1
|
Pick H, Fahoum N, Shamay Tsoory SG. Creating together: An interbrain model of group creativity. Neuropsychologia 2025; 207:109063. [PMID: 39653071 DOI: 10.1016/j.neuropsychologia.2024.109063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/01/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Despite the growing interest in understanding creativity-the ability to produce novel and useful ideas-most research in the field focuses on examining the neural networks underlying creativity in isolated individuals. However, numerous creative breakthroughs in arts, sciences, and industries occur through social interactions, where ideas are generated collaboratively by dyads and groups. The accumulating evidence indicates that cooperative settings foster higher levels of creativity compared to individual settings, suggesting that social factors play a role in creativity.In this review, we synthesize the findings on individual and group creativity and propose a new brain model for understanding group creativity. We extend the twofold model of creativity and suggest that creativity in social setting involves an interplay between idea generation, social influence and flexibility. Building on this model we suggest that group creativity is mediated by activity as well as interbrain coupling in neural circuits associated with associative thinking (default mode network), flexibility (executive control network) and observation-execution (inferior frontal gyrus). By shifting the focus from isolated individuals to social settings, we can gain a more comprehensive understanding of creativity and its neural mechanisms. This research direction holds the potential to uncover valuable insights into how group dynamics and social interactions facilitate the generation of creative ideas.
Collapse
Affiliation(s)
- Hadas Pick
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Nardine Fahoum
- Department of Psychology, University of Haifa, Haifa, Israel
| | | |
Collapse
|
2
|
Vanutelli ME, Grigis C, Lucchiari C. Breathing Right… or Left! The Effects of Unilateral Nostril Breathing on Psychological and Cognitive Wellbeing: A Pilot Study. Brain Sci 2024; 14:302. [PMID: 38671954 PMCID: PMC11048276 DOI: 10.3390/brainsci14040302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The impact of controlled breathing on cognitive and affective processing has been recognized since ancient times, giving rise to multiple practices aimed at achieving different psychophysical states, mostly related to mental clarity and focus, stress reduction, and relaxation. Previous scientific research explored the effects of forced unilateral nostril breathing (UNB) on brain activity and emotional and cognitive functions. Some evidence concluded that it had a contralateral effect, while other studies presented controversial results, making it difficult to come to an unambiguous interpretation. Also, a few studies specifically addressed wellbeing. In the present study, we invited a pilot sample of 20 participants to take part in an 8-day training program for breathing, and each person was assigned to either a unilateral right nostril (URNB) or left nostril breathing condition (ULNB). Then, each day, we assessed the participants' wellbeing indices using their moods and mind wandering scales. The results revealed that, after the daily practice, both groups reported improved wellbeing perception. However, the effect was specifically related to the nostril involved. URNB produced more benefits in terms of stress reduction and relaxation, while ULNB significantly and increasingly reduced mind-wandering occurrences over time. Our results suggest that UNB can be effectively used to increase wellbeing in the general population. Additionally, they support the idea that understanding the effects of unilateral breathing on wellbeing and cognition requires a complex interpretive model with multiple brain networks to address bottom-up and top-down processes.
Collapse
Affiliation(s)
- Maria Elide Vanutelli
- Department of Philosophy “Piero Martinetti”, Università degli Studi di Milano, 20122 Milan, Italy; (M.E.V.); (C.G.)
- Department of Psychology, University of Milano-Bicocca, 20126 Milan, Italy
| | - Chiara Grigis
- Department of Philosophy “Piero Martinetti”, Università degli Studi di Milano, 20122 Milan, Italy; (M.E.V.); (C.G.)
| | - Claudio Lucchiari
- Department of Philosophy “Piero Martinetti”, Università degli Studi di Milano, 20122 Milan, Italy; (M.E.V.); (C.G.)
| |
Collapse
|
3
|
Huang F, Fu X, Song J, Ren J, Li F, Zhao Q. Divergent thinking benefits from functional antagonism of the left IFG and right TPJ: a transcranial direct current stimulation study. Cereb Cortex 2024; 34:bhad531. [PMID: 38204300 DOI: 10.1093/cercor/bhad531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Divergent thinking is assumed to benefit from releasing the constraint of existing knowledge (i.e. top-down control) and enriching free association (i.e. bottom-up processing). However, whether functional antagonism between top-down control-related and bottom-up processing-related brain structures is conducive to generating original ideas is largely unknown. This study was designed to investigate the effect of functional antagonism between the left inferior frontal gyrus and the right temporoparietal junction on divergent thinking performance. A within-subjects design was adopted for three experiments. A total of 114 participants performed divergent thinking tasks after receiving transcranial direct current stimulation over target regions. In particular, cathodal stimulation over the left inferior frontal gyrus and anodal stimulation over the right inferior frontal gyrus (Experiment 1), anodal stimulation over the right temporoparietal junction (Experiment 2), and both cathodal stimulation over the left inferior frontal gyrus and anodal stimulation over the right temporoparietal junction (Experiment 3) were manipulated. Compared with sham stimulation, the combination of hyperpolarization of the left inferior frontal gyrus and depolarization of the right temporoparietal junction comprehensively promoted the fluency, flexibility, and originality of divergent thinking without decreasing the rationality of generated ideas. Functional antagonism between the left inferior frontal gyrus (hyperpolarization) and right temporoparietal junction (depolarization) has a "1 + 1 > 2" superposition effect on divergent thinking.
Collapse
Affiliation(s)
- Furong Huang
- School of Psychology, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaqing Fu
- School of Psychology, Jiangxi Normal University, Nanchang 330022, China
| | - Jiajun Song
- School of Psychology, Jiangxi Normal University, Nanchang 330022, China
| | - Jingyuan Ren
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen 6525EN, The Netherlands
| | - Fuhong Li
- School of Psychology, Jiangxi Normal University, Nanchang 330022, China
| | - Qingbai Zhao
- School of Psychology, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
4
|
Khalil R, Agnoli S, Mastria S, Kondinska A, Karim AA, Godde B. Individual differences and creative ideation: neuromodulatory signatures of mindset and response inhibition. Front Neurosci 2023; 17:1238165. [PMID: 38125402 PMCID: PMC10731982 DOI: 10.3389/fnins.2023.1238165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
This study addresses the modulatory role of individual mindset in explaining the relationship between response inhibition (RI) and divergent thinking (DT) using transcranial direct current stimulation (tDCS). Forty undergraduate students (22 male and 18 female), aged between 18 and 23 years (average age = 19 years, SD = 1.48), were recruited. Participants received either anodal tDCS of the right IFG coupled with cathodal tDCS of the left IFG (R + L-; N = 19) or the opposite coupling (R-L+; N = 21). We tested DT performance using the alternative uses task (AUT), measuring participants' fluency, originality, and flexibility in the response production, as well as participants' mindsets. Furthermore, we applied a go-no-go task to examine the role of RI before and after stimulating the inferior frontal gyrus (IFG) using tDCS. The results showed that the mindset levels acted as moderators on stimulation conditions and enhanced RI on AUT fluency and flexibility but not originality. Intriguingly, growth mindsets have opposite moderating effects on the change in DT, resulting from the tDCS stimulation of the left and the right IFG, with reduced fluency but enhanced flexibility. Our findings imply that understanding neural modulatory signatures of ideational processes with tDCS strongly benefits from evaluating cognitive status and control functions.
Collapse
Affiliation(s)
- Radwa Khalil
- School of Business, Social and Decision Sciences, Constructor University, Bremen, Germany
| | - Sergio Agnoli
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Marconi Institute for Creativity, Sasso Marconi, Italy
| | - Serena Mastria
- Department of Psychology, University of Bologna, Bologna, Italy
| | - Angela Kondinska
- School of Business, Social and Decision Sciences, Constructor University, Bremen, Germany
| | - Ahmed A. Karim
- School of Business, Social and Decision Sciences, Constructor University, Bremen, Germany
- Department of Psychiatry and Psychotherapy, University Clinic Tübingen, Tübingen, Germany
- Department of Health Psychology and Neurorehabilitation, SRH Mobile University, Riedlingen, Germany
| | - Ben Godde
- School of Business, Social and Decision Sciences, Constructor University, Bremen, Germany
| |
Collapse
|
5
|
Ivancovsky T, Baror S, Bar M. A shared novelty-seeking basis for creativity and curiosity. Behav Brain Sci 2023; 47:e89. [PMID: 37547934 DOI: 10.1017/s0140525x23002807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Curiosity and creativity are central pillars of human growth and invention. Although they have been studied extensively in isolation, the relationship between them has not yet been established. We propose that both curiosity and creativity emanate from the same mechanism of novelty seeking. We first present a synthesis showing that curiosity and creativity are affected similarly by a number of key cognitive faculties such as memory, cognitive control, attention, and reward. We then review empirical evidence from neuroscience research, indicating that the same brain regions are involved in both curiosity and creativity, focusing on the interplay between three major brain networks: the default mode network, the salience network, and the executive control network. After substantiating the link between curiosity and creativity, we propose a novelty-seeking model (NSM) that underlies them and suggests that the manifestation of the NSM is governed by one's state of mind.
Collapse
Affiliation(s)
- Tal Ivancovsky
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan,
- Department of Clinical and Health Psychology, Universitat Autònoma de Barcelona, Catalunya, Spain
| | - Shira Baror
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel.
| | - Moshe Bar
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan,
| |
Collapse
|
6
|
Vanutelli ME, Salvadore M, Lucchiari C. BCI Applications to Creativity: Review and Future Directions, from little-c to C 2. Brain Sci 2023; 13:brainsci13040665. [PMID: 37190630 DOI: 10.3390/brainsci13040665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
BCI devices are increasingly being used to create interactive interfaces between users and their own psychophysiological signals. Over the years, these systems have seen strong development as they can enable people with limited mobility to make certain decisions to alter their environment. Additionally, their portability and ease of use have allowed a field of research to flourish for the study of cognitive and emotional processes in natural settings. The study of creativity, especially little creativity (little-c), is one example, although the results of this cutting-edge research are often poorly systematized. The purpose of the present paper, therefore, was to conduct a scoping review to describe and systematize the various studies that have been conducted on the application potential of BCI to the field of creativity. Twenty-two papers were selected that collect information on different aspects of creativity, including clinical applications; art experience in settings with high ecological validity; BCI for creative content creation, and participants' engagement. Critical issues and potentialities of this promising area of study are also presented. Implications for future developments towards multi-brain creativity settings and C2 are discussed.
Collapse
Affiliation(s)
- Maria Elide Vanutelli
- Department of Philosophy "Piero Martinetti", Università degli Studi di Milano, 20122 Milan, Italy
| | - Marco Salvadore
- Department of Philosophy "Piero Martinetti", Università degli Studi di Milano, 20122 Milan, Italy
| | - Claudio Lucchiari
- Department of Philosophy "Piero Martinetti", Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
7
|
Guo J, Luo J, An Y, Xia T. tDCS Anodal Stimulation of the Right Dorsolateral Prefrontal Cortex Improves Creative Performance in Real-World Problem Solving. Brain Sci 2023; 13:brainsci13030449. [PMID: 36979259 PMCID: PMC10046742 DOI: 10.3390/brainsci13030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Brain regions associated with creativity is a focal point in research related to the field of cognitive neuroscience. Previous studies have paid more attention to the role of activation of the left dorsolateral prefrontal cortex in creativity tasks, which are mostly abstract conceptual tasks, and less attention to real-world creativity tasks. The right dorsolateral prefrontal cortex is involved in functions such as visuospatial processing, which may have a positive impact on innovative solutions to real-world problems. In this study, tDCS technology was used to explore the effect of anodal stimulation of the right dorsolateral prefrontal cortex on design creativity performance in a real-word problem-solving task related to product design. The experimental task comprised three stages, of which the first two were idea generation stages based on divergent thinking using text and graphics, respectively, whereas the third was the creative evaluation stage based on convergent thinking. Thirty-six design students were recruited to partake in the experiment. They were randomly assigned into anodal stimulation and sham stimulation groups. The results showed that anodal stimulation of the right dorsolateral prefrontal cortex produced a significant positive effect during the creative evaluation stage, promoting the usefulness of ideas (p = 0.009); thus, improving product creativity scores. However, there was no significant impact on the idea generation stage (p > 0.05), which is dominated by divergent thinking. The results suggest that activating the right dorsolateral prefrontal cortex with tDCS can improve people’s performance in creative activities by promoting convergent thinking rather than divergent thinking. It also provides further evidence that the right hemisphere of the brain has an advantage in solving complex problems that require the participation of visuospatial information.
Collapse
|
8
|
Mazza A, Dal Monte O, Schintu S, Colombo S, Michielli N, Sarasso P, Törlind P, Cantamessa M, Montagna F, Ricci R. Beyond alpha-band: The neural correlate of creative thinking. Neuropsychologia 2023; 179:108446. [PMID: 36529264 DOI: 10.1016/j.neuropsychologia.2022.108446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/01/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
The compound nature of creativity entails the interplay of multiple cognitive processes, making it difficult to attribute creativity to a single neural signature. Divergent thinking paradigms, widely adopted to investigate creative production, have highlighted the key role of specific mental operations subserving creativity, such as inhibition of external stimuli, loose semantic associations, and mental imagery. Neurophysiological studies have typically shown a high alpha rhythm synchronization when individuals are engaged in creative ideation. Also, oculomotor activity and pupil diameter have been proposed as useful indicators of mental operations involved in such a thinking process. The goal of this study was to investigate whether beyond alpha-band activity other higher frequency bands, such as beta and gamma, may subserve divergent and convergent thinking and whether those could be associated with a different gaze bias and pupil response during ideas generation. Implementing a within-subjects design we collected behavioral measures, neural activity, gaze patterns, and pupil dilation while participants performed a revised version of the Alternative Uses Task, in which divergent thinking is contrasted to convergent thinking. As expected, participants took longer to generate creative ideas as compared to common ones. Interestingly, during divergent thinking participants displayed alpha synchronization along with beta and gamma desynchronization, more pronounced leftward gaze shift, and greater pupil dilation. During convergent thinking, an opposite pattern was observed: desynchronization in alpha and an increase in beta and gamma rhythm, along with a reduction of leftward gaze shift and greater pupil constriction. The present study uncovered specific neural dynamics and physiological patterns during idea generation, providing novel insight into the complex physiological signature of creative production.
Collapse
Affiliation(s)
- Alessandro Mazza
- Department of Psychology, University of Turin, Torino, 10124, Italy
| | - Olga Dal Monte
- Department of Psychology, University of Turin, Torino, 10124, Italy; Department of Psychology, Yale University, New Haven, CT, 06520-8205, USA.
| | - Selene Schintu
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, TN, 38068, Italy; Department of Psychology, The George Washington University, Washington DC, 20052, USA
| | - Samuele Colombo
- Department of Management and Production Engineering (DIGEP), Politecnico di Torino, Turin, 10129, Italy
| | - Nicola Michielli
- PoliToBIOMed Lab, Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, 10129, Turin, Italy
| | - Pietro Sarasso
- Department of Psychology, University of Turin, Torino, 10124, Italy
| | - Peter Törlind
- Department of Business Administration, Technology and Social Sciences, Luleå University of Technology, Luleå, 97187, Sweden
| | - Marco Cantamessa
- Department of Management and Production Engineering (DIGEP), Politecnico di Torino, Turin, 10129, Italy
| | - Francesca Montagna
- Department of Management and Production Engineering (DIGEP), Politecnico di Torino, Turin, 10129, Italy
| | - Raffaella Ricci
- Department of Psychology, University of Turin, Torino, 10124, Italy
| |
Collapse
|
9
|
Brunoni AR, Ekhtiari H, Antal A, Auvichayapat P, Baeken C, Benseñor IM, Bikson M, Boggio P, Borroni B, Brighina F, Brunelin J, Carvalho S, Caumo W, Ciechanski P, Charvet L, Clark VP, Cohen Kadosh R, Cotelli M, Datta A, Deng ZD, De Raedt R, De Ridder D, Fitzgerald PB, Floel A, Frohlich F, George MS, Ghobadi-Azbari P, Goerigk S, Hamilton RH, Jaberzadeh SJ, Hoy K, Kidgell DJ, Zonoozi AK, Kirton A, Laureys S, Lavidor M, Lee K, Leite J, Lisanby SH, Loo C, Martin DM, Miniussi C, Mondino M, Monte-Silva K, Morales-Quezada L, Nitsche MA, Okano AH, Oliveira CS, Onarheim B, Pacheco-Barrios K, Padberg F, Nakamura-Palacios EM, Palm U, Paulus W, Plewnia C, Priori A, Rajji TK, Razza LB, Rehn EM, Ruffini G, Schellhorn K, Zare-Bidoky M, Simis M, Skorupinski P, Suen P, Thibaut A, Valiengo LCL, Vanderhasselt MA, Vanneste S, Venkatasubramanian G, Violante IR, Wexler A, Woods AJ, Fregni F. Digitalized transcranial electrical stimulation: A consensus statement. Clin Neurophysiol 2022; 143:154-165. [PMID: 36115809 PMCID: PMC10031774 DOI: 10.1016/j.clinph.2022.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Although relatively costly and non-scalable, non-invasive neuromodulation interventions are treatment alternatives for neuropsychiatric disorders. The recent developments of highly-deployable transcranial electric stimulation (tES) systems, combined with mobile-Health technologies, could be incorporated in digital trials to overcome methodological barriers and increase equity of access. The study aims are to discuss the implementation of tES digital trials by performing a systematic scoping review and strategic process mapping, evaluate methodological aspects of tES digital trial designs, and provide Delphi-based recommendations for implementing digital trials using tES. METHODS We convened 61 highly-productive specialists and contacted 8 tES companies to assess 71 issues related to tES digitalization readiness, and processes, barriers, advantages, and opportunities for implementing tES digital trials. Delphi-based recommendations (>60% agreement) were provided. RESULTS The main strengths/opportunities of tES were: (i) non-pharmacological nature (92% of agreement), safety of these techniques (80%), affordability (88%), and potential scalability (78%). As for weaknesses/threats, we listed insufficient supervision (76%) and unclear regulatory status (69%). Many issues related to methodological biases did not reach consensus. Device appraisal showed moderate digitalization readiness, with high safety and potential for trial implementation, but low connectivity. CONCLUSIONS Panelists recognized the potential of tES for scalability, generalizability, and leverage of digital trials processes; with no consensus about aspects regarding methodological biases. SIGNIFICANCE We further propose and discuss a conceptual framework for exploiting shared aspects between mobile-Health tES technologies with digital trials methodology to drive future efforts for digitizing tES trials.
Collapse
Affiliation(s)
- Andre R Brunoni
- Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil; Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Service of Interdisciplinary Neuromodulation (SIN), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Hamed Ekhtiari
- Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Paradee Auvichayapat
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chris Baeken
- Vrije Universiteit Brussel (VUB): Department of Psychiatry University Hospital (UZBrussel), Brussels, Belgium; Department of Head and Skin, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, the Netherlands
| | - Isabela M Benseñor
- Center for Clinical and Epidemiological Research, University of São Paulo, São Paulo, Brazil
| | - Marom Bikson
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, NY, USA
| | - Paulo Boggio
- Social and Cognitive Neuroscience Laboratory, Center for Biological Science and Health, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Jerome Brunelin
- Centre Hospitalier le Vinatier, Bron, France; INSERM U1028, CNRS UMR 5292, PSYR2 Team, Centre de recherche en Neurosciences de Lyon (CRNL), Université Lyon 1, Lyon, France
| | - Sandra Carvalho
- Translational Neuropsychology Lab, Department of Education and Psychology and William James Center for Research (WJCR), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; Pain and Palliative Care Service at HCPA, Brazil; Department of Surgery, School of Medicine, UFRGS, Brazil
| | - Patrick Ciechanski
- Faculty of Medicine and Dentistry, University of Alberta, 1-002 Katz Group Centre for Pharmacy and Health Research, Edmonton, Alberta, Canada
| | - Leigh Charvet
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Roi Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Abhishek Datta
- Research and Development, Soterix Medical Inc., New York, USA
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| | - Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Agnes Floel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany; German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Mark S George
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Peyman Ghobadi-Azbari
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Biomedical Engineering, Shahed University, Tehran, Iran
| | - Stephan Goerigk
- Department of Psychiatry and Psychotherapy, LMU Hospital, Munich, Germany; Department of Psychological Methodology and Assessment, LMU, Munich, Germany; Hochschule Fresenius, University of Applied Sciences, Munich, Germany
| | - Roy H Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shapour J Jaberzadeh
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Kate Hoy
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Dawson J Kidgell
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Arash Khojasteh Zonoozi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Adam Kirton
- Department of Clinical Neurosciences and Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liège, Liege, Belgium
| | - Michal Lavidor
- Bar Ilan University, Department of Psychology, and the Gonda Brain Research Center, Israel
| | - Kiwon Lee
- Ybrain Corporation, Gyeonggi-do, Republic of Korea
| | - Jorge Leite
- INPP, Portucalense University, Porto, Portugal
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Colleen Loo
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; Black Dog Institute, Sydney, NSW, Australia
| | - Donel M Martin
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; Black Dog Institute, Sydney, NSW, Australia
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Marine Mondino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy; Centre Hospitalier le Vinatier, Bron, France
| | - Katia Monte-Silva
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, UFPE, Recife, PE, Brazil; NAPeN Network (Núcleo de Assistência e Pesquisa em Neuromodulação), Brazil
| | - Leon Morales-Quezada
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Alexandre H Okano
- NAPeN Network (Núcleo de Assistência e Pesquisa em Neuromodulação), Brazil; Center for Mathematics, Computation, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Claudia S Oliveira
- Master's and Doctoral Program in Health Sciences, Faculty of Medical Sciences, Santa Casa de São Paulo, São Paulo, Brazil; Master's and Doctoral Program in Human Movement and Rehabilitation, Evangelical University of Goiás, Anápolis, Brazil
| | | | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ester M Nakamura-Palacios
- Laboratory of Cognitive Sciences and Neuropsychopharmacology, Program of Post-Graduation in Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitória, ES, Brazil
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Munich, Germany; Medical Park Chiemseeblick, Rasthausstr. 25, 83233 Bernau-Felden, Germany
| | - Walter Paulus
- Department of Neurology. Ludwig Maximilians University Munich, Klinikum Großhadern, Marchioninistr, München, Germany
| | - Christian Plewnia
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Neurophysiology and Interventional Neuropsychiatry, University of Tübingen, Tübingen, Germany
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Milan, Italy
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Toronto Dementia Research Alliance, Toronto, Canada
| | - Lais B Razza
- Service of Interdisciplinary Neuromodulation (SIN), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Mehran Zare-Bidoky
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Shahid-Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marcel Simis
- Physical and Rehabilitation Medicine Institute, General Hospital, Medical School of the University of Sao Paulo, São Paulo, Brazil
| | | | - Paulo Suen
- Service of Interdisciplinary Neuromodulation (SIN), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness & Centre du Cerveau, University and University Hospital of Liège, Liège, Belgium
| | - Leandro C L Valiengo
- Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Service of Interdisciplinary Neuromodulation (SIN), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Sven Vanneste
- Lab for Clinical & Integrative Neuroscience, Trinity College of Neuroscience, Trinity College Dublin, Ireland
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Anna Wexler
- Department of Medical Ethics and Health Policy, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Peña J, Muthalib M, Sampedro A, Cardoso‐Botelho M, Zabala O, Ibarretxe‐Bilbao N, García‐Guerrero A, Zubiaurre‐Elorza L, Ojeda N. Enhancing Creativity With Combined Transcranial Direct Current and Random Noise Stimulation of the Left Dorsolateral Prefrontal Cortex and Inferior Frontal Gyrus. JOURNAL OF CREATIVE BEHAVIOR 2022. [DOI: 10.1002/jocb.562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Antal A, Luber B, Brem AK, Bikson M, Brunoni AR, Cohen Kadosh R, Dubljević V, Fecteau S, Ferreri F, Flöel A, Hallett M, Hamilton RH, Herrmann CS, Lavidor M, Loo C, Lustenberger C, Machado S, Miniussi C, Moliadze V, Nitsche MA, Rossi S, Rossini PM, Santarnecchi E, Seeck M, Thut G, Turi Z, Ugawa Y, Venkatasubramanian G, Wenderoth N, Wexler A, Ziemann U, Paulus W. Non-invasive brain stimulation and neuroenhancement. Clin Neurophysiol Pract 2022; 7:146-165. [PMID: 35734582 PMCID: PMC9207555 DOI: 10.1016/j.cnp.2022.05.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/19/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Attempts to enhance human memory and learning ability have a long tradition in science. This topic has recently gained substantial attention because of the increasing percentage of older individuals worldwide and the predicted rise of age-associated cognitive decline in brain functions. Transcranial brain stimulation methods, such as transcranial magnetic (TMS) and transcranial electric (tES) stimulation, have been extensively used in an effort to improve cognitive functions in humans. Here we summarize the available data on low-intensity tES for this purpose, in comparison to repetitive TMS and some pharmacological agents, such as caffeine and nicotine. There is no single area in the brain stimulation field in which only positive outcomes have been reported. For self-directed tES devices, how to restrict variability with regard to efficacy is an essential aspect of device design and function. As with any technique, reproducible outcomes depend on the equipment and how well this is matched to the experience and skill of the operator. For self-administered non-invasive brain stimulation, this requires device designs that rigorously incorporate human operator factors. The wide parameter space of non-invasive brain stimulation, including dose (e.g., duration, intensity (current density), number of repetitions), inclusion/exclusion (e.g., subject's age), and homeostatic effects, administration of tasks before and during stimulation, and, most importantly, placebo or nocebo effects, have to be taken into account. The outcomes of stimulation are expected to depend on these parameters and should be strictly controlled. The consensus among experts is that low-intensity tES is safe as long as tested and accepted protocols (including, for example, dose, inclusion/exclusion) are followed and devices are used which follow established engineering risk-management procedures. Devices and protocols that allow stimulation outside these parameters cannot claim to be "safe" where they are applying stimulation beyond that examined in published studies that also investigated potential side effects. Brain stimulation devices marketed for consumer use are distinct from medical devices because they do not make medical claims and are therefore not necessarily subject to the same level of regulation as medical devices (i.e., by government agencies tasked with regulating medical devices). Manufacturers must follow ethical and best practices in marketing tES stimulators, including not misleading users by referencing effects from human trials using devices and protocols not similar to theirs.
Collapse
Key Words
- AD, Alzheimer’s Disease
- BDNF, brain derived neurotrophic factor
- Cognitive enhancement
- DARPA, Defense Advanced Research Projects Agency
- DIY stimulation
- DIY, Do-It-Yourself
- DLPFC, dorsolateral prefrontal cortex
- EEG, electroencephalography
- EMG, electromyography
- FCC, Federal Communications Commission
- FDA, (U.S.) Food and Drug Administration
- Home-stimulation
- IFCN, International Federation of Clinical Neurophysiology
- LTD, long-term depression
- LTP, long-term potentiation
- MCI, mild cognitive impairment
- MDD, Medical Device Directive
- MDR, Medical Device Regulation
- MEP, motor evoked potential
- MRI, magnetic resonance imaging
- NIBS, noninvasive brain stimulation
- Neuroenhancement
- OTC, Over-The-Counter
- PAS, paired associative stimulation
- PET, positron emission tomography
- PPC, posterior parietal cortex
- QPS, quadripulse stimulation
- RMT, resting motor threshold
- SAE, serious adverse event
- SMA, supplementary motor cortex
- TBS, theta-burst stimulation
- TMS, transcranial magnetic stimulation
- Transcranial brain stimulation
- rTMS, repetitive transcranial magnetic stimulation
- tACS
- tACS, transcranial alternating current stimulation
- tDCS
- tDCS, transcranial direct current stimulation
- tES, transcranial electric stimulation
- tRNS, transcranial random noise stimulation
Collapse
Affiliation(s)
- Andrea Antal
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna-Katharine Brem
- University Hospital of Old Age Psychiatry, University of Bern, Bern, Switzerland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Marom Bikson
- Biomedical Engineering at the City College of New York (CCNY) of the City University of New York (CUNY), NY, USA
| | - Andre R. Brunoni
- Departamento de Clínica Médica e de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, Brazil
| | - Roi Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Veljko Dubljević
- Science, Technology and Society Program, College of Humanities and Social Sciences, North Carolina State University, Raleigh, NC, USA
| | - Shirley Fecteau
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, Centre intégré universitaire en santé et services sociaux de la Capitale-Nationale, Quebec City, Quebec, Canada
| | - Florinda Ferreri
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, 17475 Greifswald, Germany
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Roy H. Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Michal Lavidor
- Department of Psychology and the Gonda Brain Research Center, Bar Ilan University, Israel
| | - Collen Loo
- School of Psychiatry and Black Dog Institute, University of New South Wales; The George Institute; Sydney, Australia
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Sergio Machado
- Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil
- Laboratory of Physical Activity Neuroscience, Neurodiversity Institute, Queimados-RJ, Brazil
| | - Carlo Miniussi
- Center for Mind/Brain Sciences – CIMeC and Centre for Medical Sciences - CISMed, University of Trento, Rovereto, Italy
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Michael A Nitsche
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at TU, Dortmund, Germany
- Dept. Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Paolo M. Rossini
- Department of Neuroscience and Neurorehabilitation, Brain Connectivity Lab, IRCCS-San Raffaele-Pisana, Rome, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Margitta Seeck
- Department of Clinical Neurosciences, Hôpitaux Universitaires de Genève, Switzerland
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, EEG & Epolepsy Unit, University of Glasgow, United Kingdom
| | - Zsolt Turi
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| | | | - Nicole Wenderoth
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore
| | - Anna Wexler
- Department of Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Walter Paulus
- Department of of Neurology, Ludwig Maximilians University Munich, Germany
| |
Collapse
|
12
|
Wang Y, Guo X, Wang M, Kan Y, Zhang H, Zhao H, Meilin W, Duan H. Transcranial direct current stimulation of bilateral dorsolateral prefrontal cortex eliminates creativity impairment induced by acute stress. Int J Psychophysiol 2021; 171:1-11. [PMID: 34808142 DOI: 10.1016/j.ijpsycho.2021.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/29/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022]
Abstract
The creativity impairment under acute stress may be closely related to the down-regulation of the prefrontal cortex function caused by stress-related neurotransmitters and hormones. In the current study, we explored whether transcranial direct current stimulation (tDCS) over bilateral dorsolateral prefrontal cortex (DLPFC) eliminated stress-induced creativity impairment and the potential mechanism from the perspective of stress response recovery. Seventy participants were randomly allocated to a group undergoing the activation of right DLPFC and the deactivation of left DLPFC (R+L-; N = 35), and a group of sham stimulation (sham; N = 35). Participants received tDCS after the stress induction, and then completed the Alternative Uses Task (AUT) and the Remote Association Task (RAT) during the stimulation. The stress response was indicated using heart rate, cortisol, and emotion changes. Results showed that R+L- stimulation facilitated the recovery of anxious state compared to sham stimulation. We also found that the decreased value of AUT scores after stress in the R+L- group was significantly lower than that in the sham group. Moreover, further analysis revealed state anxiety mediated the effect of tDCS on the flexibility component of the AUT. We concluded that bilateral tDCS over the DLPFC is efficient in alleviating stress-induced creativity impairment, which may correlate with greater recovery of state anxiety. Our findings provide causal evidence for the neurophysiological mechanisms by which stress affects creativity, as well as clinical suggestions for stress-related psychiatric disorders prevention and intervention.
Collapse
Affiliation(s)
- Yifan Wang
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Xiaoyu Guo
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Mingjing Wang
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Yuecui Kan
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Huan Zhang
- School of Education Science, Shanxi Normal University, Taiyuan, China
| | - Hanxuan Zhao
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China; College of International Business, Shanghai International Studies University, Shanghai, China
| | - Wu Meilin
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Haijun Duan
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China; Collaborative Innovation Center of Assessment toward Basic Education Quality, Beijing Normal University, Beijing, China.
| |
Collapse
|
13
|
Huang F, Song Y, Jiang Y, Zhao Q, Luo J. Where and How Are Original and Valuable Ideas Generated? tDCS of the Generation-Related Posterior Temporal Lobe and the Executive Control-Related Prefrontal Cortex. Cereb Cortex 2021; 32:1004-1013. [PMID: 34379744 DOI: 10.1093/cercor/bhab261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/14/2022] Open
Abstract
Creativity is generally defined as the ability to generate innovative thoughts that are both original and valuable. Previous studies have suggested that the temporal lobe, related to memory extraction and construction, is responsible for generating creative ideas and that the executive system supports the generation of creative ideas. However, the causal relationships between these structures and the novelty index as well as the appropriateness index of generated ideas have not been revealed. It is still largely unknown where and how original and valuable ideas are generated. In this study, the transcranial direct current stimulation technique was used to selectively manipulate the activity of the generation-related right temporoparietal junction (TPJ) (experiment 1) and the executive control-related left dorsolateral prefrontal cortex (DLPFC) (experiment 2). Then, both the novelty and appropriateness indexes of generated ideas were analyzed during insight problem-solving. The results showed that anodal stimulation of the right TPJ increased both the novelty and appropriateness indexes of creative ideas, whereas anodal stimulation of the left DLPFC increased the novelty index but not the appropriateness index of creative ideas. These findings suggest that the posterior temporal lobe takes both the novelty and appropriateness attributes into account to generate ideas, while the executive control system can effectively regulate the novelty attribute of generated ideas but ineffectively addresses the inappropriateness attribute. The current study indicates complementary mechanisms in the process of generating original and valuable ideas.
Collapse
Affiliation(s)
- Furong Huang
- School of Psychology, Jiangxi Normal University, Nanchang 330022, China
| | - Yan Song
- School of Psychology, Jiangxi Normal University, Nanchang 330022, China
| | - Yan Jiang
- School of Psychology, Jiangxi Normal University, Nanchang 330022, China
| | - Qingbai Zhao
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Jing Luo
- School of Psychology, Capital Normal University, Beijing 100048, China
| |
Collapse
|
14
|
Chrysikou EG, Morrow HM, Flohrschutz A, Denney L. Augmenting ideational fluency in a creativity task across multiple transcranial direct current stimulation montages. Sci Rep 2021; 11:8874. [PMID: 33893329 PMCID: PMC8065129 DOI: 10.1038/s41598-021-85804-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging and transcranial direct current stimulation (tDCS) research has revealed that generating novel ideas is associated with both reductions and increases in prefrontal cortex (PFC) activity, and engagement of posterior occipital cortex, among other regions. However, there is substantial variability in the robustness of these tDCS‐induced effects due to heterogeneous sample sizes, different creativity measures, and methodological diversity in the application of tDCS across laboratories. To address these shortcomings, we used twelve different montages within a standardized tDCS protocol to investigate how altering activity in frontotemporal and occipital cortex impacts creative thinking. Across four experiments, 246 participants generated either the common or an uncommon use for 60 object pictures while undergoing tDCS. Participants also completed a control short-term memory task. We applied active tDCS for 20 min at 1.5 mA through two 5 cm × 5 cm electrodes over left or right ventrolateral prefrontal (areas F7, F8) or occipital (areas O1, O2) cortex, concurrent bilateral stimulation of these regions across polarities, or sham stimulation. Cathodal stimulation of the left, but not right, ventrolateral PFC improved fluency in creative idea generation, but had no effects on originality, as approximated by measures of semantic distance. No effects were obtained for the control tasks. Concurrent bilateral stimulation of the ventrolateral PFC regardless of polarity direction, and excitatory stimulation of occipital cortex did not alter task performance. Highlighting the importance of cross-experimental methodological consistency, these results extend our past findings and contribute to our understanding of the role of left PFC in creative thinking.
Collapse
Affiliation(s)
- Evangelia G Chrysikou
- Department of Psychology, Drexel University, 3201 Chestnut St., Philadelphia, PA, 19140, USA.
| | | | | | - Lauryn Denney
- University of Kansas Medical Center, Kansas City, USA
| |
Collapse
|
15
|
PeÑa J, Sampedro A, GÓmez‐Gastiasoro A, Ibarretxe‐Bilbao N, Zubiaurre‐Elorza L, Aguiar C, Ojeda N. The Effect of Changing the Balance Between Right and Left Dorsolateral Prefrontal Cortex on Different Creativity Tasks: A Transcranial Random Noise Stimulation Study. JOURNAL OF CREATIVE BEHAVIOR 2021. [DOI: 10.1002/jocb.496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Sampedro A, Peña J, Sánchez P, Ibarretxe-Bilbao N, Iriarte-Yoller N, Pavón C, Hervella I, Tous-Espelosin M, Ojeda N. The impact of creativity on functional outcome in schizophrenia: a mediational model. NPJ SCHIZOPHRENIA 2021; 7:14. [PMID: 33637749 PMCID: PMC7910291 DOI: 10.1038/s41537-021-00144-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Functional impairment remains one of the most challenging issues for treatment in schizophrenia. However, previous studies have mainly focused on the negative impact of symptoms excluding variables that could positively impact functional outcome, such as creativity, which is considered an adaptive capacity for real-life problem-solving. This study analyzed the predictive role of creativity on functional outcome in 96 patients with schizophrenia through a mediational model, including sociodemographic, clinical, neurocognitive, and social cognitive variables. Path analysis revealed that creativity significantly mediated the relationship between neurocognition and functional outcome, and that creativity mediated between negative symptoms and functional outcome. Additionally, neurocognition was directly associated with functional outcome and social functioning was associated with creativity. The involvement of creativity in functional outcome could have relevant implications for the development of new interventions. These findings open up a new field of research on additional personal resources as possible factors of functional outcome in schizophrenia and other diseases.
Collapse
Affiliation(s)
- Agurne Sampedro
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Javier Peña
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain.
| | - Pedro Sánchez
- Refractory Psychosis Unit, Hospital Psiquiátrico de Alava, Vitoria, Spain
- Department of Neuroscience, Psychiatry Section, School of Medicine and Odontology, University of the Basque Country (UPV/EHU), Vizcaya, Spain
| | - Naroa Ibarretxe-Bilbao
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | | | - Cristóbal Pavón
- Refractory Psychosis Unit, Hospital Psiquiátrico de Alava, Vitoria, Spain
| | - Isabel Hervella
- Refractory Psychosis Unit, Hospital Psiquiátrico de Alava, Vitoria, Spain
| | - Mikel Tous-Espelosin
- Department of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| |
Collapse
|
17
|
Saggar M, Volle E, Uddin LQ, Chrysikou EG, Green AE. Creativity and the brain: An editorial introduction to the special issue on the neuroscience of creativity. Neuroimage 2021; 231:117836. [PMID: 33549759 DOI: 10.1016/j.neuroimage.2021.117836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Manish Saggar
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Emmanuelle Volle
- Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Paris, France
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA.
| | | | - Adam E Green
- Department of Psychology, Georgetown University, Washington, DC, USA
| |
Collapse
|
18
|
Salehinejad MA, Ghanavati E, Rashid MHA, Nitsche MA. Hot and cold executive functions in the brain: A prefrontal-cingular network. Brain Neurosci Adv 2021; 5:23982128211007769. [PMID: 33997292 PMCID: PMC8076773 DOI: 10.1177/23982128211007769] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Executive functions, or cognitive control, are higher-order cognitive functions needed for adaptive goal-directed behaviours and are significantly impaired in majority of neuropsychiatric disorders. Different models and approaches are proposed for describing how executive functions are functionally organised in the brain. One popular and recently proposed organising principle of executive functions is the distinction between hot (i.e. reward or affective-related) versus cold (i.e. purely cognitive) domains of executive functions. The prefrontal cortex is traditionally linked to executive functions, but on the other hand, anterior and posterior cingulate cortices are hugely involved in executive functions as well. In this review, we first define executive functions, their domains, and the appropriate methods for studying them. Second, we discuss how hot and cold executive functions are linked to different areas of the prefrontal cortex. Next, we discuss the association of hot versus cold executive functions with the cingulate cortex, focusing on the anterior and posterior compartments. Finally, we propose a functional model for hot and cold executive function organisation in the brain with a specific focus on the fronto-cingular network. We also discuss clinical implications of hot versus cold cognition in major neuropsychiatric disorders (depression, schizophrenia, anxiety disorders, substance use disorder, attention-deficit hyperactivity disorder, and autism) and attempt to characterise their profile according to the functional dominance or manifest of hot-cold cognition. Our model proposes that the lateral prefrontal cortex along with the dorsal anterior cingulate cortex are more relevant for cold executive functions, while the medial-orbital prefrontal cortex along with the ventral anterior cingulate cortex, and the posterior cingulate cortex are more closely involved in hot executive functions. This functional distinction, however, is not absolute and depends on several factors including task features, context, and the extent to which the measured function relies on cognition and emotion or both.
Collapse
Affiliation(s)
- Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Elham Ghanavati
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Md Harun Ar Rashid
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
19
|
Frith E, Miller SE, Loprinzi PD. Effects of Verbal Priming With Acute Exercise on Convergent Creativity. Psychol Rep 2020; 125:375-397. [PMID: 33356896 DOI: 10.1177/0033294120981925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The acute effects of moderate-intensity treadmill exercise during anagram problem solving on subsequent creativity performance has yet to be empirically investigated, which was this study's purpose. A two-visit (counterbalanced order), within-subject experiment was conducted among individuals aged 18-35. For the acute exercise visit, participants engaged in a 15-minute bout of moderate-intensity treadmill exercise while solving anagram problems. For the anagram only visit, participants engaged in 15 minutes of seated rest while solving anagram problems. Average RAT performance was higher for the exercise + anagram problem-solving visit (M = 10.51, SD = 3.25) compared to anagram-solving + seated rest (M = 9.29, SD = 4.12). The difference between conditions was statistically significant, t(44) = 2.385, p = .021, Cohen's d = 0.36. These findings demonstrate that acute exercise coupled with anagram problem-solving, prior to RAT completion, is a potential strategy for enhancing verbal convergent creative thinking.
Collapse
Affiliation(s)
- Emily Frith
- Cognitive Neuroscience of Creativity Laboratory, Pennsylvania State University, State College, PA, USA
| | - Stephanie E Miller
- Department of Psychology, The University of Mississippi, University, MS, USA
| | - Paul D Loprinzi
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| |
Collapse
|
20
|
Cogdell‐Brooke LS, Sowden PT, Violante IR, Thompson HE. A meta-analysis of functional magnetic resonance imaging studies of divergent thinking using activation likelihood estimation. Hum Brain Mapp 2020; 41:5057-5077. [PMID: 32845058 PMCID: PMC7643395 DOI: 10.1002/hbm.25170] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/09/2020] [Accepted: 08/02/2020] [Indexed: 12/16/2022] Open
Abstract
There are conflicting findings regarding brain regions and networks underpinning creativity, with divergent thinking tasks commonly used to study this. A handful of meta-analyses have attempted to synthesise findings on neural mechanisms of divergent thinking. With the rapid proliferation of research and recent developments in fMRI meta-analysis approaches, it is timely to reassess the regions activated during divergent thinking creativity tasks. Of particular interest is examining the evidence regarding large-scale brain networks proposed to be key in divergent thinking and extending this work to consider the role of the semantic control network. Studies utilising fMRI with healthy participants completing divergent thinking tasks were systematically identified, with 20 studies meeting the criteria. Activation Likelihood Estimation was then used to integrate the neuroimaging results across studies. This revealed four clusters: the left inferior parietal lobe; the left inferior frontal and precentral gyrus; the superior and medial frontal gyrus and the right cerebellum. These regions are key in the semantic network, important for flexible retrieval of stored knowledge, highlighting the role of this network in divergent thinking.
Collapse
Affiliation(s)
| | - Paul T. Sowden
- Department of PsychologyUniversity of WinchesterWinchesterUK
| | | | | |
Collapse
|
21
|
Koizumi K, Ueda K, Li Z, Nakao M. Effects of Transcranial Direct Current Stimulation on Brain Networks Related to Creative Thinking. Front Hum Neurosci 2020; 14:541052. [PMID: 33192387 PMCID: PMC7596331 DOI: 10.3389/fnhum.2020.541052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Human creative thinking is unique and capable of generating novel and valuable ideas. Recent research has clarified the contribution of different brain networks (default mode network, DN; executive control network; salience network) to creative thinking. However, the effects of brain stimulation on brain networks during creative thinking and on creative performance have not been clarified. The present study was designed to examine the changes in functional connectivity (FC) and effective connectivity (EC) of the large-scale brain network, and the ensuing changes in creative performance, induced by transcranial direct current stimulation (tDCS). Fourteen healthy male students underwent two tDCS sessions, one with actual stimulation and one with sham stimulation, on two separate days. Participants underwent tDCS (anode over the left dorsolateral prefrontal cortex, DLPFC; cathode over the right inferior parietal lobule, IPL) for 20 min. Before and after the tDCS session, electroencephalography signals were acquired from 32 electrodes over the whole head during the creative thinking task. On FC analysis, the delta band FC between the posterior cingulate cortex and IPL significantly increased only after real stimulation. We also found that the change of flexibility score was significantly correlated with the change in: (i) delta band FC between mPFC and left lateral temporal cortex (LTC) and (ii) alpha band FC between IPL and right LTC. On EC analysis, decreased flow within the DN (from left LTC to right IPL) was observed. Our results reveal that tDCS could affect brain networks, particularly the DN, during creative thinking and modulate key FC in the generation of flexible creative ideas.
Collapse
Affiliation(s)
| | - Kazutaka Ueda
- Creative Design Laboratory, Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
22
|
Peña J, Sampedro A, Ibarretxe-Bilbao N, Zubiaurre-Elorza L, Aizpurua A, Ojeda N. The effect of transcranial random noise stimulation (tRNS) over bilateral posterior parietal cortex on divergent and convergent thinking. Sci Rep 2020; 10:15559. [PMID: 32968171 PMCID: PMC7511964 DOI: 10.1038/s41598-020-72532-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Creativity pervades many areas of everyday life and is considered highly relevant in several human living domains. Previous literature suggests that the posterior parietal cortex (PPC) is related to creativity. However, none of previous studies have compared the effect of transcranial random noise stimulation (tRNS) over bilateral PPC on both verbal and visual divergent thinking (DT) and Remote Associates Test (RAT) in the same experimental design. Forty healthy participants were randomly assigned to tRNS (100–500 Hz) over bilateral PPC or sham group, for 15 min and current was set at 1.5 mA. Participants’ creativity skills were assessed before and after brain stimulation with the Unusual Uses and the Picture Completion subtests from the Torrance Test of Creative Thinking and the RAT. ANCOVA (baseline scores as covariate) results indicated that tRNS group had significantly higher scores at post-test in RAT and visual originality compared to sham group. Unusual Uses, on the other hand, was not significant. Improvement in RAT suggests the involvement of PPC during via insight solution which may reflect internally directed attention that helps the recombination of remotely associated information. The improvement in visual originality dimension from DT may be due to a higher internally directed attention while reducing externally oriented attention.
Collapse
Affiliation(s)
- Javier Peña
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avda. Universidades 24, 48007, Bilbao, , Basque Country, Spain.
| | - Agurne Sampedro
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avda. Universidades 24, 48007, Bilbao, , Basque Country, Spain
| | - Naroa Ibarretxe-Bilbao
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avda. Universidades 24, 48007, Bilbao, , Basque Country, Spain
| | - Leire Zubiaurre-Elorza
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avda. Universidades 24, 48007, Bilbao, , Basque Country, Spain
| | - Aralar Aizpurua
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avda. Universidades 24, 48007, Bilbao, , Basque Country, Spain
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avda. Universidades 24, 48007, Bilbao, , Basque Country, Spain
| |
Collapse
|
23
|
Beda Z, Smith SM, Orr J. Creativity on demand - Hacking into creative problem solving. Neuroimage 2020; 216:116867. [PMID: 32325208 DOI: 10.1016/j.neuroimage.2020.116867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/25/2020] [Accepted: 04/17/2020] [Indexed: 10/24/2022] Open
Abstract
How can creative problem solving be enhanced? The paper identifies and examines modulatory approaches from the cognitive and neuroscientific literature that have been made to make creative problem solving better. We review neuromodulatory approaches of both global and local effects. Through a 2-process model of creative problem solving that involves both automatic and controlled processes, we demonstrate how these approaches could be used and what potential they may have for enhancing creative problem solving. We conclude that direct neuromodulation will be best used in unison with behavioral manipulations of cognition, and that better understanding of these manipulations should inform and guide research on direct neuromodulatory procedures.
Collapse
|
24
|
Sampedro A, Peña J, Ibarretxe-Bilbao N, Cabrera-Zubizarreta A, Sánchez P, Gómez-Gastiasoro A, Iriarte-Yoller N, Pavón C, Ojeda N. Brain White Matter Correlates of Creativity in Schizophrenia: A Diffusion Tensor Imaging Study. Front Neurosci 2020; 14:572. [PMID: 32655352 PMCID: PMC7324653 DOI: 10.3389/fnins.2020.00572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
The relationship between creativity and psychopathology has been a controversial research topic for decades. Specifically, it has been shown that people with schizophrenia have an impairment in creative performance. However, little is known about the brain correlates underlying this impairment. Therefore, the aim of this study was to analyze whole brain white matter (WM) correlates of several creativity dimensions in people with schizophrenia. Fifty-five patients with schizophrenia underwent diffusion-weighted imaging on a 3T magnetic resonance imaging machine as well as a clinical and a creativity assessment, including verbal and figural creativity measures. Tract-based spatial statistic, implemented in FMRIB Software Library (FSL), was used to assess whole brain WM correlates with different creativity dimensions, controlling for sex, age, premorbid IQ, and medication. Mean fractional anisotropy (FA) in frontal, temporal, subcortical, brain stem, and interhemispheric regions correlated positively with figural originality. The most significant clusters included the right corticospinal tract (cerebral peduncle part) and the right body of the corpus callosum. Verbal creativity did not show any significant correlation. As a whole, these findings suggest that widespread WM integrity is involved in creative performance of patients with schizophrenia. Many of these areas have also been related to creativity in healthy people. In addition, some of these regions have shown to be particularly impaired in schizophrenia, suggesting that these WM alterations could be underlying the worse creative performance found in this pathology.
Collapse
Affiliation(s)
- Agurne Sampedro
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Javier Peña
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Naroa Ibarretxe-Bilbao
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | | | - Pedro Sánchez
- Refractory Psychosis Unit, Hospital Psiquiátrico de Álava, Vitoria-Gasteiz, Spain.,Department of Neuroscience, Psychiatry Section, Faculty of Medicine and Odontology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ainara Gómez-Gastiasoro
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | | | - Cristóbal Pavón
- Refractory Psychosis Unit, Hospital Psiquiátrico de Álava, Vitoria-Gasteiz, Spain
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| |
Collapse
|
25
|
Effects of transcranial direct current stimulation of left and right inferior frontal gyrus on creative divergent thinking are moderated by changes in inhibition control. Brain Struct Funct 2020; 225:1691-1704. [PMID: 32556475 PMCID: PMC7321900 DOI: 10.1007/s00429-020-02081-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/04/2020] [Indexed: 11/16/2022]
Abstract
Divergent thinking (DT) as one component of creativity is the ability to search for multiple solutions to a single problem and is reliably tested with the Alternative Uses Task (AUT). DT depends on activity in the inferior frontal gyrus (IFG), a prefrontal region that has also been associated with inhibitory control (IC). Experimentally manipulating IC through transcranial direct current stimulation (tDCS) led to alterations in DT. Here, we aimed at further examining such potential mediating effects of IC on DT (measured as flexibility, fluency, and originality in the AUT) by modulating IC tDCS. Participants received either cathodal tDCS (c-tDCS) of the left IFG coupled with anodal tDCS (a-tDCS) of the right IFG (L−R + ; N = 19), or the opposite treatment (L + R−; N = 21). We hypothesized that L + R− stimulation would enhance IC assessed with the Go NoGo task (GNGT), and that facilitated IC would result in lower creativity scores. The reversed stimulation arrangement (i.e., L− R +) should result in higher creativity scores. We found that tDCS only affected the originality component of the AUT but not flexibility or fluency. We also found no effects on IC, and thus, the mediation effect of IC could not be confirmed. However, we observed a moderation effect: inhibition of left and facilitation of right IFG (L−R +) resulted in enhanced flexibility and originality scores, only when IC performance was also improved. We conclude that inducing a right-to-left gradient in IFG activity by tDCS is efficient in enhancing DT, but only under conditions where tDCS is sufficient to alter IC performance as well.
Collapse
|
26
|
Early stimulation of the left posterior parietal cortex promotes representation change in problem solving. Sci Rep 2019; 9:16523. [PMID: 31712574 PMCID: PMC6848477 DOI: 10.1038/s41598-019-52668-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022] Open
Abstract
When you suddenly understand how to solve a problem through an original and efficient strategy, you experience the so-called “Eureka” effect. The appearance of insight usually occurs after setting the problem aside for a brief period of time (i.e. incubation), thereby promoting unconscious and novel associations on problem-related representations leading to a new and efficient solving strategy. The left posterior parietal cortex (lPPC) has been showed to support insight in problem solving, when this region is activated during the initial representations of the task. The PPC is further activated during the next incubation period when the mind starts to wander. The aim of this study was to investigate whether stimulating the lPPC, either during the initial training on the problem or the incubation period, might enhance representation change in problem solving. To address this question, participants performed the Number Reduction Task (NRT, convergent problem-solving), while excitatory or sham (placebo) transcranial direct current stimulation (tDCS) was applied over the lPPC. The stimulation was delivered either during the initial problem representation or during the subsequent incubation period. Impressively, almost all participants (94%) with excitatory tDCS during the initial training gained representational change in problem solving, compared to only 39% in the incubation period and 33% in the sham groups. We conclude that the lPPC plays a role during the initial problem representation, which may be considerably strengthened by means of short brain stimulation.
Collapse
|
27
|
Petersen TH, Puthusserypady S. Assessing tDCS Placebo Effects on EEG and Cognitive Tasks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:4509-4512. [PMID: 31946867 DOI: 10.1109/embc.2019.8857549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Divergent thinking (DT) using transcranial direct current stimulation (tDCS) has previously been documented with promising results. This paper examines the placebo effect of tDCS. The reaction from a placebo group was tapped using electroencephalogram (EEG). Their performance was measured as a creativity score and compared to a control group. The experiments included multiplication problems and two DT tasks: Alternative Uses Tasks (AUT) and Instances Task (IT). Neither of the groups were sham stimulated during AUT, but during IT the placebo group was sham stimulated. An automatic noise-detection algorithm was developed to remove the speech-induced EEG noise. Features of power, Welchs power spectral density (WPSD) and Welchs cross PSD (WCPSD)/frequency-band/channel were extracted and fed to the Support Vector Machine (SVM) classifiers. The χ2-test showed a significant difference (p<; 0.001) between the no stimulation and sham stimulation conditions when compared to the control group, confirming a placebo effect.
Collapse
|
28
|
|
29
|
Anic A, Olsen KN, Thompson WF. Investigating the Role of the Primary Motor Cortex in Musical Creativity: A Transcranial Direct Current Stimulation Study. Front Psychol 2018; 9:1758. [PMID: 30327622 PMCID: PMC6174363 DOI: 10.3389/fpsyg.2018.01758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/30/2018] [Indexed: 12/30/2022] Open
Abstract
Neuroscientific research has revealed interconnected brain networks implicated in musical creativity, such as the executive control network, the default mode network, and premotor cortices. The present study employed brain stimulation to evaluate the role of the primary motor cortex (M1) in creative and technically fluent jazz piano improvisations. We implemented transcranial direct current stimulation (tDCS) to alter the neural activation patterns of the left hemispheric M1 whilst pianists performed improvisations with their right hand. Two groups of expert jazz pianists (n = 8 per group) performed five improvisations in each of two blocks. In Block 1, they improvised in the absence of brain stimulation. In Block 2, one group received inhibitory tDCS and the second group received excitatory tDCS while performing five new improvisations. Three independent expert-musicians judged the 160 performances on creativity and technical fluency using a 10-point Likert scale. As the M1 is involved in the acquisition and consolidation of motor skills and the control of hand orientation and velocity, we predicted that excitatory tDCS would increase the quality of improvisations relative to inhibitory tDCS. Indeed, improvisations under conditions of excitatory tDCS were rated as significantly more creative than those under conditions of inhibitory tDCS. A music analysis indicated that excitatory tDCS elicited improvisations with greater pitch range and number/variety of notes. Ratings of technical fluency did not differ significantly between tDCS groups. We discuss plausible mechanisms by which the M1 region contributes to musical creativity.
Collapse
Affiliation(s)
- Aydin Anic
- Department of Psychology, Macquarie University, Sydney, NSW, Australia.,Centre for Elite Performance, Expertise and Training, Macquarie University, Sydney, NSW, Australia
| | - Kirk N Olsen
- Department of Psychology, Macquarie University, Sydney, NSW, Australia.,Centre for Elite Performance, Expertise and Training, Macquarie University, Sydney, NSW, Australia
| | - William Forde Thompson
- Department of Psychology, Macquarie University, Sydney, NSW, Australia.,Centre for Elite Performance, Expertise and Training, Macquarie University, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|