1
|
Zhuang X, Lemak J, Sridhar S, Nelson AB. Inhibition of Indirect Pathway Activity Causes Abnormal Decision-Making In a Mouse Model of Impulse Control Disorder in Parkinson's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581062. [PMID: 39554037 PMCID: PMC11565822 DOI: 10.1101/2024.02.19.581062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Healthy action selection relies on the coordinated activity of striatal direct and indirect pathway neurons. In Parkinson's disease (PD), in which loss of midbrain dopamine neurons is associated with progressive motor and cognitive deficits, this coordination is disrupted. Dopamine replacement therapy can remediate motor symptoms, but can also cause impulse control disorder (ICD), which is characterized by pathological gambling, hypersexuality, and/or compulsive shopping. The cellular and circuit mechanisms of ICD remain unknown. Here we developed a mouse model of PD/ICD, in which ICD-like behavior was assayed with a delay discounting task. We found that in parkinsonian mice, the dopamine agonist pramipexole drove more pronounced delay discounting, as well as disrupted firing in both direct and indirect pathway neurons. We found that chemogenetic inhibition of indirect pathway neurons in parkinsonian mice drove similar phenotypes. Together, these findings provide a new mouse model and insights into ICD pathophysiology.
Collapse
Affiliation(s)
- Xiaowen Zhuang
- Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Julia Lemak
- Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Sadhana Sridhar
- Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alexandra B Nelson
- Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Lead Contact
| |
Collapse
|
2
|
Pardina‐Torner H, De Paepe AE, Garcia‐Gorro C, Rodriguez‐Dechicha N, Vaquer I, Calopa M, Ruiz‐Idiago J, Mareca C, de Diego‐Balaguer R, Camara E. Disentangling the neurobiological bases of temporal impulsivity in Huntington's disease. Brain Behav 2024; 14:e3335. [PMID: 38450912 PMCID: PMC10918610 DOI: 10.1002/brb3.3335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Despite its impact on daily life, impulsivity in Huntington's disease (HD) is understudied as a neuropsychiatric symptom. Our aim is to characterize temporal impulsivity in HD and to disentangle the white matter correlate associated with impulsivity. METHODS Forty-seven HD individuals and 36 healthy controls were scanned and evaluated for temporal impulsivity using a delay-discounting (DD) task and complementary Sensitivity to Punishment and Sensitivity to Reward Questionnaire. Diffusion tensor imaging was employed to characterize the structural connectivity of three limbic tracts: the uncinate fasciculus (UF), the accumbofrontal tract (NAcc-OFC), and the dorsolateral prefrontal cortex connectig the caudate nucleus (DLPFC-cn). Multiple linear regression analyses were applied to analyze the relationship between impulsive behavior and white matter microstructural integrity. RESULTS Our results revealed altered structural connectivity in the DLPC-cn, the NAcc-OFC and the UF in HD individuals. At the same time, the variability in structural connectivity of these tracts was associated with the individual differences in temporal impulsivity. Specifically, increased structural connectivity in the right NAcc-OFC and reduced connectivity in the left UF were associated with higher temporal impulsivity scores. CONCLUSIONS The present findings highlight the importance of investigating the spectrum of temporal impulsivity in HD. As, while less prevalent than other psychiatric features, this symptom is still reported to significantly impact the quality of life of patients and caregivers. This study provides evidence that individual differences observed in temporal impulsivity may be explained by variability in limbic frontostriatal tracts, while shedding light on the role of sensitivity to reward in modulating impulsive behavior through the selection of immediate rewards.
Collapse
Affiliation(s)
- Helena Pardina‐Torner
- Cognition and Brain Plasticity UnitBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Audrey E. De Paepe
- Cognition and Brain Plasticity UnitBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Clara Garcia‐Gorro
- Cognition and Brain Plasticity UnitBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Nadia Rodriguez‐Dechicha
- Hestia Duran i ReynalsHospital Duran i Reynals, Hospitalet de LlobregatBarcelonaSpain
- Departament de Psicologia Clínica i de la SalutUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Irene Vaquer
- Hestia Duran i ReynalsHospital Duran i Reynals, Hospitalet de LlobregatBarcelonaSpain
- Departament de Psicologia Clínica i de la SalutUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Matilde Calopa
- Movement Disorders Unit, Neurology ServiceHospital Universitari de BellvitgeBarcelonaSpain
- ICREA (Catalan Institute for Research and Advanced Studies)BarcelonaSpain
| | - Jesus Ruiz‐Idiago
- Department of Psychiatry and Forensic MedicineUniversitat Autònoma de BarcelonaBarcelonaSpain
- Hospital Mare de Deu de la MercèBarcelonaSpain
| | - Celia Mareca
- Department of Psychiatry and Forensic MedicineUniversitat Autònoma de BarcelonaBarcelonaSpain
- Hospital Mare de Deu de la MercèBarcelonaSpain
| | - Ruth de Diego‐Balaguer
- Cognition and Brain Plasticity UnitBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
- Department of Cognition, Development and Education PsychologyUniversitat de BarcelonaBarcelonaSpain
- Institute of NeurosciencesUniversitat de BarcelonaBarcelonaSpain
- ICREA (Catalan Institute for Research and Advanced Studies)BarcelonaSpain
| | - Estela Camara
- Cognition and Brain Plasticity UnitBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| |
Collapse
|
3
|
El Haj M, Caillaud M, Moustafa A, Prundean A, Scherer C, Verny C, Allain P. "Ten euros now" temporal discounting in Huntington disease. Neurol Sci 2023:10.1007/s10072-023-06775-z. [PMID: 36964316 DOI: 10.1007/s10072-023-06775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND When making decisions, one often faces a trade-off between immediate and long-term rewards. In these situations, people may prefer immediate over later rewards, even if immediate rewards are smaller than later ones; a phenomenon known as temporal discounting. In this study, we, for the first time, assessed temporal discounting in three populations: participants with manifest Huntington disease (HD), participants with premanifest HD, and control participants. METHODS Using the temporal discounting task, we invited participants to choose between small immediate amount of money vs. delayed, but larger amount of money (e.g., "Which do you prefer: you get 10 euros right now or 50 euros in a month?"). We also measured inhibition in order to test if it impacts discounting performance. RESULTS Analysis demonstrated higher temporal discounting (i.e., a preference for the immediate rewards) in participants with manifest HD compared to those with premanifest HD or control participants, but no significant differences were observed in participants with premanifest HD and control participants. Analysis also demonstrated significant correlations between temporal discounting and scores on an inhibition test in participants with manifest HD, but not in those with premanifest HD or in control participants. DISCUSSION We suggest that, when making decisions, patients with manifest HD may have difficulties with suppressing the temptation of smaller, but immediate, rewards.
Collapse
Affiliation(s)
- Mohamad El Haj
- Nantes Université, Univ Angers, Laboratoire de Psychologie des Pays de la Loire (LPPL - EA 4638), F-44000, Nantes, France.
- CHU Nantes, Clinical Gerontology Department, 41 rue Pierre et Marie Curie, 44093, Nantes, France.
- Institut Universitaire de France, Paris, France.
- Faculté de Psychologie, LPPL - Laboratoire de Psychologie des Pays de la Loire, Université Nantes, Chemin de la Censive du Tertre, BP 81227, 44312, Nantes Cedex 3, France.
| | - Marie Caillaud
- University of Texas, Clinical Neuroscience Lab, 108 East Dean Keeton St., Austin, TX, 78712, USA
| | - Ahmed Moustafa
- School of Psychology, Faculty of Society and Design, Bond University, Gold Coast, Queensland, Australia
- Department of Human Anatomy and Physiology, the Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | | | | | | | - Philippe Allain
- Département de Neurologie, CHU Angers, Angers, France
- Laboratoire de Psychologie des Pays de la Loire, LPPL EA 4638 SFR Confluences, UNIV Angers, Nantes Université, Maison de la recherche Germaine Tillion, 5 bis Boulevard Lavoisier, 49045, Angers Cedex 01, France
| |
Collapse
|
4
|
Bellés L, Arrondeau C, Urueña-Méndez G, Ginovart N. Concurrent measures of impulsive action and choice are partially related and differentially modulated by dopamine D 1- and D 2-like receptors in a rat model of impulsivity. Pharmacol Biochem Behav 2023; 222:173508. [PMID: 36473517 DOI: 10.1016/j.pbb.2022.173508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Impulsivity is a multidimensional construct, but the relationships between its constructs and their respective underlying dopaminergic underpinnings in the general population remain unclear. A cohort of Roman high- (RHA) and low- (RLA) avoidance rats were tested for impulsive action and risky decision-making in the rat gambling task, and then for delay discounting in the delay-discounting task to concurrently measure the relationships among the three constructs of impulsivity using a within-subject design. Then, we evaluated the effects of dopaminergic drugs on the three constructs of impulsivity, considering innate differences in impulsive behaviors at baseline. Risky decision-making and delay-discounting were positively correlated, indicating that both constructs of impulsive choice are related. Impulsive action positively correlated with risky decision-making but not with delay discounting, suggesting partial overlap between impulsive action and impulsive choice. RHAs showed a more impulsive phenotype in the three constructs of impulsivity compared to RLAs, demonstrating the comorbid nature of impulsivity in a population of rats. Amphetamine increased impulsive action and had no effect on risky decision-making regardless of baseline levels of impulsivity, but it decreased delay discounting only in high impulsive RHAs. In contrast, while D1R and D3R agonism as well as D2/3R partial agonism decreased impulsive action regardless of baseline levels of impulsivity, D2/3R agonism decreased impulsive action exclusively in high impulsive RHAs. Irrespective of baseline levels of impulsivity, risky decision-making was increased by D1R and D2/3R agonism but not by D3R agonism or D2/3R partial agonism. Finally, while D1R and D3R agonism, D2/3R partial agonism and D2R blockade increased delay discounting irrespective of baseline levels of impulsivity, D2/3R agonism decreased it in low impulsive RLAs only. These findings indicate that the acute effects of dopamine drugs were partially overlapping across dimensions of impulsivity, and that only D2/3R agonism showed baseline-dependent effects on impulsive action and impulsive choice.
Collapse
Affiliation(s)
- Lidia Bellés
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Chloé Arrondeau
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Ginna Urueña-Méndez
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Nathalie Ginovart
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| |
Collapse
|
5
|
Morris L, O'Callaghan C, Le Heron C. Disordered Decision Making: A Cognitive Framework for Apathy and Impulsivity in Huntington's Disease. Mov Disord 2022; 37:1149-1163. [PMID: 35491758 PMCID: PMC9322688 DOI: 10.1002/mds.29013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 03/15/2022] [Indexed: 01/12/2023] Open
Abstract
A caregiver's all‐too‐familiar narrative ‐ “He doesn't think through what he does, but mostly he does nothing.” Apathy and impulsivity, debilitating and poorly understood, commonly co‐occur in Huntington's disease (HD). HD is a neurodegenerative disease with manifestations bridging clinical neurology and psychiatry. In addition to movement and cognitive symptoms, neurobehavioral disturbances, particularly apathy and impulsivity, are prevalent features of HD, occurring early in the disease course, often worsening with disease progression, and substantially reducing quality of life. Treatments remain limited, in part because of limited mechanistic understanding of these behavioral disturbances. However, emerging work within the field of decision‐making neuroscience and beyond points to common neurobiological mechanisms underpinning these seemingly disparate problems. These insights bridge the gap between underlying disease pathology and clinical phenotype, offering new treatment strategies, novel behavioral and physiological biomarkers of HD, and deeper understanding of human behavior. In this review, we apply the neurobiological framework of cost‐benefit decision making to the problems of apathy and impulsivity in HD. Through this decision‐making lens, we develop a mechanistic model that elucidates the occurrence of these behavioral disturbances and points to potential treatment strategies and crucial research priorities. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lee‐Anne Morris
- Department of Medicine University of Otago Christchurch New Zealand
- New Zealand Brain Research Institute Christchurch New Zealand
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health University of Sydney Sydney New South Wales Australia
| | - Campbell Le Heron
- Department of Medicine University of Otago Christchurch New Zealand
- New Zealand Brain Research Institute Christchurch New Zealand
- Department of Neurology Canterbury District Health Board Christchurch New Zealand
| |
Collapse
|
6
|
Lamirault C, Nguyen HP, Doyère V, El Massioui N. Age-related alteration of emotional regulation in the BACHD rat model of Huntington disease. GENES, BRAIN, AND BEHAVIOR 2020; 19:e12633. [PMID: 31883197 DOI: 10.1111/gbb.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/29/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder, caused by an expanded CAG repeat in the gene encoding the huntingtin protein. At the premanifest phase, before motor symptoms occur, psychiatric and emotional disorders are observed with high prevalence in HD patients. Agitation, anxiety and irritability are often described but also depression and/or apathy, associated with a lack of emotional control. The aim of the present study was to better circumscribe and understand the emotional symptoms and assess their evolution according to the progression of the disease using a transgenic HD model, BACHD rats, at the age of 4, 12 and 18 months. To achieve this goal, we confronted animals to two types of tests: first, tests assessing anxiety like the light/dark box and the conflict test, which are situations that did not involve an obvious threat and tests assessing the reactivity to a present threat using confrontation with an unknown conspecific (social behavior test) or with an aversive stimulus (fear conditioning test). In all animals, results show an age-dependent anxiety-like behavior, particularly marked in situation requiring passive responses (light/dark box and fear conditioning tests). BACHD rats exhibited a more profound alteration than WT animals in these tests from an early stage of the disease whereas, in tasks requiring some kind of motivation (for food or for social contacts), only old BACHD rats showed high anxiety-like behavior compared to WT, may be partly due to the other symptoms' occurrence at this stage: locomotor difficulties and/or apathy.
Collapse
Affiliation(s)
- Charlotte Lamirault
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Huu Phuc Nguyen
- Department of Human Genetics, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Valérie Doyère
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Nicole El Massioui
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Rangel-Barajas C, Rebec GV. Overview of Huntington's Disease Models: Neuropathological, Molecular, and Behavioral Differences. ACTA ACUST UNITED AC 2019; 83:e47. [PMID: 30040221 DOI: 10.1002/cpns.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transgenic mouse models of Huntington's disease (HD), a neurodegenerative condition caused by a single gene mutation, have been transformative in their ability to reveal the molecular processes and pathophysiological mechanisms underlying the HD behavioral phenotype. Three model categories have been generated depending on the genetic context in which the mutation is expressed: truncated, full-length, and knock-in. No single model, however, broadly replicates the behavioral symptoms and massive neuronal loss that occur in human patients. The disparity between model and patient requires careful consideration of what each model has to offer when testing potential treatments. Although the translation of animal data to the clinic has been limited, each model can make unique contributions toward an improved understanding of the neurobehavioral underpinnings of HD. Thus, conclusions based on data obtained from more than one model are likely to have the most success in the search for new treatment targets. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Claudia Rangel-Barajas
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - George V Rebec
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| |
Collapse
|
8
|
Conditioned Inhibition and its Relationship to Impulsivity: Empirical and Theoretical Considerations. PSYCHOLOGICAL RECORD 2018. [DOI: 10.1007/s40732-018-0325-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Garces D, El Massioui N, Lamirault C, Riess O, Nguyen HP, Brown BL, Doyère V. The Alteration of Emotion Regulation Precedes the Deficits in Interval Timing in the BACHD Rat Model for Huntington Disease. Front Integr Neurosci 2018; 12:14. [PMID: 29867384 PMCID: PMC5954136 DOI: 10.3389/fnint.2018.00014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/05/2018] [Indexed: 11/13/2022] Open
Abstract
Huntington disease (HD) is an autosomal dominantly inherited, progressive neurodegenerative disorder which is accompanied by executive dysfunctions and emotional alteration. The aim of the present study was to assess the impact of emotion/stress on on-going highly demanding cognitive tasks, i.e., temporal processing, as a function of age in BACHD rats (a “full length” model of HD). Middle-aged (4–6 months) and old (10–12 months) rats were first trained on a 2 vs. 8-s temporal discrimination task, and then exposed to a series of bisection tests under normal and stressful (10 mild unpredictable foot-shocks) conditions. The animals were then trained on a peak interval task, in which reinforced fixed-interval (FI) 30-s trials were randomly intermixed with non-reinforced probe trials. After training, the effect of stress upon time perception was again assessed. Sensitivity to foot-shocks was also assessed independently. The results show effects of both age and genotype, with largely greater effects in old BACHD animals. The older BACHD animals had impaired learning in both tasks, but reached equivalent levels of performance as WT animals at the end of training in the temporal discrimination task, while remaining impaired in the peak interval task. Whereas sensitivity to foot-shock did not differ between BACHD and WT rats, delivery of foot-shocks during the test sessions had a disruptive impact on temporal behavior in WT animals, an effect which increased with age. In contrast, BACHD rats, independent of age, did not show any significant disruption under stress. In conclusion, BACHD rats showed a disruption in temporal learning in late symptomatic animals. Age-related modification in stress-induced impairment of temporal control of behavior was also observed, an effect which was greatly reduced in BACHD animals, thus confirming previous results suggesting reduced emotional reactivity in HD animals. The results suggest a staggered onset in cognitive and emotional alterations in HD, with emotional alteration being the earliest, possibly related to different time courses of degeneration in cortico-striatal and amygdala circuits.
Collapse
Affiliation(s)
- Daniel Garces
- The Graduate Center, City University of New York, New York, NY, United States
| | - Nicole El Massioui
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Charlotte Lamirault
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Huu P Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Center for Rare Diseases, University of Tübingen, Tübingen, Germany.,Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Bruce L Brown
- The Graduate Center, City University of New York, New York, NY, United States.,Queens College, City University of New York, New York, NY, United States
| | - Valérie Doyère
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
10
|
Abstract
Impulsivity has traditionally been thought to involve various behavioral traits that can be measured using different laboratory protocols. Whereas some authors regard different measures of impulsivity as reflecting fundamentally distinct and unrelated behavioral tendencies (fragmentation approach), others regard those different indexes as analogue forms of the same behavioral tendency, only superficially different (unification approach). Unifying accounts range from mere intuitions to more sophisticated theoretical systems. Some of the more complete attempts at unifying are intriguing but have validity weaknesses. We propose a new unifying attempt based on theoretical points posed by other authors and supplemented by theory and research on associative learning. We then apply these assumptions to characterize the paradigms used to study impulsivity in laboratory settings and evaluate their scope as an attempt at unification. We argue that our approach possesses a good balance of parsimony and empirical and theoretical grounding, as well as a more encompassing scope, and is more suitable for experimental testing than previous theoretical frameworks. In addition, the proposed approach is capable of generating a new definition of impulsivity and outlines a hypothesis of how self-control can be developed. Finally, we examine the fragmentation approach from a different perspective, emphasizing the importance of finding similarities among seemingly different phenomena.
Collapse
|
11
|
Genetic Rodent Models of Huntington Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:29-57. [DOI: 10.1007/978-3-319-71779-1_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
12
|
Plank AC, Canneva F, Raber KA, Urbach YK, Dobner J, Puchades M, Bjaalie JG, Gillmann C, Bäuerle T, Riess O, Nguyen HHP, von Hörsten S. Early Alterations in Operant Performance and Prominent Huntingtin Aggregation in a Congenic F344 Rat Line of the Classical CAG n51trunc Model of Huntington Disease. Front Neurosci 2018; 12:11. [PMID: 29422836 PMCID: PMC5788972 DOI: 10.3389/fnins.2018.00011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/08/2018] [Indexed: 11/17/2022] Open
Abstract
The transgenic rat model of Huntington disease expressing a fragment of mutant HTT (tgHD rat) has been thoroughly characterized and reproduces hallmark symptoms of human adult-onset HD. Pursuing the optimization of this model for evaluation of translational therapeutic approaches, the F344 inbred rat strain was considered as advantageous genetic background for the expression of the HD transgenic construct. In the present study, a novel congenic line of the SPRDtgHD transgenic model of HD, carrying 51 CAG repeats, was generated on the F344 rat genetic background. To assess the behavioral phenotype, classical assays investigating motor function, emotion, and sensorimotor gating were applied, along with automated screening of metabolic and activity parameters as well as operant conditioning tasks. The neuropathological phenotype was analyzed by immunohistochemistry and ex vivo magnetic resonance imaging. F344tgHD rats displayed markedly reduced anxiety-like behavior in the social interaction test and elevated impulsivity traits already at 3 months of age. Neuropathologically, reduced striatal volume and pronounced aggregation of mutant huntingtin in several brain regions were detected at later disease stage. In conclusion, the congenic F344tgHD model reproduces key aspects of the human HD phenotype, substantiating its value for translational therapeutic approaches.
Collapse
Affiliation(s)
- Anne-Christine Plank
- Experimental Therapy, Preclinical Experimental Center, University Clinics Erlangen, Erlangen, Germany
| | - Fabio Canneva
- Experimental Therapy, Preclinical Experimental Center, University Clinics Erlangen, Erlangen, Germany
| | - Kerstin A Raber
- Experimental Therapy, Preclinical Experimental Center, University Clinics Erlangen, Erlangen, Germany
| | - Yvonne K Urbach
- Experimental Therapy, Preclinical Experimental Center, University Clinics Erlangen, Erlangen, Germany
| | - Julia Dobner
- Experimental Therapy, Preclinical Experimental Center, University Clinics Erlangen, Erlangen, Germany
| | - Maja Puchades
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Clarissa Gillmann
- Preclinical Imaging Platform Erlangen, Institute of Radiology, University Clinics Erlangen, Erlangen, Germany
| | - Tobias Bäuerle
- Preclinical Imaging Platform Erlangen, Institute of Radiology, University Clinics Erlangen, Erlangen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University Clinics Tuebingen, Tuebingen, Germany
| | - Hoa H P Nguyen
- Institute of Medical Genetics and Applied Genomics, University Clinics Tuebingen, Tuebingen, Germany
| | - Stephan von Hörsten
- Experimental Therapy, Preclinical Experimental Center, University Clinics Erlangen, Erlangen, Germany
| |
Collapse
|
13
|
Lamirault C, Yu-Taeger L, Doyère V, Riess O, Nguyen HP, El Massioui N. Altered reactivity of central amygdala to GABA A R antagonist in the BACHD rat model of Huntington disease. Neuropharmacology 2017; 123:136-147. [DOI: 10.1016/j.neuropharm.2017.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 11/16/2022]
|
14
|
Buxton D, Bracci E, Overton PG, Gurney K. Striatal Neuropeptides Enhance Selection and Rejection of Sequential Actions. Front Comput Neurosci 2017; 11:62. [PMID: 28798678 PMCID: PMC5529366 DOI: 10.3389/fncom.2017.00062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/27/2017] [Indexed: 12/05/2022] Open
Abstract
The striatum is the primary input nucleus for the basal ganglia, and receives glutamatergic afferents from the cortex. Under the hypothesis that basal ganglia perform action selection, these cortical afferents encode potential “action requests.” Previous studies have suggested the striatum may utilize a mutually inhibitory network of medium spiny neurons (MSNs) to filter these requests so that only those of high salience are selected. However, the mechanisms enabling the striatum to perform clean, rapid switching between distinct actions that form part of a learned action sequence are still poorly understood. Substance P (SP) and enkephalin are neuropeptides co-released with GABA in MSNs preferentially expressing D1 or D2 dopamine receptors respectively. SP has a facilitatory effect on subsequent glutamatergic inputs to target MSNs, while enkephalin has an inhibitory effect. Blocking the action of SP in the striatum is also known to affect behavioral transitions. We constructed phenomenological models of the effects of SP and enkephalin, and integrated these into a hybrid model of basal ganglia comprising a spiking striatal microcircuit and rate–coded populations representing other major structures. We demonstrated that diffuse neuropeptide connectivity enhanced the selection of unordered action requests, and that for true action sequences, where action semantics define a fixed structure, a patterning of the SP connectivity reflecting this ordering enhanced selection of actions presented in the correct sequential order and suppressed incorrect ordering. We also showed that selective pruning of SP connections allowed context–sensitive inhibition of specific undesirable requests that otherwise interfered with selection of an action group. Our model suggests that the interaction of SP and enkephalin enhances the contrast between selection and rejection of action requests, and that patterned SP connectivity in the striatum allows the “chunking” of actions and improves selection of sequences. Efficient execution of action sequences may therefore result from a combination of ordered cortical inputs and patterned neuropeptide connectivity within striatum.
Collapse
Affiliation(s)
- David Buxton
- Adaptive Behaviour Research Group, Department of Psychology, The University of SheffieldSheffield, United Kingdom
| | - Enrico Bracci
- Adaptive Behaviour Research Group, Department of Psychology, The University of SheffieldSheffield, United Kingdom
| | - Paul G Overton
- Adaptive Behaviour Research Group, Department of Psychology, The University of SheffieldSheffield, United Kingdom
| | - Kevin Gurney
- Adaptive Behaviour Research Group, Department of Psychology, The University of SheffieldSheffield, United Kingdom
| |
Collapse
|