1
|
de Ceglia M, Romano A, Di Bonaventura MVM, Gavito A, Botticelli L, Di Bonaventura EM, Friuli M, Cifani C, de Fonseca FR, Gaetani S. Cafeteria Diet Abstinence Induces Depressive Behavior and Disrupts Endocannabinoid Signaling in Dopaminergic Areas: A Preclinical Study. Curr Neuropharmacol 2025; 23:458-474. [PMID: 39582223 DOI: 10.2174/1570159x23666241107160840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/25/2024] [Accepted: 05/21/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Alterations of dopamine (DA) transmission in the brain reward system can be associated with an addictive-like state defined as food addiction (FA), common in obese individuals. Subjects affected by FA experience negative feelings when abstinent from their preferred diet and may develop mood disorders, including depression, sustained by alterations in brain DA pathways. OBJECTIVE This study aims to investigate the impact of long-term abstinence from a palatable diet on depressive-like behavior in rats, exploring neurochemical alterations in monoamine and endocannabinoid signaling in DA-enriched brain regions, including ventral tegmental area, dorsolateral striatum, substantia nigra and medial prefrontal cortex. METHODS Rats underwent exposure and subsequent abstinence from a palatable cafeteria diet. During abstinence, animals were treated with fatty acid amide hydrolase (FAAH) inhibitor PF-3845 (10 mg/kg, intraperitoneal administration every other day). Lastly, animals were subjected to a forced swimming test, and their brains were dissected and processed for high-performance liquid chromatography measurement of monoamines and western blot analyses of markers of the endocannabinoid machinery. RESULTS After the withdrawal from the palatable diet, animals showed depressive-like behavior, coupled with significant variations in the concentration of brain monoamines and in the expression of endocannabinoid signalling machinery proteins in cited brain areas. Treatment with PF-3845 exerted an antidepressant- like effect and restored part of the alterations in monoaminergic and endocannabinoid systems. CONCLUSION Overall, our results suggest that abstinence from a cafeteria diet provokes emotional disturbances linked to neuroadaptive changes in monoamines and endocannabinoid signalling in brain areas partaking to DA transmission that could partially be restored by the enhancement of endocannabinoid signalling through FAAH inhibition.
Collapse
Affiliation(s)
- Marialuisa de Ceglia
- UGC de Salud Mental y Unidad Clínica de Neurología, Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Ana Gavito
- UGC de Salud Mental y Unidad Clínica de Neurología, Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | | | - Marzia Friuli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Fernando Rodríguez de Fonseca
- UGC de Salud Mental y Unidad Clínica de Neurología, Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Fatahi Z, Fatahi M, Mirramezani Alizamini M, Ghorbani A, Zibaii MI, Haghparast A. Exogenous Cannabinoids Impair Effort-Related Decision-Making via Affecting Neural Synchronization between the Anterior Cingulate Cortex and Nucleus Accumbens. Brain Sci 2023; 13:brainsci13030413. [PMID: 36979223 PMCID: PMC10046840 DOI: 10.3390/brainsci13030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Humans and animals frequently make an endeavor-based choice based on assessing reinforcement value and response costs. The cortical-limbic-striatal pathway mediates endeavor-based choice behavior, including the nucleus accumbens (NAc) and the anterior cingulate cortex (ACC). Furthermore, cannabinoid agonists demonstratively impairs decision-making processes. In this study, neural synchronization and functional connectivity between the NAc and ACC while endeavor-related decision-making and reaching reward were evaluated. The effect of exogenous cannabinoids on this synchronization was then assessed. A T-maze decision-making task with a differential expense (low vs. high endeavor) and remuneration (low vs. high remuneration) was performed and local field potentials (LFP) from the ACC and NAc were registered simultaneously. Results showed functional connectivity during endeavor-related decision-making while the animals chose the high endeavor/high remuneration in both regions’ delta/beta (1–4 and 13–30 Hertz) frequency bands. Furthermore, functional connectivity existed between both areas in delta/theta (1–4 and 4–12) frequencies while reaching a remuneration. However, neural simultaneity was not observed while the animals received cannabinoid agonists, making a decision and reaching remuneration. The obtained results demonstrated that functional connectivity and neural simultaneity between the NAc and ACC in delta/beta and delta/theta frequencies have a role in endeavor-related decision-making and reaching remuneration, respectively. The effect of exogenous cannabinoids on decision-making impairment is relevant to changes in the ACC and NAC brain wave frequencies.
Collapse
Affiliation(s)
- Zahra Fatahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, School of Medicine, Tehran P.O. Box 19615-1178, Iran
| | - Mohammad Fatahi
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran P.O. Box 14395-515, Iran
| | - Mirmohammadali Mirramezani Alizamini
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ahmad Ghorbani
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran P.O. Box 19839-6941, Iran
| | - Mohammad Ismail Zibaii
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran P.O. Box 19839-6941, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, School of Medicine, Tehran P.O. Box 19615-1178, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran P.O. Box 19395-5531, Iran
| |
Collapse
|
3
|
Prenatal THC Exposure Induces Sex-Dependent Neuropsychiatric Endophenotypes in Offspring and Long-Term Disruptions in Fatty-Acid Signaling Pathways Directly in the Mesolimbic Circuitry. eNeuro 2022; 9:ENEURO.0253-22.2022. [PMID: 36171057 PMCID: PMC9557330 DOI: 10.1523/eneuro.0253-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022] Open
Abstract
Despite increased prevalence of maternal cannabis use, little is understood regarding potential long-term effects of prenatal cannabis exposure (PCE) on neurodevelopmental outcomes. While neurodevelopmental cannabis exposure increases the risk of developing affective/mood disorders in adulthood, the precise neuropathophysiological mechanisms in male and female offspring are largely unknown. Given the interconnectivity of the endocannabinoid (ECb) system and the brain's fatty acid pathways, we hypothesized that prenatal exposure to Δ9-tetrahydrocannabinol (THC) may dysregulate fetal neurodevelopment through alterations of fatty-acid dependent synaptic and neuronal function in the mesolimbic system. To investigate this, pregnant Wistar rats were exposed to vehicle or THC (3 mg/kg) from gestational day (GD)7 until GD22. Anxiety-like, depressive-like, and reward-seeking behavior, electrophysiology, and molecular assays were performed on adult male/female offspring. Imaging of fatty acids using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) was performed at prepubescence and adulthood. We report that PCE induces behavioral, neuronal, and molecular alterations in the mesolimbic system in male and female offspring, resembling neuropsychiatric endophenotypes. Additionally, PCE resulted in profound dysregulation of critical fatty acid pathways in the developing brain lipidome. Female progeny exhibited significant alterations to fatty acid levels at prepubescence but recovered from these deficits by early adulthood. In contrast, males exhibited persistent fatty acid deficits into adulthood. Moreover, both sexes maintained enduring abnormalities in glutamatergic/GABAergic function in the nucleus accumbens (NAc). These findings identify several novel long-term risks of maternal cannabis use and demonstrate for the first time, sex-related effects of maternal cannabinoid exposure directly in the developing neural lipidome.
Collapse
|
4
|
Orr SA, Ahn S, Park C, Miller TH, Kassai M, Issa FA. Social Experience Regulates Endocannabinoids Modulation of Zebrafish Motor Behaviors. Front Behav Neurosci 2021; 15:668589. [PMID: 34045945 PMCID: PMC8144649 DOI: 10.3389/fnbeh.2021.668589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Social status-dependent modulation of neural circuits has been investigated extensively in vertebrate and invertebrate systems. However, the effects of social status on neuromodulatory systems that drive motor activity are poorly understood. Zebrafish form a stable social relationship that consists of socially dominant and subordinate animals. The locomotor behavior patterns differ according to their social ranks. The sensitivity of the Mauthner startle escape response in subordinates increases compared to dominants while dominants increase their swimming frequency compared to subordinates. Here, we investigated the role of the endocannabinoid system (ECS) in mediating these differences in motor activities. We show that brain gene expression of key ECS protein pathways are socially regulated. Diacylglycerol lipase (DAGL) expression significantly increased in dominants and significantly decreased in subordinates relative to controls. Moreover, brain gene expression of the cannabinoid 1 receptor (CB1R) was significantly increased in subordinates relative to controls. Secondly, increasing ECS activity with JZL184 reversed swimming activity patterns in dominant and subordinate animals. JZL184 did not affect the sensitivity of the startle escape response in dominants while it was significantly reduced in subordinates. Thirdly, blockage of CB1R function with AM-251 had no effect on dominants startle escape response sensitivity, but startle sensitivity was significantly reduced in subordinates. Additionally, AM-251 did not affect swimming activities in either social phenotypes. Fourthly, we demonstrate that the effects of ECS modulation of the startle escape circuit is mediated via the dopaminergic system specifically via the dopamine D1 receptor. Finally, our empirical results complemented with neurocomputational modeling suggest that social status influences the ECS to regulate the balance in synaptic strength between excitatory and inhibitory inputs to control the excitability of motor behaviors. Collectively, this study provides new insights of how social factors impact nervous system function to reconfigure the synergistic interactions of neuromodulatory pathways to optimize motor output.
Collapse
Affiliation(s)
- Stephen A Orr
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Sungwoo Ahn
- Department of Mathematics, East Carolina University, Greenville, NC, United States
| | - Choongseok Park
- Department of Mathematics, North Carolina A&T State University, Greensboro, NC, United States
| | - Thomas H Miller
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Miki Kassai
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Fadi A Issa
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
5
|
Tunisi L, D'Angelo L, Fernández-Rilo AC, Forte N, Piscitelli F, Imperatore R, de Girolamo P, Di Marzo V, Cristino L. Orexin-A/Hypocretin-1 Controls the VTA-NAc Mesolimbic Pathway via Endocannabinoid-Mediated Disinhibition of Dopaminergic Neurons in Obese Mice. Front Synaptic Neurosci 2021; 13:622405. [PMID: 33613258 PMCID: PMC7890184 DOI: 10.3389/fnsyn.2021.622405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/11/2021] [Indexed: 01/27/2023] Open
Abstract
Disinhibition of orexin-A/hypocretin-1 (OX-A) release occurs to several output areas of the lateral hypothalamus (LH) in the brain of leptin knockout obese ob/ob mice. In this study, we have investigated whether a similar increase of OX-A release occurs to the ventral tegmental area (VTA), an orexinergic LH output area with functional effects on dopaminergic signaling at the mesolimbic circuit. By confocal and correlative light and electron microscopy (CLEM) morphological studies coupled to molecular, biochemical, and pharmacological approaches, we investigated OX-A-mediated dopaminergic signaling at the LH-VTA-nucleus accumbens (NAc) pathway in obese ob/ob mice compared to wild-type (wt) lean littermates. We found an elevation of OX-A trafficking and release to the VTA of ob/ob mice and consequent orexin receptor-1 (OX1R)-mediated over-activation of dopaminergic (DA) neurons via phospholipase C (PLC)/diacylglycerol lipase (DAGL-α)-induced biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). In fact, by retrograde signaling to cannabinoid receptor type 1 (CB1R) at inhibitory inputs to DA neurons, 2-AG inhibited GABA release thus inducing an increase in DA concentration in the VTA and NAc of ob/ob mice. This effect was prevented by the OX1R antagonist SB-334867 (30 mg/Kg, i.p.), or the CB1R antagonist AM251 (10 mg/Kg, i.p.) and mimicked by OX-A injection (40 μg/Kg, i.p.) in wt lean mice. Enhanced DA signaling to the NAc in ob/ob mice, or in OX-A-injected wt mice, was accompanied by β-arrestin2-mediated desensitization of dopamine D2 receptor (D2R) in a manner prevented by SB-334867 or the D2R antagonist L741 (1.5 mg/Kg, i.p.). These results further support the role of OX-A signaling in the control of neuroadaptive responses, such as compulsive reward-seeking behavior or binge-like consumption of high palatable food, and suggest that aberrant OX-A trafficking to the DA neurons in the VTA of ob/ob mice influences the D2R response at NAc, a main target area of the mesolimbic pathway, via 2-AG/CB1-mediated retrograde signaling.
Collapse
Affiliation(s)
- Lea Tunisi
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy.,Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Alba Clara Fernández-Rilo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Nicola Forte
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec City, QC, Canada
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Roberta Imperatore
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec City, QC, Canada.,Heart and Lung Research Institute of Université Laval, and Institute for Nutrition and Functional Foods, Université Laval, Québec City, QC, Canada
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| |
Collapse
|
6
|
Akiba M, Sugimoto K, Aoki R, Murakami R, Miyashita T, Hashimoto R, Hiranuma A, Yamauchi J, Ueno T, Morimoto T. Dopamine modulates the optomotor response to unreliable visual stimuli in Drosophila melanogaster. Eur J Neurosci 2019; 51:822-839. [PMID: 31834948 DOI: 10.1111/ejn.14648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 01/21/2023]
Abstract
State-dependent modulation of sensory systems has been studied in many organisms and is possibly mediated through neuromodulators such as monoamine neurotransmitters. Among these, dopamine is involved in many aspects of animal behaviour, including movement control, attention, motivation and cognition. However, the precise neural mechanism underlying dopaminergic modulation of behaviour induced by sensory stimuli remains poorly understood. Here, we used Drosophila melanogaster to show that dopamine can modulate the optomotor response to moving visual stimuli including noise. The optomotor response is the head-turning response to moving objects, which is observed in most sight-reliant animals including mammals and insects. First, the effects of the dopamine system on the optomotor response were investigated in mutant flies deficient in dopamine receptors D1R1 or D1R2, which are involved in the modulation of sleep-arousal in flies. We examined the optomotor response in D1R1 knockout (D1R1 KO) and D1R2 knockout (D1R2 KO) flies and found that it was not affected in D1R1 KO flies; however, it was significantly reduced in D1R2 KO flies compared with the wild type. Using cell-type-specific expression of an RNA interference construct of D1R2, we identified the fan-shaped body, a part of the central complex, responsible for dopamine-mediated modulation of the optomotor response. In particular, pontine cells in the fan-shaped body seemed important in the modulation of the optomotor response, and their neural activity was required for the optomotor response. These results suggest a novel role of the central complex in the modulation of a behaviour based on the processing of sensory stimulations.
Collapse
Affiliation(s)
- Masumi Akiba
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kentaro Sugimoto
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, University of Pharmacy and Life Sciences, Tokyo, Japan.,Department of Computer Science, School of Computing, Tokyo Institute of Technology, Tokyo, Japan
| | - Risa Aoki
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Ryo Murakami
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, University of Pharmacy and Life Sciences, Tokyo, Japan
| | | | - Riho Hashimoto
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Anna Hiranuma
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Taro Ueno
- Department of Biomolecular Science, Graduate School of Science, Toho University, Chiba, Japan
| | - Takako Morimoto
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
7
|
Sweis BM, Thomas MJ, Redish AD. Beyond simple tests of value: measuring addiction as a heterogeneous disease of computation-specific valuation processes. ACTA ACUST UNITED AC 2018; 25:501-512. [PMID: 30115772 PMCID: PMC6097760 DOI: 10.1101/lm.047795.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022]
Abstract
Addiction is considered to be a neurobiological disorder of learning and memory because addiction is capable of producing lasting changes in the brain. Recovering addicts chronically struggle with making poor decisions that ultimately lead to relapse, suggesting a view of addiction also as a neurobiological disorder of decision-making information processing. How the brain makes decisions depends on how decision-making processes access information stored as memories in the brain. Advancements in circuit-dissection tools and recent theories in neuroeconomics suggest that neurally dissociable valuation processes access distinct memories differently, and thus are uniquely susceptible as the brain changes during addiction. If addiction is to be considered a neurobiological disorder of memory, and thus decision-making, the heterogeneity with which information is both stored and processed must be taken into account in addiction studies. Addiction etiology can vary widely from person to person. We propose that addiction is not a single disease, nor simply a disorder of learning and memory, but rather a collection of symptoms of heterogeneous neurobiological diseases of distinct circuit-computation-specific decision-making processes.
Collapse
Affiliation(s)
- Brian M Sweis
- Graduate Program in Neuroscience and Medical Scientist Training Program, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Mark J Thomas
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
8
|
Fatahi Z, Sadeghi B, Haghparast A. Involvement of cannabinoid system in the nucleus accumbens on delay-based decision making in the rat. Behav Brain Res 2018; 337:107-113. [PMID: 28987618 DOI: 10.1016/j.bbr.2017.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/29/2022]
Abstract
The nucleus accumbens (NAc) plays a fundamental role in decision making and anticipation of reward. In addition, exogenous cannabinoids affect the behavior of humans and animals including disruption of short-term memory and cognitive impairments. Therefore, in this study, cannabinoid agonist and antagonist were administrated into the NAc to determine the effect of cannabinoid activation in the entire NAc on delay-based decision making. Rats were trained on a cost-benefit T-maze decision making task in which the animals were well-trained to choose between a small/immediate reward and a large/delay reward. After training, the animals were implanted with guide cannulae in the NAc. On test day, they received cannabinoid agonist (Win 55,212-2; 10, 50 and 100μM) and/or antagonist (AM251; 45μM) into the NAc. Percentage of high reward choice and latency of reward achievement were evaluated. Results showed that cannabinoid agonist administration caused a decrease in high reward choice such that rats selected small/immediate reward instead of large/delay reward. Moreover, in agonist-treated animals latency of reward achievement increased. Effects of cannabinoid activation on delay-based decision making with equivalent delays demonstrated that if the delay was equated on both arm goals, animals still had a preference for the high/delay reward, showing the results was not caused by an impairment of spatial preference or memory. These finding clarified that cannabinoid system activation in the entire NAc plays a critical role in the regulation of delay-based decision making.
Collapse
Affiliation(s)
- Zahra Fatahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahman Sadeghi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Iran National Science Foundation, Tehran, Iran.
| |
Collapse
|
9
|
Gertsch J. Cannabimimetic phytochemicals in the diet - an evolutionary link to food selection and metabolic stress adaptation? Br J Pharmacol 2017; 174:1464-1483. [PMID: 27891602 DOI: 10.1111/bph.13676] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/05/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022] Open
Abstract
The endocannabinoid system (ECS) is a major lipid signalling network that plays important pro-homeostatic (allostatic) roles not only in the nervous system but also in peripheral organs. There is increasing evidence that there is a dietary component in the modulation of the ECS. Cannabinoid receptors in hominids co-evolved with diet, and the ECS constitutes a feedback loop for food selection and energy metabolism. Here, it is postulated that the mismatch of ancient lipid genes of hunter-gatherers and pastoralists with the high-carbohydrate diet introduced by agriculture could be compensated for via dietary modulation of the ECS. In addition to the fatty acid precursors of endocannabinoids, the potential role of dietary cannabimimetic phytochemicals in agriculturist nutrition is discussed. Dietary secondary metabolites from vegetables and spices able to enhance the activity of cannabinoid-type 2 (CB2 ) receptors may provide adaptive metabolic advantages and counteract inflammation. In contrast, chronic CB1 receptor activation in hedonic obese individuals may enhance pathophysiological processes related to hyperlipidaemia, diabetes, hepatorenal inflammation and cardiometabolic risk. Food able to modulate the CB1 /CB2 receptor activation ratio may thus play a role in the nutrition transition of Western high-calorie diets. In this review, the interplay between diet and the ECS is highlighted from an evolutionary perspective. The emerging potential of cannabimimetic food as a nutraceutical strategy is critically discussed. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| |
Collapse
|
10
|
Cristino L, Imperatore R, Palomba L, Di Marzo V. The Endocannabinoid System in Leptin-Driven Changes of Orexinergic Signaling Under Physiological and Pathological Conditions. ENDOCANNABINOIDS AND LIPID MEDIATORS IN BRAIN FUNCTIONS 2017:1-26. [DOI: 10.1007/978-3-319-57371-7_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Khani A, Rainer G. Neural and neurochemical basis of reinforcement-guided decision making. J Neurophysiol 2016; 116:724-41. [PMID: 27226454 DOI: 10.1152/jn.01113.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/24/2016] [Indexed: 01/01/2023] Open
Abstract
Decision making is an adaptive behavior that takes into account several internal and external input variables and leads to the choice of a course of action over other available and often competing alternatives. While it has been studied in diverse fields ranging from mathematics, economics, ecology, and ethology to psychology and neuroscience, recent cross talk among perspectives from different fields has yielded novel descriptions of decision processes. Reinforcement-guided decision making models are based on economic and reinforcement learning theories, and their focus is on the maximization of acquired benefit over a defined period of time. Studies based on reinforcement-guided decision making have implicated a large network of neural circuits across the brain. This network includes a wide range of cortical (e.g., orbitofrontal cortex and anterior cingulate cortex) and subcortical (e.g., nucleus accumbens and subthalamic nucleus) brain areas and uses several neurotransmitter systems (e.g., dopaminergic and serotonergic systems) to communicate and process decision-related information. This review discusses distinct as well as overlapping contributions of these networks and neurotransmitter systems to the processing of decision making. We end the review by touching on neural circuitry and neuromodulatory regulation of exploratory decision making.
Collapse
Affiliation(s)
- Abbas Khani
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Switzerland
| | - Gregor Rainer
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Switzerland
| |
Collapse
|
12
|
Abstract
The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB
1). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB
1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB
1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB
1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile.
Collapse
Affiliation(s)
- Arnau Busquets Garcia
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Edgar Soria-Gomez
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Luigi Bellocchio
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Giovanni Marsicano
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| |
Collapse
|