1
|
Huang Z, Yin D. Common and unique network basis for externally and internally driven flexibility in cognition: From a developmental perspective. Dev Cogn Neurosci 2025; 72:101528. [PMID: 39929102 PMCID: PMC11849642 DOI: 10.1016/j.dcn.2025.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/23/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Flexibility is a hallmark of cognitive control and can be driven externally and internally, corresponding to reactive and spontaneous flexibility. However, the convergence and divergence between these two types of flexibility and their underlying neural basis during development remain largely unknown. In this study, we aimed to determine the common and unique networks for reactive and spontaneous flexibility as a function of age and sex, leveraging both cross-sectional and longitudinal resting-state functional magnetic resonance imaging datasets with different temporal resolutions (N = 249, 6-35 years old). Functional connectivity strength and nodal flexibility, derived from static and dynamic frameworks respectively, were utilized. We found similar quadratic effects of age on reactive and spontaneous flexibility, which were mediated by the functional connectivity strength and nodal flexibility of the frontoparietal network. Divergence was observed, with the nodal flexibility of the ventral attention network at the baseline visit uniquely predicting the increase in reactive flexibility 24-30 months later, while the nodal flexibility or functional connectivity strength of the dorsal attention network could specifically predict the increase in spontaneous flexibility. Sex differences were found in tasks measuring reactive and spontaneous flexibility simultaneously, which were moderated by the nodal flexibility of the dorsal attention network. This study advances our understanding of distinct types of flexibility in cognition and their underlying mechanisms throughout developmental stages. Our findings also suggest the importance of studying specific types of cognitive flexibility abnormalities in developmental neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ziyi Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Dazhi Yin
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China.
| |
Collapse
|
2
|
Dimitriadis SI. Combining MEG with fMRI reveal complementary brain activity elicited by verbal fluency tasks performed by neurotypical adults. Clin Neurophysiol 2025:S1388-2457(25)00310-4. [PMID: 40090776 DOI: 10.1016/j.clinph.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Affiliation(s)
- Stavros I Dimitriadis
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall D'Hebron 171, 08035, Barcelona, Spain; Institut de Neurociencies, University of Barcelona, Municipality of Horta-Guinardo, 08035 Barcelona, Spain; Integrative Neuroimaging Lab, Thessaloniki, 55133, Makedonia, Greece; Neuroinformatics Group, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Rd, CF24 4HQ, Cardiff, Wales, United Kingdom
| |
Collapse
|
3
|
Gornushenkov ID, Barkhatova AN, Pluzhnikov IV, Chaika YA. [Comparative study of cognitive impairment in subgroups of bipolar affective disorder types I and II, occurring with and without psychotic symptoms]. Zh Nevrol Psikhiatr Im S S Korsakova 2025; 125:7-11. [PMID: 40195095 DOI: 10.17116/jnevro20251250317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
One of the developing research areas of bipolar affective disorder (BAD) is the study of the neurocognitive profile of the patients, supported by the clinical practice to address the issues of diagnosis, course prediction, response to drug therapy, as well as the relationship of cognitive impairment with the level of social and labor adaptation of patients, and mental health sciences to analyze the BAD subtypes and clarify their neurobiological ground. By searching using combinations of the keywords «bipolar disorder», «psychosis», «BD I type», «BD II type», «cognitive impairment», «cognitive dysfunction», «meta-analysis», and «review» in the PubMed and Google Scholar databases, relevant meta-analyses, reviews, and original research articles were identified. The results showed that the BAD subgroups with and without psychotic manifestations, types I and II BAD, have different structures of the neurocognitive profile and the depth and severity of cognitive impairment, which can be assumed to reflect differences in the neurobiological mechanisms of these disorders. For future studies, it is interesting to compare the neurocognitive profile and psychopathological manifestations of the subgroups discussed to study BAD further. Evaluating the neurocognitive profile of BAD subgroups may increase the effectiveness of the diagnosis and therapy. Determining reliable causal factors will help implement personalized therapeutic interventions and develop effective preventive programs.
Collapse
Affiliation(s)
| | | | | | - Yu A Chaika
- Mental Health Research Center, Moscow, Russia
| |
Collapse
|
4
|
Gaudet LA, Rybka L, Mandonnet E, Volle E, Barberis M, Jonkers R, Rofes A. Leveraging relatedness-based measures in people with language disorders: A scoping review. J Neuropsychol 2024. [PMID: 39686552 DOI: 10.1111/jnp.12405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Understanding lexico-semantic processing is crucial for dissecting the complexities of language and its disorders. Relatedness-based measures, or those which investigate the degree of relatedness in meaning between either task items or items produced by participants, offer the opportunity to harness novel computational and analytical techniques from cognitive network science. Recognizing the need to deepen our understanding of lexico-semantic deficits through diverse experimental and analytical approaches, this review explores the use of such measures in research into language disorders. A comprehensive search of four electronic databases covering publications from the last 11 years (October 2013-September 2024) identified 38 original experimental studies employing relatedness-based measures in populations with language disorders or other neurological conditions. Articles were examined for the types of tasks used, populations studied, item selection methods and analytical approaches. The predominant use of category fluency tasks emerged across studies, with a notable absence of relatedness judgement tasks or comparable paradigms. Commonly discussed populations included individuals with post-stroke aphasia, mild cognitive impairment and schizophrenia. Analytical methods varied significantly, ranging from more traditional approaches of clustering and switching to more sophisticated computational techniques. Despite the evident utility of category fluency tasks in research and clinical settings, the review underscores a critical need to diversify experimental paradigms and probe lexico-semantic processing in a more multifaceted manner. A broadened approach in future language disorder research should incorporate innovative analytical techniques, investigations of neural correlates and a wider array of tasks employing relatedness-based measures already present in healthy populations.
Collapse
Affiliation(s)
- Logan A Gaudet
- Center for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, The Netherlands
- Research School of Behavioural and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
- FrontLab at Institut du Cerveau (ICM), Sorbonne Université, Paris, France
| | - Lena Rybka
- Center for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, The Netherlands
- Charité-Universitätsmedizin Berlin, Klinik für Neurochirurgie, Berlin, Germany
| | - Emmanuel Mandonnet
- FrontLab at Institut du Cerveau (ICM), Sorbonne Université, Paris, France
| | - Emmanuelle Volle
- FrontLab at Institut du Cerveau (ICM), Sorbonne Université, Paris, France
| | - Marion Barberis
- FrontLab at Institut du Cerveau (ICM), Sorbonne Université, Paris, France
| | - Roel Jonkers
- Center for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, The Netherlands
- Research School of Behavioural and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| | - Adrià Rofes
- Center for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, The Netherlands
- Research School of Behavioural and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Teo JM, Kumar VA, Lee J, Eldaya RW, Hou P, Jen ML, Noll KR, Wei P, Ferguson SD, Prabhu SS, Wintermark M, Liu HL. Probabilistic Presurgical Language fMRI Atlas of Patients with Brain Tumors. AJNR Am J Neuroradiol 2024; 45:1798-1804. [PMID: 38889968 PMCID: PMC11543082 DOI: 10.3174/ajnr.a8383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND AND PURPOSE Patients with brain tumors have high intersubject variation in putative language regions, which may limit the utility of straightforward application of healthy subject brain atlases in clinical scenarios. The purpose of this study was to develop a probabilistic functional brain atlas that consolidates language functional activations of sentence completion and Silent Word Generation language paradigms using a large sample of patients with brain tumors. MATERIALS AND METHODS The atlas was developed using retrospectively collected fMRI data from patients with brain tumors who underwent their first standard-of-care presurgical language fMRI scan at our institution between July 18, 2015, and May 13, 2022. Three hundred seventeen patients (861 fMRI scans) were used to develop the language functional atlas. An independent presurgical language fMRI data set of 39 patients with brain tumors from a previous study was used to evaluate our atlas. Family-wise error-corrected binary functional activation maps from sentence completion, letter fluency, and category fluency presurgical fMRI were used to create probability overlap maps and pooled probabilistic overlap maps in Montreal Neurological Institute standard space. The Wilcoxon signed-rank test was used to determine a significant difference in the maximum Dice coefficient for our atlas compared with a meta-analysis-based template with respect to expert-delineated primary language area activations. RESULTS Probabilities of activating the left anterior primary language area and left posterior primary language area in the temporal lobe were 87.9% and 91.5%, respectively, for sentence completion, 88.5% and 74.2%, respectively, for letter fluency, and 83.6% and 67.6%, respectively, for category fluency. Maximum Dice coefficients for templates derived from our language atlas were significantly higher than the meta-analysis-based template in the left anterior primary language area (0.351 and 0.326, respectively, P < .05) and the left posterior primary language area in the temporal lobe (0.274 and 0.244, respectively, P < .005). CONCLUSIONS Brain tumor patient- and paradigm-specific probabilistic language atlases were developed. These atlases had superior spatial agreement with fMRI activations in individual patients compared with the meta-analysis-based template.
Collapse
Affiliation(s)
- Jian Ming Teo
- From the Department of Imaging Physics (J.M.T., P.H., M.-L.J., H.-L.L.), The University of Texas MD Anderson Cancer Center, Houston, Texas
- Medical Physics Graduate Program (J.M.T.), The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Vinodh A Kumar
- Department of Diagnostic Radiology (V.A.K., J.L., R.W.E., M.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jina Lee
- Department of Diagnostic Radiology (V.A.K., J.L., R.W.E., M.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rami W Eldaya
- Department of Diagnostic Radiology (V.A.K., J.L., R.W.E., M.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ping Hou
- From the Department of Imaging Physics (J.M.T., P.H., M.-L.J., H.-L.L.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mu-Lan Jen
- From the Department of Imaging Physics (J.M.T., P.H., M.-L.J., H.-L.L.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyle R Noll
- Department of Neuro-Oncology (K.R.N.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peng Wei
- Department of Biostatistics (P.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherise D Ferguson
- Department of Neurosurgery (S.D.F., S.S.P.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sujit S Prabhu
- Department of Neurosurgery (S.D.F., S.S.P.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Max Wintermark
- Department of Diagnostic Radiology (V.A.K., J.L., R.W.E., M.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ho-Ling Liu
- From the Department of Imaging Physics (J.M.T., P.H., M.-L.J., H.-L.L.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
6
|
Arrigo IV, da Silva PHR, Leoni RF. Functional and Effective Connectivity Underlying Semantic Verbal Fluency. Brain Topogr 2024; 37:1043-1054. [PMID: 38839695 DOI: 10.1007/s10548-024-01059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Semantic verbal fluency (SVF) impairment is present in several neurological disorders. Although activation in SVF-related areas has been reported, how these regions are connected and their functional roles in the network remain divergent. We assessed SVF static and dynamic functional connectivity (FC) and effective connectivity in healthy participants using functional magnetic resonance imaging. We observed activation in the inferior frontal (IFG), middle temporal (pMTG) and angular gyri (AG), anterior cingulate (AC), insular cortex, and regions of the superior, middle, and medial frontal gyri (SFG, MFG, MidFG). Our static FC analysis showed a highly interconnected task and resting state network. Increased connectivity of AC with the pMTG and AG was observed for the task. The dynamic FC analysis provided circuits with connections similarly modulated across time and regions related to category identification, language comprehension, word selection and recovery, word generation, inhibition of speaking, speech planning, and articulatory planning of orofacial movements. Finally, the effective connectivity analysis provided a network that best explained our data, starting at the AG and going to the pMTG, from which there was a division between the ventral and dorsal streams. The SFG and MFG regions were connected and modulated by the MidFG, while the inferior regions formed the ventral stream. Therefore, we successfully assessed the SVF network, exploring regions associated with the entire processing, from category identification to word generation. The methodological approach can be helpful for further investigation of the SVF network in neurological disorders.
Collapse
Affiliation(s)
- Isabella Velloso Arrigo
- InBrain, Department of Physics, FFCLRP, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto, Sao Paulo, 3900, 14040-901, Brazil
| | - Pedro Henrique Rodrigues da Silva
- InBrain, Department of Physics, FFCLRP, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto, Sao Paulo, 3900, 14040-901, Brazil
| | - Renata Ferranti Leoni
- InBrain, Department of Physics, FFCLRP, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto, Sao Paulo, 3900, 14040-901, Brazil.
| |
Collapse
|
7
|
Gili T, Avila B, Pasquini L, Holodny A, Phillips D, Boldi P, Gabrielli A, Caldarelli G, Zimmer M, Makse HA. Fibration symmetry-breaking supports functional transitions in a brain network engaged in language. ARXIV 2024:arXiv:2409.02674v1. [PMID: 39279833 PMCID: PMC11398549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
In his book 'A Beautiful Question', physicist Frank Wilczek argues that symmetry is 'nature's deep design,' governing the behavior of the universe, from the smallest particles to the largest structures. While symmetry is a cornerstone of physics, it has not yet been found widespread applicability to describe biological systems, particularly the human brain. In this context, we study the human brain network engaged in language and explore the relationship between the structural connectivity (connectome or structural network) and the emergent synchronization of the mesoscopic regions of interest (functional network). We explain this relationship through a different kind of symmetry than physical symmetry, derived from the categorical notion of Grothendieck fibrations. This introduces a new understanding of the human brain by proposing a local symmetry theory of the connectome, which accounts for how the structure of the brain's network determines its coherent activity. Among the allowed patterns of structural connectivity, synchronization elicits different symmetry subsets according to the functional engagement of the brain. We show that the resting state is a particular realization of the cerebral synchronization pattern characterized by a fibration symmetry that is broken in the transition from rest to language. Our findings suggest that the brain's network symmetry at the local level determines its coherent function, and we can understand this relationship from theoretical principles.
Collapse
Affiliation(s)
- Tommaso Gili
- Networks Unit, IMT Scuola Alti Studi Lucca, Piazza San Francesco 15, 55100-Lucca, Italy
- Institute for Complex Systems (ISC), CNR, UoS Sapienza, Rome, 00185, Italy
| | - Bryant Avila
- Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA
| | - Luca Pasquini
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome, 00189, Italy
| | - Andrei Holodny
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY, 10021, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - David Phillips
- Division of Mathematics, Computer and Information Systems, Office of Naval Research, Arlington, VA 22217, USA
- Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Paolo Boldi
- Department of Computer Science, University of Milan, Milano, Italy
| | - Andrea Gabrielli
- 'Enrico Fermi' Research Center (CREF), Via Panisperna 89A, 00184 - Rome, Italy
- Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche, Università degli Studi 'Roma Tre', Via Vito Volterra 62, 00146 - Rome, Italy
| | - Guido Caldarelli
- Institute for Complex Systems (ISC), CNR, UoS Sapienza, Rome, 00185, Italy
- Department of Molecular Science and Nanosystems and ECLT, Ca Foscari University of Venice, Venice, 30123, Italy
- London Institute for Mathematical Sciences, Royal Institution, 21 Albemarle St London W1S 4BS, UK
| | - Manuel Zimmer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Hernán A Makse
- Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
8
|
Gili T, Avila B, Pasquini L, Holodny A, Phillips D, Boldi P, Gabrielli A, Caldarelli G, Zimmer M, Makse HA. Fibration symmetry-breaking supports functional transitions in a brain network engaged in language. RESEARCH SQUARE 2024:rs.3.rs-4409330. [PMID: 38883794 PMCID: PMC11177955 DOI: 10.21203/rs.3.rs-4409330/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
In his book 'A Beautiful Question' 1, physicist Frank Wilczek argues that symmetry is 'nature's deep design,' governing the behavior of the universe, from the smallest particles to the largest structures 1-4. While symmetry is a cornerstone of physics, it has not yet been found widespread applicability to describe biological systems 5, particularly the human brain. In this context, we study the human brain network engaged in language and explore the relationship between the structural connectivity (connectome or structural network) and the emergent synchronization of the mesoscopic regions of interest (functional network). We explain this relationship through a different kind of symmetry than physical symmetry, derived from the categorical notion of Grothendieck fibrations 6. This introduces a new understanding of the human brain by proposing a local symmetry theory of the connectome, which accounts for how the structure of the brain's network determines its coherent activity. Among the allowed patterns of structural connectivity, synchronization elicits different symmetry subsets according to the functional engagement of the brain. We show that the resting state is a particular realization of the cerebral synchronization pattern characterized by a fibration symmetry that is broken 7 in the transition from rest to language. Our findings suggest that the brain's network symmetry at the local level determines its coherent function, and we can understand this relationship from theoretical principles.
Collapse
Affiliation(s)
- Tommaso Gili
- Networks Unit, IMT Scuola Alti Studi Lucca, Piazza San Francesco 15, 55100- Lucca, Italy
- Institute for Complex Systems (ISC), CNR, UoS Sapienza, Rome, 00185, Italy
| | - Bryant Avila
- Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA
| | - Luca Pasquini
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome, 00189, Italy
| | - Andrei Holodny
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY, 10021, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - David Phillips
- Division of Mathematics, Computer and Information Systems, Office of Naval Research, Arlington, VA 22217, USA
- Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Paolo Boldi
- Department of Computer Science, University of Milan, Milano, Italy
| | - Andrea Gabrielli
- 'Enrico Fermi' Research Center (CREF), Via Panisperna 89A, 00184 - Rome, Italy
- Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche, Università degli Studi 'Roma Tre', Via Vito Volterra 62, 00146 - Rome, Italy
| | - Guido Caldarelli
- Institute for Complex Systems (ISC), CNR, UoS Sapienza, Rome, 00185, Italy
- Department of Molecular Science and Nanosystems and ECLT, Ca Foscari University of Venice, Venice, 30123, Italy
- London Institute for Mathematical Sciences, Royal Institution, 21 Albemarle St London W1S 4BS, UK
| | - Manuel Zimmer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Hernán A Makse
- Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
9
|
Chiang H, Mudar RA, Dugas CS, Motes MA, Kraut MA, Hart J. A modified neural circuit framework for semantic memory retrieval with implications for circuit modulation to treat verbal retrieval deficits. Brain Behav 2024; 14:e3490. [PMID: 38680077 PMCID: PMC11056716 DOI: 10.1002/brb3.3490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/23/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Word finding difficulty is a frequent complaint in older age and disease states, but treatment options are lacking for such verbal retrieval deficits. Better understanding of the neurophysiological and neuroanatomical basis of verbal retrieval function may inform effective interventions. In this article, we review the current evidence of a neural retrieval circuit central to verbal production, including words and semantic memory, that involves the pre-supplementary motor area (pre-SMA), striatum (particularly caudate nucleus), and thalamus. We aim to offer a modified neural circuit framework expanded upon a memory retrieval model proposed in 2013 by Hart et al., as evidence from electrophysiological, functional brain imaging, and noninvasive electrical brain stimulation studies have provided additional pieces of information that converge on a shared neural circuit for retrieval of memory and words. We propose that both the left inferior frontal gyrus and fronto-polar regions should be included in the expanded circuit. All these regions have their respective functional roles during verbal retrieval, such as selection and inhibition during search, initiation and termination of search, maintenance of co-activation across cortical regions, as well as final activation of the retrieved information. We will also highlight the structural connectivity from and to the pre-SMA (e.g., frontal aslant tract and fronto-striatal tract) that facilitates communication between the regions within this circuit. Finally, we will discuss how this circuit and its correlated activity may be affected by disease states and how this circuit may serve as a novel target engagement for neuromodulatory treatment of verbal retrieval deficits.
Collapse
Affiliation(s)
- Hsueh‐Sheng Chiang
- Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| | - Raksha A. Mudar
- Department of Speech and Hearing ScienceUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - Christine S. Dugas
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| | - Michael A. Motes
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| | - Michael A. Kraut
- Department of Radiology and Radiological ScienceJohns Hopkins UniversityBaltimoreMarylandUSA
| | - John Hart
- Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
10
|
Petríková D, Marko M, Rovný R, Riečanský I. Electrical stimulation of the cerebellum facilitates automatic but not controlled word retrieval. Brain Struct Funct 2023; 228:2137-2146. [PMID: 37783862 PMCID: PMC10587269 DOI: 10.1007/s00429-023-02712-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
Recent research has indicated that the cerebellum is engaged in language functions, yet the role of the cerebellum in lexical-semantic memory is poorly understood. In a double-blind randomized controlled experiment, we therefore targeted the cerebellum by transcranial direct current stimulation (tDCS) to assess and compare the contribution of the cerebellar processing to automatic and controlled retrieval of words in healthy adults (n = 136). Anodal cerebellar tDCS facilitated retrieval of semantically related words in free-associative chains, which was not due to a non-specific acceleration of processing speed. The stimulation had no influence on controlled word retrieval that employed inhibition or switching. The effect of cathodal tDCS was opposite to the anodal stimulation, but statistically non-significant. Our data show that the cerebellum is engaged extracting associative information from the system of semantic representations, established and strengthened/automated by learning, and indicates a domain-general role of this structure in automation of behavior, cognition and language.
Collapse
Affiliation(s)
- Dominika Petríková
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371, Bratislava, Slovakia
| | - Martin Marko
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371, Bratislava, Slovakia
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Rastislav Rovný
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371, Bratislava, Slovakia
| | - Igor Riečanský
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371, Bratislava, Slovakia.
- Department of Psychiatry, Faculty of Medicine, Slovak Medical University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
11
|
Jebahi F, Abou Jaoude R, Daaboul H, El Achkar R, Jacobs MM. Preliminary normative data for 12 categories using semantic verbal fluency: The role of animacy. APPLIED NEUROPSYCHOLOGY. ADULT 2023; 30:680-685. [PMID: 34470556 DOI: 10.1080/23279095.2021.1971981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Verbal fluency tasks are a common part of neuropsychological batteries and are frequently used in clinical and research practices to support the diagnosis of neurological impairments. Semantic verbal fluency is most frequently examined using only the category of animals. Little is known about the differences other semantic categories may present on semantic verbal fluency performance. The purpose of this study was to establish preliminary categorical normative data across twelve categories comprising of different animate and inanimate categories using semantic verbal fluency in neurotypical Lebanese-speaking adults and to determine the impact of category affiliation (animacy) on semantic verbal fluency performance. The task was administered to seventy female and male adults aged between 19 and 79 years having different educational levels. Participants generated the greatest number of exemplars for the category of body parts. Participants then produced exemplars in the following decreasing order: animals, vegetables, fruits, clothes, kitchen utensils, naturals, electronics, furniture, means of transportation, tools, and accessories. The animate categories were associated with the greatest number of exemplars compared to the inanimate. Clustering strategy might have been reinforced by the shared properties of animates.
Collapse
Affiliation(s)
- Fatima Jebahi
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, USA
- Department of Speech Therapy, Lebanese University, Fanar, Lebanon
- Fulbright Association, Washington, USA
| | | | - Hadi Daaboul
- Department of Speech Therapy, Lebanese University, Fanar, Lebanon
- Department of Linguistics, University of Potsdam, Potsdam, Germany
| | - Rhea El Achkar
- Department of Speech Therapy, Lebanese University, Fanar, Lebanon
| | - Molly M Jacobs
- Department of Health Services and Information Management, East Carolina University, Greenville, NC, USA
| |
Collapse
|
12
|
Yeung MK. Effects of age, gender, and education on task performance and prefrontal cortex processing during emotional and non-emotional verbal fluency tests. BRAIN AND LANGUAGE 2023; 245:105325. [PMID: 37748413 DOI: 10.1016/j.bandl.2023.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
The emotional semantic fluency test (SFT) is an emerging verbal fluency test that requires controlled access to emotional lexical information. Currently, how demographic variables influence neurocognitive processing during this test remains elusive. The present study compared the effects of age, gender, and education on task performance and prefrontal cortex (PFC) processing during the non-emotional and emotional SFTs. One-hundred and thirty-three Cantonese-speaking adults aged 18-79 performed the non-emotional and emotional SFTs while their PFC activation was measured using functional near-infrared spectroscopy. Results showed that more education predicted better non-emotional SFT performance, whereas younger age, being female, and more education predicted better emotional SFT performance. Only age significantly affected PFC activation during the SFTs, and the effect was comparable between the two SFTs. Thus, compared with its non-emotional analog, the emotional SFT is influenced by overlapping yet distinct demographic variables. There is a similar age-related reorganization of PFC function across SFT performances.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Psychology, The Education University of Hong Kong, Hong Kong, China; University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
13
|
The impact of executive dysfunctions on Theory of Mind abilities in Parkinson's disease. Neuropsychologia 2022; 176:108389. [DOI: 10.1016/j.neuropsychologia.2022.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022]
|
14
|
Zhu Z, Deng J, Li M, Qin Y, Li J, Yang Y. Processing speed mediates the relationship between brain structure and semantic fluency in aging. Neurosci Lett 2022; 788:136838. [PMID: 35964825 DOI: 10.1016/j.neulet.2022.136838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
The present study has investigated how brain structure and processing speed contribute to age-related changes in semantic fluency. Groups of younger (N = 37) and older healthy participants (N = 40) completed a semantic fluency test and digit symbol test, and rested while diffusion tensor imaging (DTI) was performed. Group comparisons and correlational analysis revealed that age-related decline in semantic fluency was associated with reduction in gray matter volume in widespread fronto-temporal regions. Age-related decline in semantic fluency was also associated with decline in white matter integrity in brain tracts connecting these brain regions. Critically, hierarchical regression analysis suggested that low processing speed fully mediated the negative effects of lower gray matter volume and white matter integrity on semantic fluency. The present findings provide a support for the processing speed theory in relation to age related decline in semantic fluency, and also provide a reference for improving cognitive decline.
Collapse
Affiliation(s)
- Zude Zhu
- School of Liberal Arts, Nanjing Normal University, Nanjing 210097, China; School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221009, China; Collaborative Innovation Center for Language Ability, Xuzhou 221009, China; Jiangsu Key Laboratory of Language and Cognitive Neuroscience, Xuzhou 221009, China.
| | - Jia Deng
- School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221009, China
| | - Mengya Li
- School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221009, China
| | - Ye Qin
- School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221009, China
| | - Jingyi Li
- School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221009, China
| | - Yiming Yang
- School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221009, China; Collaborative Innovation Center for Language Ability, Xuzhou 221009, China; Jiangsu Key Laboratory of Language and Cognitive Neuroscience, Xuzhou 221009, China.
| |
Collapse
|
15
|
Ovando-Tellez M, Benedek M, Kenett YN, Hills T, Bouanane S, Bernard M, Belo J, Bieth T, Volle E. An investigation of the cognitive and neural correlates of semantic memory search related to creative ability. Commun Biol 2022; 5:604. [PMID: 35710948 PMCID: PMC9203494 DOI: 10.1038/s42003-022-03547-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/31/2022] [Indexed: 12/11/2022] Open
Abstract
Creative ideas likely result from searching and combining semantic memory knowledge, yet the mechanisms acting on memory to yield creative ideas remain unclear. Here, we identified the neurocognitive correlates of semantic search components related to creative abilities. We designed an associative fluency task based on polysemous words and distinguished two search components related to clustering and switching between the different meanings of the polysemous words. Clustering correlated with divergent thinking, while switching correlated with the ability to combine remote associates. Furthermore, switching correlated with semantic memory structure and executive abilities, and was predicted by connectivity between the default, control, and salience neural networks. In contrast, clustering relied on interactions between control, salience, and attentional neural networks. Our results suggest that switching captures interactions between memory structure and control processes guiding the search whereas clustering may capture attentional controlled processes for persistent search, and that alternations between exploratory search and focused attention support creativity.
Collapse
Affiliation(s)
- Marcela Ovando-Tellez
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013, Paris, France.
| | | | - Yoed N Kenett
- Faculty of Industrial Engineering and Management, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Thomas Hills
- Department of Psychology, University of Warwick, University Road, Coventry, CV4 7AL, UK
| | - Sarah Bouanane
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013, Paris, France
| | - Matthieu Bernard
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013, Paris, France
| | - Joan Belo
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013, Paris, France
| | - Theophile Bieth
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013, Paris, France
- Neurology Department, Pitié-Salpêtrière hospital, AP-HP, F-75013, Paris, France
| | - Emmanuelle Volle
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013, Paris, France.
| |
Collapse
|
16
|
Li X, Li Y, Wang X, Bai H, Deng W, Cai N, Hu W. Neural mechanisms underlying the influence of retrieval ability on creating and recalling creative ideas. Neuropsychologia 2022; 171:108239. [DOI: 10.1016/j.neuropsychologia.2022.108239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/13/2022] [Accepted: 04/09/2022] [Indexed: 01/05/2023]
|
17
|
Tiedt HO, Ehlen F, Klostermann F. Dopamine-Related Reduction of Semantic Spreading Activation in Patients With Parkinson's Disease. Front Hum Neurosci 2022; 16:837122. [PMID: 35431839 PMCID: PMC9008217 DOI: 10.3389/fnhum.2022.837122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Impaired performance in verbal fluency (VF) tasks is a frequent observation in Parkinson's disease (PD). As to the nature of the underlying cognitive deficit, it is commonly attributed to a frontal-type dysexecutive syndrome due to nigrostriatal dopamine depletion. Whereas dopaminergic medication typically improves VF performance in PD, e.g., by ameliorating impaired lexical switching, its effect on semantic network activation is unclear. Data from priming studies suggest that dopamine causes a faster decay of semantic activation spread. The aim of the current study was to examine the impact of dopaminergic medication on the dynamic change of word frequency during VF performance as a measure of semantic spreading activation. To this end, we performed a median split analysis of word frequency during phonemic and semantic VF task performance in a PD group tested while receiving dopaminergic medication (ON) as well as after drug withdrawal (i.e., OFF), and in a sample of age-matched healthy volunteers (both groups n = 26). Dopaminergic medication in the PD group significantly affected phonemic VF with improved word production as well as increased error-rates. The expected decrease of word frequency during VF task performance was significantly smaller in the PD group ON medication than in healthy volunteers across semantic and phonemic VF. No significant group-difference emerged between controls and the PD group in the OFF condition. The comparison between both treatment conditions within the PD group did not reach statistical significance. The observed pattern of results indicates a faster decay of semantic network activation during lexical access in PD patients on dopaminergic medication. In view of improved word generation, this finding is consistent with a concept of more focused neural activity by an increased signal-to-noise ratio due to dopaminergic neuromodulation. However, the effect of dopaminergic stimulation on VF output suggests a trade-off between these beneficial effects and increased error-rates.
Collapse
Affiliation(s)
- Hannes Ole Tiedt
- Department of Neurology, Motor and Cognition Group, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universitätzu Berlin, Berlin, Germany
| | - Felicitas Ehlen
- Department of Neurology, Motor and Cognition Group, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universitätzu Berlin, Berlin, Germany
- Department of Psychiatry, Jüdisches Krankenhaus Berlin, Berlin, Germany
| | - Fabian Klostermann
- Department of Neurology, Motor and Cognition Group, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universitätzu Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
18
|
Pasquini L, Di Napoli A, Rossi-Espagnet MC, Visconti E, Napolitano A, Romano A, Bozzao A, Peck KK, Holodny AI. Understanding Language Reorganization With Neuroimaging: How Language Adapts to Different Focal Lesions and Insights Into Clinical Applications. Front Hum Neurosci 2022; 16:747215. [PMID: 35250510 PMCID: PMC8895248 DOI: 10.3389/fnhum.2022.747215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
When the language-dominant hemisphere is damaged by a focal lesion, the brain may reorganize the language network through functional and structural changes known as adaptive plasticity. Adaptive plasticity is documented for triggers including ischemic, tumoral, and epileptic focal lesions, with effects in clinical practice. Many questions remain regarding language plasticity. Different lesions may induce different patterns of reorganization depending on pathologic features, location in the brain, and timing of onset. Neuroimaging provides insights into language plasticity due to its non-invasiveness, ability to image the whole brain, and large-scale implementation. This review provides an overview of language plasticity on MRI with insights for patient care. First, we describe the structural and functional language network as depicted by neuroimaging. Second, we explore language reorganization triggered by stroke, brain tumors, and epileptic lesions and analyze applications in clinical diagnosis and treatment planning. By comparing different focal lesions, we investigate determinants of language plasticity including lesion location and timing of onset, longitudinal evolution of reorganization, and the relationship between structural and functional changes.
Collapse
Affiliation(s)
- Luca Pasquini
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Alberto Di Napoli
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
- Radiology Department, Castelli Hospital, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Emiliano Visconti
- Neuroradiology Unit, Cesena Surgery and Trauma Department, M. Bufalini Hospital, AUSL Romagna, Cesena, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Andrea Romano
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Alessandro Bozzao
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Kyung K. Peck
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Andrei I. Holodny
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States
- Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York, NY, United States
| |
Collapse
|
19
|
Noachtar IA, Hidalgo-Lopez E, Pletzer B. Duration of oral contraceptive use relates to cognitive performance and brain activation in current and past users. Front Endocrinol (Lausanne) 2022; 13:885617. [PMID: 36204097 PMCID: PMC9530450 DOI: 10.3389/fendo.2022.885617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies indicate effects of oral contraceptive (OC) use on spatial and verbal cognition. However, a better understanding of the OC effects is still needed, including the differential effects of androgenic or anti-androgenic OC use and whether the possible impact persists beyond the OC use. We aim to investigate the associations of OC use duration with spatial and verbal cognition, differentiating between androgenic and anti-androgenic OC. Using functional magnetic resonance imaging (MRI), we scanned a group of 94 past and current OC-users in a single session. We grouped current OC users (N=53) and past OC users with a natural cycle (N=41) into androgenic and anti-androgenic user. Effects of OC use duration were observed for current use and after discontinuation. Duration of OC use was reflected only in verbal fluency performance but not navigation: The longer the current OC use, the less words were produced in the verbal fluency task. During navigation, deactivation in the caudate and postcentral gyrus was duration-dependent in current androgenic OC users. Only during the verbal fluency task, duration of previous OC use affects several brain parameters, including activation of the left putamen and connectivity between right-hemispheric language areas (i.e., right inferior frontal gyrus and right angular gyrus). The results regarding performance and brain activation point towards stronger organizational effects of OCs on verbal rather than spatial processing. Irrespective of the task, a duration-dependent connectivity between the hippocampus and various occipital areas was observed. This could suggest a shift in strategy or processing style with long-term contraceptive use during navigation/verbal fluency. The current findings suggest a key role of the progestogenic component of OCs in both tasks. The influence of OC use on verbal fluency remains even after discontinuation which further points out the importance of future studies on OC effects and their reversibility.
Collapse
|
20
|
Gonzalez MR, Baaré WFC, Hagler DJ, Archibald S, Vestergaard M, Madsen KS. Brain structure associations with phonemic and semantic fluency in typically-developing children. Dev Cogn Neurosci 2021; 50:100982. [PMID: 34171560 PMCID: PMC8242963 DOI: 10.1016/j.dcn.2021.100982] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/13/2021] [Accepted: 06/20/2021] [Indexed: 12/26/2022] Open
Abstract
Verbal fluency is the ability to retrieve lexical knowledge quickly and efficiently and develops during childhood and adolescence. Few studies have investigated associations between verbal fluency performance and brain structural variation in children. Here we examined associations of verbal fluency performance with structural measures of frontal and temporal language-related brain regions and their connections in 73 typically-developing children aged 7-13 years. Tract-based spatial statistics was used to extract fractional anisotropy (FA) from the superior longitudinal fasciculus/arcuate fasciculus (SLF/AF), and the white matter underlying frontal and temporal language-related regions. FreeSurfer was used to extract cortical thickness and surface area. Better semantic and phonemic fluency performance was associated with higher right SLF/AF FA, and phonemic fluency was also modestly associated with lower left SLF/AF FA. Explorative voxelwise analyses for semantic fluency suggested associations with FA in other fiber tracts, including corpus callosum and right inferior fronto-occipital fasciculus. Overall, our results suggest that verbal fluency performance in children may rely on right hemisphere structures, possibly involving both language and executive function networks, and less on solely left hemisphere structures as often is observed in adults. Longitudinal studies are needed to clarify whether these associations are mediated by maturational processes, stable characteristics and/or experience.
Collapse
Affiliation(s)
| | - William F C Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Kettegaard Allé 30, DK-2650, Hvidovre, Denmark.
| | - Donald J Hagler
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA.
| | - Sarah Archibald
- Center for Human Development, University of California, San Diego, La Jolla, CA, USA.
| | - Martin Vestergaard
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Kettegaard Allé 30, DK-2650, Hvidovre, Denmark; Department of Child and Adolescent Psychiatry, Psychiatry Region Zealand, Ny Østergade 12, DK-4000, Roskilde, Denmark.
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Kettegaard Allé 30, DK-2650, Hvidovre, Denmark; Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital - Amager and Hvidovre, Kettegaard Allé 30, DK-2650, Hvidovre, Denmark; Radiography, Department of Technology, University College Copenhagen, Sigurdsgade 26, DK-2200, Copenhagen N., Denmark.
| |
Collapse
|
21
|
Li Q, Pasquini L, Del Ferraro G, Gene M, Peck KK, Makse HA, Holodny AI. Monolingual and bilingual language networks in healthy subjects using functional MRI and graph theory. Sci Rep 2021; 11:10568. [PMID: 34012006 PMCID: PMC8134560 DOI: 10.1038/s41598-021-90151-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
Bilingualism requires control of multiple language systems, and may lead to architectural differences in language networks obtained from clinical fMRI tasks. Emerging connectivity metrics such as k-core may capture these differences, highlighting crucial network components based on resiliency. We investigated the influence of bilingualism on clinical fMRI language tasks and characterized bilingual networks using connectivity metrics to provide a patient care benchmark. Sixteen right-handed subjects (mean age 42-years; nine males) without neurological history were included: eight native English-speaking monolinguals and eight native Spanish-speaking (L1) bilinguals with acquired English (L2). All subjects underwent fMRI with gold-standard clinical language tasks. Starting from active clusters on fMRI, we inferred the persistent functional network across subjects and ran centrality measures to characterize differences. Our results demonstrated a persistent network "core" consisting of Broca's area, the pre-supplementary motor area, and the premotor area. K-core analysis showed that Wernicke's area was engaged by the "core" with weaker connection in L2 than L1.
Collapse
Affiliation(s)
- Qiongge Li
- grid.254250.40000 0001 2264 7145Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA ,grid.253482.a0000 0001 0170 7903Department of Physics, Graduate Center of City University of New York, New York, NY 10016 USA ,grid.21107.350000 0001 2171 9311Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Luca Pasquini
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.7841.aNeuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, 00189 Rome, RM Italy
| | - Gino Del Ferraro
- grid.254250.40000 0001 2264 7145Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA ,grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.137628.90000 0004 1936 8753Center for Neural Science, New York University, New York, NY 10003 USA
| | - Madeleine Gene
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Kyung K. Peck
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.51462.340000 0001 2171 9952Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Hernán A. Makse
- grid.254250.40000 0001 2264 7145Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA
| | - Andrei I. Holodny
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.137628.90000 0004 1936 8753New York University School of Medicine, New York, NY 10016 USA ,grid.5386.8000000041936877XDepartment of Neuroscience, Weill Medical College of Cornell University, New York, NY 10065 USA
| |
Collapse
|
22
|
Rodríguez-Aranda C, Castro-Chavira SA, Espenes R, Barrios FA, Waterloo K, Vangberg TR. The Role of Moderating Variables on BOLD fMRI Response During Semantic Verbal Fluency and Finger Tapping in Active and Educated Healthy Seniors. Front Hum Neurosci 2020; 14:203. [PMID: 32581748 PMCID: PMC7290010 DOI: 10.3389/fnhum.2020.00203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/06/2020] [Indexed: 11/28/2022] Open
Abstract
Semantic verbal fluency is among the most employed tasks in cognitive aging research and substantial work is devoted to understanding the underlying mechanisms behind age-related differences at the neural and behavioral levels. The present investigation aimed to evaluate the role of moderating variables, such as age, sex, MMSE, and proxies of cognitive reserve (CR) on the hemodynamic response evoked by semantic verbal fluency in healthy young and healthy older adults. So far, no study has been conducted to this end. To elucidate the exclusive effect of the mentioned variables on brain activation during semantic fluency, finger tapping was included as a control task. Results showed that disregarding adjustments for age, older adults displayed important parietal activations during semantic fluency as well as during finger-tapping. Specifically, the anterior intra-parietal sulcus (IPS) and left inferior parietal lobule (IPL) were areas activated in both tasks in the older group. Younger adults, only displayed parietal activations related to age and sex when these demographics were employed as predictors. Concerning proxies of CR in semantic fluency, the only vocabulary was an important moderator in both age groups. Higher vocabulary scores were associated with lesser activation in occipital areas. Education did not show significant correlations with brain activity during semantic fluency in any of the groups. However, both CR proxies were significantly correlated to brain activations of older adults during finger tapping. Specifically, vocabulary was associated with frontal regions, while education correlated with parietal lobe and cingulate gyrus. Finally, the effects of MMSE were mostly observed on brain activation of older adults in both tasks. These findings demonstrate that the effects of moderating variables on shaping brain activation are intricate and not exclusive of complex verbal tasks. Thus, before adjusting for “nuisance variables,” their importance needs to be established. This is especially true for samples including older adults for whom a motor task may be a demanding operation due to normal age-related processes of dedifferentiation.
Collapse
Affiliation(s)
- Claudia Rodríguez-Aranda
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Susana A Castro-Chavira
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ragna Espenes
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Fernando A Barrios
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Knut Waterloo
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Neurology, University Hospital of North Norway, Tromsø, Norway
| | - Torgil R Vangberg
- Department of Radiology and Nuclear Medicine, University Hospital of North Norway, Tromsø, Norway.,Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
23
|
Paek EJ, Murray LL, Newman SD. Neural Correlates of Verb Fluency Performance in Cognitively Healthy Older Adults and Individuals With Dementia: A Pilot fMRI Study. Front Aging Neurosci 2020; 12:73. [PMID: 32265685 PMCID: PMC7100367 DOI: 10.3389/fnagi.2020.00073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
Currently there are ~6 million Americans who are affected by dementia. Verbal fluency tasks have been commonly and frequently utilized to document the disease progression in many forms of dementia. Verb fluency has been found to display substantial potential to detect and monitor the cognitive declines of individuals with dementia who have fronto-striatal involvement. The neural substrates underlying verb fluency task performance, however, have remained unclear so far, especially in individuals with dementia. Therefore, in the current study, brain activation patterns of seven individuals with dementia and nine healthy older adults were investigated using functional MRI. The participants performed in the scanner an overt, subject-paced verb fluency task, representative of fluency tasks used in clinical settings. The brain activation patterns during the verb fluency task were compared between the two groups, and a correlational analysis was conducted to determine the neural correlates of verb fluency performance. The results suggest that compared to healthy older adults, individuals with dementia demonstrated poorer verb fluency performance and showed higher activation in specific neural regions, such as the bilateral frontal lobe. In addition, the correlational analysis revealed that poorer verb fluency performance lead to increased activation in certain cortical and subcortical areas, including left hippocampus and right supramarginal gyrus. The current findings are consistent with previous neurophysiological findings related to semantic (noun) fluency performance in older adults and individuals with dementia and add to the empirical evidence that supports the role of the frontal lobe and hippocampus in verb retrieval and search. Declines in verb fluency performance cannot only be used as a cognitive marker, but also represent neuropathological changes due to the neurodegenerative disease.
Collapse
Affiliation(s)
- Eun Jin Paek
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN, United States
| | - Laura L. Murray
- School of Communication Sciences and Disorders, Western University London, London, ON, Canada
| | - Sharlene D. Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| |
Collapse
|
24
|
Williams Roberson S, Shah P, Piai V, Gatens H, Krieger AM, Lucas TH, Litt B. Electrocorticography reveals spatiotemporal neuronal activation patterns of verbal fluency in patients with epilepsy. Neuropsychologia 2020; 141:107386. [PMID: 32105726 DOI: 10.1016/j.neuropsychologia.2020.107386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 01/01/2020] [Accepted: 02/09/2020] [Indexed: 02/05/2023]
Abstract
Verbal fluency is commonly used to evaluate cognitive dysfunction in a variety of neuropsychiatric diseases, yet the neurobiology underlying performance of this task is incompletely understood. Electrocorticography (ECoG) provides a unique opportunity to investigate temporal activation patterns during cognitive tasks with high spatial and temporal precision. We used ECoG to study high gamma activity (HGA) patterns in patients undergoing presurgical evaluation for intractable epilepsy as they completed an overt, free-recall verbal fluency task. We examined regions demonstrating changes in HGA during specific timeframes relative to speech onset. Early pre-speech high gamma activity was present in left frontal regions during letter fluency and in bifrontal regions during category fluency. During timeframes typically associated with word planning, a distributed network was engaged including left inferior frontal, orbitofrontal and posterior temporal regions. Peri-Rolandic activation was observed during speech onset, and there was post-speech activation in the bilateral posterior superior temporal regions. Based on these observations in the context of prior studies, we propose a model of neocortical activity patterns underlying verbal fluency.
Collapse
Affiliation(s)
- Shawniqua Williams Roberson
- University of Pennsylvania, Center for Neuroengineering and Therapeutics, 240 South 33rd Street, Philadelphia, PA, 19104, USA.
| | - Preya Shah
- University of Pennsylvania, Center for Neuroengineering and Therapeutics, 240 South 33rd Street, Philadelphia, PA, 19104, USA
| | - Vitória Piai
- Radboud University, Donders Centre for Cognition, Montessorilaan 3, 6525HR, Nijmegen, the Netherlands; Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Medical Psychology, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands
| | - Heather Gatens
- University of Pennsylvania, Center for Neuroengineering and Therapeutics, 240 South 33rd Street, Philadelphia, PA, 19104, USA
| | - Abba M Krieger
- University of Pennsylvania, The Wharton School, 3730 Walnut Street, Philadelphia, PA, 19104, USA
| | - Timothy H Lucas
- University of Pennsylvania, Center for Neuroengineering and Therapeutics, 240 South 33rd Street, Philadelphia, PA, 19104, USA
| | - Brian Litt
- University of Pennsylvania, Center for Neuroengineering and Therapeutics, 240 South 33rd Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
25
|
Tao L, Zhu M, Cai Q. Neural substrates of Chinese lexical production: The role of domain-general cognitive functions. Neuropsychologia 2020; 138:107354. [DOI: 10.1016/j.neuropsychologia.2020.107354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/27/2019] [Accepted: 01/17/2020] [Indexed: 11/15/2022]
|
26
|
Jones SE, Idris A, Bullen JA, Miller JB, Banks SJ. Relationship between cortical thickness and fluency in the memory disorders clinic population. Neuropsychologia 2019; 129:294-301. [DOI: 10.1016/j.neuropsychologia.2019.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 03/16/2019] [Accepted: 03/28/2019] [Indexed: 01/18/2023]
|
27
|
Yeung MK, Lee TL, Chan AS. Frontal lobe dysfunction underlies the differential word retrieval impairment in adolescents with high-functioning autism. Autism Res 2019; 12:600-613. [PMID: 30758144 DOI: 10.1002/aur.2082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 11/11/2022]
Abstract
There is substantial evidence of word retrieval impairment as indicated by poor performance on the category fluency test in autism spectrum disorder (ASD). However, little is known about the neural mechanisms underlying this impairment. Functional neuroimaging studies have shown that the lateral frontal cortex plays a key role in flexible word retrieval. Thus, we examined whether individuals with ASD exhibited altered frontal processing during the category fluency test using functional near-infrared spectroscopy (fNIRS). Twenty-two adolescents with high-functioning ASD (20 males) and 22 typically developing (TD) adolescents (16 males) aged 11-18 years were recruited. All underwent a category fluency paradigm, which required production of animal or means of transportation words for 1 min each although their frontal hemodynamic changes were recorded with fNIRS. We found that adolescents with ASD produced fewer animal but not transportation words (group-by-category interaction: P = 0.003), suggesting differential word retrieval impairment. In addition, unlike TD adolescents who exhibited activation primarily in lateral frontal regions during word production, adolescents with ASD had comparable activation across lateral and medial frontal regions. More importantly, this lack of lateral-medial distinction of activation, which was associated with poor word retrieval, differed significantly between groups only in the animal category (group-by-category interaction: P = 0.018). Thus, our findings implicate frontal lobe dysfunction in the impairment of differential word retrieval in adolescents with ASD. The relatively greater involvement of the medial frontopolar cortex might reflect the use of nonspecialized brain regions to compensate for the category-dependent difficulties with word retrieval in ASD. Autism Res 2019, 12: 600-613. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Using an optical imaging tool, we found that adolescents with autism had difficulties with producing semantically related words and exhibited frontal lobe dysfunction. Nonetheless, poor word production and altered brain processing was only seen when these adolescents were asked to produce words from a category of living things but not nonliving things (i.e., animals but not means of transportation). Category-dependent word retrieval problems and frontal lobe dysfunction might be two features of this disorder.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Tsz L Lee
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Agnes S Chan
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China.,Chanwuyi Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| |
Collapse
|
28
|
Trimmel K, van Graan AL, Caciagli L, Haag A, Koepp MJ, Thompson PJ, Duncan JS. Left temporal lobe language network connectivity in temporal lobe epilepsy. Brain 2018; 141:2406-2418. [DOI: 10.1093/brain/awy164] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 04/24/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Karin Trimmel
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, SL9 0LR, UK
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurology, Medical University of Vienna, 1090-Vienna, Austria
| | - Andre L van Graan
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, SL9 0LR, UK
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Lorenzo Caciagli
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, SL9 0LR, UK
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Anja Haag
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, SL9 0LR, UK
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Matthias J Koepp
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, SL9 0LR, UK
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Pamela J Thompson
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, SL9 0LR, UK
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - John S Duncan
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, SL9 0LR, UK
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|