1
|
Okouchi T, Hirabayashi R, Nakashima S, Abe A, Yokota H, Sekine C, Ishigaki T, Akuzawa H, Edama M. Supraspinal Activation Induced by Visual Kinesthetic Illusion Modulates Spinal Excitability. Healthcare (Basel) 2024; 12:1696. [PMID: 39273721 PMCID: PMC11394766 DOI: 10.3390/healthcare12171696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Repetitive passive movement (RPM) enhances reciprocal inhibition. RPM is more effective when performed rapidly and at wide joint angles. However, patients with limited joint range of motion may not receive the most effective RPM. Therefore, having an alternative method for performing RPM in patients who cannot perform actual exercise due to limited joint motion is necessary. This study investigated the effects of RPM on spinal excitability using a visual kinesthetic illusion. Participants included 17 healthy adults (7 women). Measurements were taken before, during, and immediately after the intervention. We established two intervention conditions: the control condition, in which participants focused their attention forward, and the illusion condition, in which participants watched a video about RPM. F-waves from the tibialis anterior and soleus muscles were measured, and F-wave persistence and F/M amplitude ratios were analyzed. Under the illusion condition, compared with the preintervention condition, the F/M amplitude ratio of the tibialis anterior increased by approximately 44% during the intervention (p < 0.05), whereas the F-wave persistence of the soleus decreased by approximately 23% from the immediate start of the intervention (p < 0.05). This study suggests that a visual kinesthetic illusion can increase the spinal excitability of the tibialis anterior, whereas reciprocal inhibition can decrease the spinal excitability of the soleus.
Collapse
Affiliation(s)
- Takeru Okouchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Ryo Hirabayashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Saki Nakashima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Asuka Abe
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Chie Sekine
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Tomonobu Ishigaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Hiroshi Akuzawa
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Mutsuaki Edama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| |
Collapse
|
2
|
Hirabayashi R, Edama M, Takeda M, Yamada Y, Yokota H, Sekine C, Onishi H. Participant attention on the intervention target during repetitive passive movement improved spinal reciprocal inhibition enhancement and joint movement function. Eur J Med Res 2023; 28:428. [PMID: 37828546 PMCID: PMC10571356 DOI: 10.1186/s40001-023-01418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/30/2023] [Indexed: 10/14/2023] Open
Abstract
This study aimed to evaluate the effects of the participant's attention target during repetitive passive movement (RPM) intervention on reciprocal inhibition (RI) and joint movement function. Twenty healthy adults participated in two experiments involving four attention conditions [control (forward attention with no RPM), forward attention (during RPM), monitor attention (monitor counting task during RPM), ankle joint attention (ankle movement counting task during RPM)] during 10-min RPM interventions on the ankle joint. Counting tasks were included to ensure the participant's attention remained on the target during the intervention. In Experiment 1, RI was measured before, immediately after, and 5, 10, 15, 20, and 30 min after the RPM intervention. In Experiment 2, we evaluated ankle joint movement function at the same time points before and after RPM intervention. The maximum ankle dorsiflexion movement (from 30° plantar flexion to 10° dorsiflexion) was measured, reflecting RI. In Experiment 1, the RI function reciprocal Ia inhibition was enhanced for 10 min after RPM under all attention conditions (excluding the control condition. D1 inhibition was enhanced for 20 min after RPM in the forward and monitor attention conditions and 30 min after RPM in the ankle joint attention condition. In Experiment 2, the joint movement function decreased under the forward and monitor attention conditions but improved under the ankle joint attention condition. This study is the first to demonstrate that the participant's attention target affected the intervention effect of the RI enhancement method, which has implications for improving the intervention effect of rehabilitation.
Collapse
Affiliation(s)
- Ryo Hirabayashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan.
| | - Mutsuaki Edama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan
| | - Mai Takeda
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan
| | - Yuki Yamada
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan
| | - Chie Sekine
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan
| |
Collapse
|
3
|
Nurmi T, Hakonen M, Bourguignon M, Piitulainen H. Proprioceptive response strength in the primary sensorimotor cortex is invariant to the range of finger movement. Neuroimage 2023; 269:119937. [PMID: 36791896 DOI: 10.1016/j.neuroimage.2023.119937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Proprioception is the sense of body position and movement that relies on afference from the proprioceptors in muscles and joints. Proprioceptive responses in the primary sensorimotor (SM1) cortex can be elicited by stimulating the proprioceptors using evoked (passive) limb movements. In magnetoencephalography (MEG), proprioceptive processing can be quantified by recording the movement evoked fields (MEFs) and movement-induced beta power modulations or by computing corticokinematic coherence (CKC) between the limb kinematics and cortical activity. We examined whether cortical proprioceptive processing quantified with MEF peak strength, relative beta suppression and rebound power and CKC strength is affected by the movement range of the finger. MEG activity was measured from 16 right-handed healthy volunteers while movements were applied to their right-index finger metacarpophalangeal joint with an actuator. Movements were either intermittent, every 3000 ± 250 ms, to estimate MEF or continuous, at 3 Hz, to estimate CKC. In both cases, 4 different ranges of motion of the stimuli were investigated: 15, 18, 22 and 26 mm for MEF and 6, 7, 9 and 13 mm for CKC. MEF amplitude, relative beta suppression and rebound as well as peak CKC strength at the movement frequency were compared between the movement ranges in the source space. Inter-individual variation was also compared between the MEF and CKC strengths. As expected, MEF and CKC responses peaked at the contralateral SM1 cortex. MEF peak, beta suppression and rebound and CKC strengths were similar across all movement ranges. Furthermore, CKC strength showed a lower degree of inter-individual variation compared with MEF strength. Our result of absent modulation by movement range in cortical responses to passive movements of the finger indicates that variability in movement range should not hinder comparability between different studies or participants. Furthermore, our data indicates that CKC is less prone to inter-individual variability than MEFs, and thus more advantageous in what pertains to statistical power.
Collapse
Affiliation(s)
- Timo Nurmi
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä 40014, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 02150, Finland.
| | - Maria Hakonen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä 40014, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 02150, Finland; A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States
| | - Mathieu Bourguignon
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels 1070, Belgium; Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels 1070, Belgium; BCBL, Basque Center on Cognition, Brain and Language, San Sebastian 20009, Spain
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä 40014, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 02150, Finland; Aalto NeuroImaging, Aalto University, Espoo 02150, Finland
| |
Collapse
|
4
|
Alaydin HC, Cengiz B. Body ownership, sensorimotor integration and motor cortical excitability: A TMS study about rubber hand illusion. Neuropsychologia 2021; 161:107992. [PMID: 34391807 DOI: 10.1016/j.neuropsychologia.2021.107992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The Rubber Hand Illusion (RHI) manipulates body ownership experimentally and helps investigate the related neurophysiological processes. This study aimed to evaluate motor cortex excitability that hypothesized changed due to illusion. METHOD Twenty-one healthy (twelve male, nine female), right-handed volunteers aged between 25 and 50 years were recruited to the study. Short-Latency Afferent Inhibition (SAI) was evaluated by transcranial magnetic stimulation (TMS) given with a figure-of-eight-shaped coil from the left motor cortex, 21 ms after peripheral electrical stimulation. Short-Interval Intracortical Inhibition (SICI) and Intracortical Facilitation (ICF) were investigated using a paired-pulse TMS at interstimulus intervals (ISI) of 1, 2.5, 3 ms and 15, 20, 25 ms, respectively. We used custom-made illusion setups for TMS paradigms. SAI, SICI and ICF was evaluated before, during and 15 min after the RHI. RESULTS Results of the study revealed significantly high SAI during illusion compared to pre-illusion, but no difference was found between post-illusion 15th minutes and control measurements. Significantly reduced SICI at 2.5 and 3 ms ISI obtained during illusion, while RHI did not affect SICI at 1 ms ISI and ICF. SIGNIFICANCE Body ownership illusion modulates the motor cortex excitability, possibly through altered sensory processing and sensorimotor integration.
Collapse
Affiliation(s)
- Halil Can Alaydin
- - Department of Neurology, Gazi University Faculty of Medicine, Ankara, Turkey; - Department of Neurology, Clinical Neurophysiology Division, Gazi University Faculty of Medicine, Ankara, Turkey.
| | - Bülent Cengiz
- - Department of Neurology, Gazi University Faculty of Medicine, Ankara, Turkey; - Department of Neurology, Clinical Neurophysiology Division, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
5
|
Pham MV, Miyaguchi S, Watanabe H, Saito K, Otsuru N, Onishi H. Effect of Repetitive Passive Movement Before Motor Skill Training on Corticospinal Excitability and Motor Learning Depend on BDNF Polymorphisms. Front Hum Neurosci 2021; 15:621358. [PMID: 33633556 PMCID: PMC7901944 DOI: 10.3389/fnhum.2021.621358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
A decrease in cortical excitability tends to be easily followed by an increase induced by external stimuli via a mechanism aimed at restoring it; this phenomenon is called “homeostatic plasticity.” In recent years, although intervention methods aimed at promoting motor learning using this phenomenon have been studied, an optimal intervention method has not been established. In the present study, we examined whether subsequent motor learning can be promoted further by a repetitive passive movement, which reduces the excitability of the primary motor cortex (M1) before motor learning tasks. We also examined the relationship between motor learning and the brain-derived neurotrophic factor. Forty healthy subjects (Val/Val genotype, 17 subjects; Met carrier genotype, 23 subjects) participated. Subjects were divided into two groups of 20 individuals each. The first group was assigned to perform the motor learning task after an intervention consisting in the passive adduction–abduction movement of the right index finger at 5 Hz for 10 min (RPM condition), while the second group was assigned to perform the task without the passive movement (control condition). The motor learning task consisted in the visual tracking of the right index finger. The results showed that the corticospinal excitability was transiently reduced after the passive movement in the RPM condition, whereas it was increased to the level detected in the control condition after the motor learning task. Furthermore, the motor learning ability was decreased immediately after the passive movement; however, the motor performance finally improved to the level observed in the control condition. In individuals carrying the Val/Val genotype, higher motor learning was also found to be related to the more remarkable changes in corticospinal excitability caused by the RPM condition. This study revealed that the implementation of a passive movement before a motor learning tasks did not affect M1 excitatory changes and motor learning efficiency; in contrast, in subjects carrying the Val/Val polymorphism, the more significant excitatory changes in the M1 induced by the passive movement and motor learning task led to the improvement of motor learning efficiency. Our results also suggest that homeostatic plasticity occurring in the M1 is involved in this improvement.
Collapse
Affiliation(s)
- Manh Van Pham
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Graduate School, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Hai Duong Medical Technical University, Hai Duong, Vietnam
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hiraku Watanabe
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Graduate School, Niigata University of Health and Welfare, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
6
|
Emanuelsen A, Voigt M, Madeleine P, Hansen EA. Effect of Tapping Bout Duration During Freely Chosen and Passive Finger Tapping on Rate Enhancement. J Mot Behav 2020; 53:351-363. [PMID: 32525455 DOI: 10.1080/00222895.2020.1779021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The present study investigated whether the duration of the first tapping bout, which could also be considered 'the priming', would play a role for the occurrence of the behavioral phenomenon termed repeated bout rate enhancement. Eighty-eight healthy individuals were recruited. Sixty-three of these demonstrated repeated bout rate enhancement and they were assigned to two different groups, which performed either active or passive tapping as priming. The durations of the first tapping bouts, which acted as priming, were 20, 60, 120, and 180 s. Following the first bout there was a 10 min rest and a subsequent 180 s tapping bout performed at freely chosen tapping rate. Vertical displacement and tapping force data were recorded. Rate enhancement was elicited independently of the duration of the first bout in both groups. Rate enhancement occurred without concurrent changes of the magnitude of vertical displacement, time to peak force, and duration of finger contact phase. The peak force was reduced when 180 s of tapping had been performed as priming. The increased tapping rate following priming by as little as 20 s active or passive tapping, as observed here, is suggested to be a result of increased net excitability of the nervous system.
Collapse
Affiliation(s)
- Anders Emanuelsen
- Department of Health Science and Technology, Sport Sciences - Performance and Technology, Aalborg University, Aalborg, Denmark
| | - Michael Voigt
- Department of Health Science and Technology, Sport Sciences - Performance and Technology, Aalborg University, Aalborg, Denmark
| | - Pascal Madeleine
- Department of Health Science and Technology, Sport Sciences - Performance and Technology, Aalborg University, Aalborg, Denmark
| | - Ernst Albin Hansen
- Department of Health Science and Technology, Sport Sciences - Performance and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|