (3) 7 patients underwent modified OT coming across 4 sets of 4 different odors sequentially. Before and after the training period, all patients performed olfactory function tests and structural magnetic resonance imaging (MRI). Sniffin' Sticks test was used to assess olfactory function. MRI data were analyzed using voxel-based morphometry and surface-based morphometry. RESULTS Both trained groups showed a considerable recovery of olfactory function, especially in odor identification. MRI data analysis revealed that the classical OT leads to increases in cortical thickness/density of several brain regions, including the right superior and middle frontal gyrus, and bilateral cerebellums. In addition, the modified OT yielded a lower extent of cortical measures in the right orbital frontal cortex and right insular. Following modified OT, a positive correlation was observed between the odor identification and the right orbital frontal cortex. CONCLUSION Both olfactory training methods can improve olfactory function and that the improvement is associated with changes in the structure of olfactory processing areas of the brain.
Collapse
Affiliation(s)
- Abolhasan Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Somayeh Asadi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - S Kamran Kamrava
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Samideh Khoei
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran; Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Arash Zare-Sadeghi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran; Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
9
|
Wang QJ, Fernandes HM, Fjaeldstad AW. Is perceptual learning generalisable in the chemical senses? A longitudinal pilot study based on a naturalistic blind wine tasting training scenario. CHEMOSENS PERCEPT 2021. [DOI: 10.1007/s12078-020-09284-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Wu H, Yan H, Yang Y, Xu M, Shi Y, Zeng W, Li J, Zhang J, Chang C, Wang N. Occupational Neuroplasticity in the Human Brain: A Critical Review and Meta-Analysis of Neuroimaging Studies. Front Hum Neurosci 2020; 14:215. [PMID: 32760257 PMCID: PMC7373999 DOI: 10.3389/fnhum.2020.00215] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
Many studies have revealed the structural or functional brain changes induced by occupational factors. However, it remains largely unknown how occupation-related connectivity shapes the brain. In this paper, we denote occupational neuroplasticity as the neuroplasticity that takes place to satisfy the occupational requirements by extensively professional training and to accommodate the long-term, professional work of daily life, and a critical review of occupational neuroplasticity related to the changes in brain structure and functional networks has been primarily presented. Furthermore, meta-analysis revealed a neurophysiological mechanism of occupational neuroplasticity caused by professional experience. This meta-analysis of functional neuroimaging studies showed that experts displayed stronger activation in the left precentral gyrus [Brodmann area (BA)6], left middle frontal gyrus (BA6), and right inferior frontal gyrus (BA9) than novices, while meta-analysis of structural studies suggested that experts had a greater gray matter volume in the bilateral superior temporal gyrus (BA22) and right putamen than novices. Together, these findings not only expand the current understanding of the common neurophysiological basis of occupational neuroplasticity across different occupations and highlight some possible targets for neural modulation of occupational neuroplasticity but also provide a new perspective for occupational science research.
Collapse
Affiliation(s)
- Huijun Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Hongjie Yan
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Yang Yang
- Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Min Xu
- Center for Brain Disorders and Cognitive Science, Shenzhen University, Shenzhen, China
| | - Yuhu Shi
- Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China
| | - Weiming Zeng
- Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China
| | - Jiewei Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jian Zhang
- School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Pengcheng Laboratory, Shenzhen, China
| | - Nizhuan Wang
- Artificial Intelligence & Neuro-Informatics Engineering (ARINE) Laboratory, School of Computer Engineering, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
11
|
Abstract
Basic cognitive research can help to explain our response to wine, and the myriad factors that affect it. Wine is a complex, culture-laden, multisensory stimulus, and our perception/experience of its properties is influenced by everything from the packaging in which it is presented through the glassware in which it is served and evaluated. A growing body of experiential wine research now demonstrates that a number of contextual factors, including everything from the colour of the ambient lighting through to background music can exert a profound, and in some cases predictable, influence over the tasting experience. Sonic seasoning - that is, the matching of music or soundscapes with specific wines in order to accentuate or draw attention to certain qualities/attributes in the wine, such as sweetness, length, or body, also represents a rapidly growing area of empirical study. While such multisensory, experiential wine research undoubtedly has a number of practical applications, it also provides insights concerning multisensory perception that are relevant to basic scientists. Furthermore, the findings of the wine research are also often relevant to those marketers interested in understanding how the consumers' perception of any other food or beverage product can potentially be modified.
Collapse
Affiliation(s)
- Charles Spence
- Department of Experimental Psychology, Crossmodal Research Laboratory, Anna Watts Building, University of Oxford, Oxford, OX2 6GG, UK.
| |
Collapse
|
12
|
Perceptual learning in the chemical senses: A review. Food Res Int 2019; 123:746-761. [DOI: 10.1016/j.foodres.2019.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 01/21/2023]
|
13
|
|
14
|
Honoré-Chedozeau C, Desmas M, Ballester J, Parr WV, Chollet S. Representation of wine and beer: influence of expertise. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
|
16
|
Sommelier Students Display Superior Abilities to Identify but Not to Detect or Discriminate Odors Early in their Training. CHEMOSENS PERCEPT 2019. [DOI: 10.1007/s12078-019-09256-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Al Aïn S, Poupon D, Hétu S, Mercier N, Steffener J, Frasnelli J. Smell training improves olfactory function and alters brain structure. Neuroimage 2019; 189:45-54. [PMID: 30630079 DOI: 10.1016/j.neuroimage.2019.01.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/10/2018] [Accepted: 01/04/2019] [Indexed: 11/25/2022] Open
Abstract
Training and repeated exposure to odorants leads to enhanced olfactory sensitivity. So far, the efficacy of intensive olfactory training on olfactory function in a healthy population and its underlying neurobiological basis remain poorly known. This study investigated the effects of a 6-week intensive and well-controlled olfactory training on olfactory function and brain structure/neuroplasticity. Thirty-six healthy young individuals were recruited and randomly distributed in three groups: (1) 12 participants underwent daily intensive olfactory training of at least 20 min that included an (a) odor intensity classification task, an (b) odor quality classification task and an (c) target odor detection task, (2) 12 participants underwent an equivalent visual control training, and (3) 12 control individuals did not participate in any training. Before and after the training period, all participants performed a series of olfactory tests and those from groups 1 and 2 underwent structural magnetic resonance (MR) imaging, from which we obtained measures such as cortical thickness and tissue density. Participants improved in the respectively trained tasks throughout the 6-weeks training period. Those who underwent olfactory training improved general olfactory function compared to control participants, especially in odor identification, thus showing intramodal transfer. Further, MR imaging analysis revealed that olfactory training led to increased cortical thickness in the right inferior frontal gyrus, the bilateral fusiform gyrus and the right entorhinal cortex. This research shows that intensive olfactory training can generally improve olfactory function and that this improvement is associated with changes in the structure of olfactory processing areas of the brain.
Collapse
Affiliation(s)
- Syrina Al Aïn
- Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, Canada
| | - Daphnée Poupon
- Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, Canada
| | | | - Noémie Mercier
- Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, Canada
| | | | - Johannes Frasnelli
- Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, Canada; Research Center, Sacré-Cœur Hospital, Montréal, QC, Canada.
| |
Collapse
|
18
|
Affective value, intensity and quality of liquid tastants/food discernment in the human brain: An activation likelihood estimation meta-analysis. Neuroimage 2017; 169:189-199. [PMID: 29247808 DOI: 10.1016/j.neuroimage.2017.12.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/20/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022] Open
Abstract
The primary dimensions of taste are affective value, intensity and quality. Numerous studies have reported the role of the insula in evaluating these dimensions of taste; however, the results were inconsistent. Therefore, in the current study, we performed meta-analyses of published data to identify locations consistently activated across studies and evaluate whether different regions of the human brain could be responsible for processing different dimensions of taste. Meta-analyses were performed on 39 experiments, with 846 total healthy subjects (without psychiatric/neurological disorders) in 34 studies reporting whole-brain results. The aim was to establish the activation likelihood estimation (ALE) of taste-mediated regional activation across the whole brain. Apart from one meta-analysis for all studies in general, three analyses were performed to reveal the clusters of activation that were attributable to processing the affective value (data from 323 foci), intensity (data from 43 foci) and quality (data from 45 foci) of taste. The ALE revealed eight clusters of activation outside the insula for processing affective value, covering the middle and posterior cingulate, pre-/post-central gyrus, caudate and thalamus. The affective value had four clusters of activation (two in each hemisphere) in the insula. The intensity and quality activated only the insula, each with one cluster on the right. The concurrence between studies was moderate; at best, 53% of the experiments contributed to the significant clusters attributable to the affective value, 60% to intensity and 50% to quality. The affective value was processed bilaterally in the anterior to middle insula, whereas intensity was processed in the right antero-middle insula, and quality was processed in the right middle insula. The right middle dorsal insula was responsible for processing both the affective value and quality of taste. The exploratory analysis on taste quality did not have a significant result if the studies using liquid food stimuli were excluded. Results from the meta-analyses on studies involving the oral delivery of liquid tastants or liquid food stimuli confirmed that the insula is involved in processing all three dimensions of taste. More experimental studies are required to investigate whether brain activations differ between liquid tastants and food. The coordinates of activated brain areas and brain maps are provided to serve as references for future taste/food studies.
Collapse
|
19
|
Wang QJ, Spence C. Assessing the influence of music on wine perception among wine professionals. Food Sci Nutr 2017; 6:295-301. [PMID: 29564095 PMCID: PMC5849903 DOI: 10.1002/fsn3.554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 11/23/2022] Open
Abstract
Several recent studies have demonstrated that music can significantly influence the eating/drinking experience. It is not clear, however, whether this influence would be moderated by the expertise of the taster. In the experiments reported here, we tested a large group (N = 154) of very experienced wine tasters—the majority of whom were professionals working in the wine business—at a winemaking conference. The first study assessed the impact of putatively “sweet” and “sour” soundtracks on taste evaluation, whereas the second study assessed more subtle wine‐specific terminology such as length, balance, and body. The results revealed that the effect of music on wine perception can indeed be demonstrated in wine experts. Moreover, the amount of wine tasting experience, as measured in years, did not moderate the influence of music on sensory and hedonic wine evaluation. This result suggests that the aforementioned auditory modulation of drinking experience is not influenced by the increased analytical abilities afforded by traditional wine tasting expertise.
Collapse
Affiliation(s)
- Qian Janice Wang
- Crossmodal Research Laboratory Department of Experimental Psychology Oxford University Oxford UK
| | - Charles Spence
- Crossmodal Research Laboratory Department of Experimental Psychology Oxford University Oxford UK
| |
Collapse
|
20
|
Sreenivasan K, Zhuang X, Banks SJ, Mishra V, Yang Z, Deshpande G, Cordes D. Olfactory Network Differences in Master Sommeliers: Connectivity Analysis Using Granger Causality and Graph Theoretical Approach. Brain Connect 2017; 7:123-136. [PMID: 28125912 DOI: 10.1089/brain.2016.0458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous studies investigating the differences in olfactory processing and judgments between trained sommeliers and controls have shown increased activations in brain regions involving higher level cognitive processes in sommeliers. However, there is little information about the influence of expertise on causal connectivity and topological properties of the connectivity networks between these regions. Therefore, the current study focuses on addressing these questions in a functional magnetic resonance imaging (fMRI) study of olfactory perception in Master Sommeliers. fMRI data were acquired from Master Sommeliers and control participants during different olfactory and nonolfactory tasks. Mean time series were extracted from 90 different regions of interest (ROIs; based on Automated Anatomical Labeling atlas). The underlying neuronal variables were extracted using blind hemodynamic deconvolution and then input into a dynamic multivariate autoregressive model to obtain connectivity between every pair of ROIs as a function of time. These connectivity values were then statistically compared to obtain paths that were significantly different between the two groups. The obtained connectivity matrices were further studied using graph theoretical methods. In sommeliers, significantly greater connectivity was observed in connections involving the precuneus, caudate, putamen, and several frontal and temporal regions. The controls showed increased connectivity from the left hippocampus to the frontal regions. Furthermore, the sommeliers exhibited significantly higher small-world topology than the controls. These findings are significant, given that learning about neuroplasticity in adulthood in these regions may then have added clinical importance in diseases such as Alzheimer's and Parkinson's where early neurodegeneration is isolated to regions important in smell.
Collapse
Affiliation(s)
| | - Xiaowei Zhuang
- 1 Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada
| | - Sarah J Banks
- 1 Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada
| | - Virendra Mishra
- 1 Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada
| | - Zhengshi Yang
- 1 Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada
| | - Gopikrishna Deshpande
- 2 Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University , Auburn, Alabama
- 3 Department of Psychology, Auburn University , Auburn, Alabama
- 4 Alabama Advanced Imaging Consortium, Auburn University and University of Alabama Birmingham , Birmingham, Alabama
| | - Dietmar Cordes
- 1 Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada
- 5 Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| |
Collapse
|
21
|
Wolfe K, Jo W, Olds D, Asperin A, DeSanto J, Liu WC. An fMRI Study of the Effects of Food Familiarity and Labeling on Brain Activation. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2016. [DOI: 10.1080/15428052.2016.1138917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Banks SJ, Sreenivasan KR, Weintraub DM, Baldock D, Noback M, Pierce ME, Frasnelli J, James J, Beall E, Zhuang X, Cordes D, Leger GC. Structural and Functional MRI Differences in Master Sommeliers: A Pilot Study on Expertise in the Brain. Front Hum Neurosci 2016; 10:414. [PMID: 27597821 PMCID: PMC4992723 DOI: 10.3389/fnhum.2016.00414] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 08/04/2016] [Indexed: 02/02/2023] Open
Abstract
Our experiences, even as adults, shape our brains. Regional differences have been found in experts, with the regions associated with their particular skill-set. Functional differences have also been noted in brain activation patterns in some experts. This study uses multimodal techniques to assess structural and functional patterns that differ between experts and non-experts. Sommeliers are experts in wine and thus in olfaction. We assessed differences in Master Sommeliers’ brains, compared with controls, in structure and also in functional response to olfactory and visual judgment tasks. MRI data were analyzed using voxel-based morphometry as well as automated parcellation to assess structural properties, and group differences between tasks were calculated. Results indicate enhanced volume in the right insula and entorhinal cortex, with the cortical thickness of the entorhinal correlating with experience. There were regional activation differences in a large area involving the right olfactory and memory regions, with heightened activation specifically for sommeliers during an olfactory task. Our results indicate that sommeliers’ brains show specialization in the expected regions of the olfactory and memory networks, and also in regions important in integration of internal sensory stimuli and external cues. Overall, these differences suggest that specialized expertise and training might result in enhancements in the brain well into adulthood. This is particularly important given the regions involved, which are the first to be impacted by many neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah J Banks
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas NV, USA
| | | | - David M Weintraub
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas NV, USA
| | - Deanna Baldock
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas NV, USA
| | - Michael Noback
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas NV, USA
| | - Meghan E Pierce
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas NV, USA
| | | | | | - Erik Beall
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las VegasNV, USA; Cleveland Clinic Radiology, ClevelandOH, USA
| | - Xiaowei Zhuang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas NV, USA
| | - Dietmar Cordes
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas NV, USA
| | - Gabriel C Leger
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas NV, USA
| |
Collapse
|
23
|
|
24
|
Cretin BN, Sallembien Q, Sindt L, Daugey N, Buffeteau T, Waffo-Teguo P, Dubourdieu D, Marchal A. How stereochemistry influences the taste of wine: Isolation, characterization and sensory evaluation of lyoniresinol stereoisomers. Anal Chim Acta 2015; 888:191-8. [DOI: 10.1016/j.aca.2015.06.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
|
25
|
Sullivan RM, Wilson DA, Ravel N, Mouly AM. Olfactory memory networks: from emotional learning to social behaviors. Front Behav Neurosci 2015; 9:36. [PMID: 25741259 PMCID: PMC4330889 DOI: 10.3389/fnbeh.2015.00036] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/01/2015] [Indexed: 01/15/2023] Open
Affiliation(s)
- Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute Orangeburg, NY, USA ; Child and Adolescent Psychiatry, The Child Study Center, New York University Langone Medical Center New York, NY, USA
| | - Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute Orangeburg, NY, USA ; Child and Adolescent Psychiatry, The Child Study Center, New York University Langone Medical Center New York, NY, USA ; Neuroscience and Physiology, Sackler Institute, New York University School of Medicine New York, NY, USA
| | - Nadine Ravel
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, University Lyon1 Lyon, France
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, University Lyon1 Lyon, France
| |
Collapse
|