1
|
Nguyen J, Shimizu K, Zlotnik V, Nguyen MN, Toro SD, Nguyen MT, Ronquillo J, Halladay LR. Genetic diversity shapes behavioral outcomes and reveals sex differences in mice exposed to early life stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.08.647890. [PMID: 40291693 PMCID: PMC12027074 DOI: 10.1101/2025.04.08.647890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Understanding how genetic variability shapes responses to environmental and developmental factors is critical for advancing translational neuroscience. However, most preclinical studies rely on inbred mouse strains that do not capture the genetic complexity of human populations. One key area of translational research focuses on identifying the neural and behavioral consequences of early life trauma. Rodent models of childhood neglect, such as maternal separation with early weaning (MSEW), have been used in isogenic mouse strains like C57BL/6J (B6) to identify behavioral domains and neural loci of deficits stemming from exposure to MSEW. To understand how genetic diversity may contribute to the outcomes produced by MSEW, and thus inform future studies on the topic, we utilized the Jackson Laboratory Diversity Outbred (DO) line, a population derived from eight founder strains that exhibit broad genetic and phenotypic heterogeneity. We first compared MSEW effects on social behavior in DO mice versus B6 mice, because we have previously found social behavior deficits in B6 mice with a history of MSEW. Indeed, we established that MSEW incited social motivation deficits in DO mice, in a sex-specific manner. We then expanded our investigation of DO mice to test MSEW-related changes in anxiety-like behavior, fear learning and expression, and reward-seeking. Results revealed that MSEW produces distinct, sex-specific phenotypes: female DO mice displayed reduced social motivation and elevated anxiety-like behavior, while male DO mice showed attenuated CS-evoked fear expression and diminished reward-seeking behavior. Additionally, immunohistochemical analysis revealed increased Fos expression in the paraventricular nucleus of the hypothalamus (PVN) in MSEW-exposed DO mice, both at baseline and following acute stress. These findings highlight the importance of incorporating genetically diverse models to better capture the nuances of early life adversity-related outcomes relevant to human populations.
Collapse
|
2
|
Choe JY, Jones HP. Methods for Modeling Early Life Stress in Rodents. Methods Mol Biol 2025; 2868:205-219. [PMID: 39546232 DOI: 10.1007/978-1-0716-4200-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Animal models of early life stress/adversity (ELS) have provided a foundation from which our understanding of the psychoneuroimmunology of childhood trauma has expanded over recent decades. Rodent models are a cornerstone of the ELS literature with many studies utilizing paradigms based on early life separation/deprivation protocols and manipulating the cage environment. However, no animal model is perfect. In particular, the lack of standardization across ELS models has led to inconsistent results and raised questions regarding the translational value of common preclinical models. In this chapter, we present an overview of the history of ELS rodent models and discuss considerations relevant to the ongoing efforts to both improve existing models and generate novel paradigms to meet the evolving needs of molecular- and mechanism-based ELS research.
Collapse
Affiliation(s)
- Jamie Y Choe
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Harlan P Jones
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA.
- Institute for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
3
|
Abellán-Álvaro M, Teruel-Sanchis A, Madeira MF, Lanuza E, Santos M, Agustín-Pavón C. Doublecortin-immunoreactive neurons in the piriform cortex are sensitive to the long lasting effects of early life stress. Front Neurosci 2024; 18:1446912. [PMID: 39351392 PMCID: PMC11439882 DOI: 10.3389/fnins.2024.1446912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
The olfactory system is a niche of continuous structural plasticity, holding postnatal proliferative neurogenesis in the olfactory bulbs and a population of immature neurons in the piriform cortex. These neurons in the piriform cortex are generated during embryonic development, retain the expression of immaturity markers such as doublecortin, and slowly mature and integrate into the olfactory circuit as the animal ages. To study how early life experiences affect this population of cortical immature neurons, we submitted mice of the C57/Bl6J strain to a protocol of maternal separation for 3 h per day from postnatal day 3 to postnatal day 21. Control mice were continuously with their mothers. After weaning, mice were undisturbed until 6 weeks of age, when they were weighted and tested in the elevated plus-maze, a standard test for anxiety-like behavior, to check for phenotypical effects. Mice were then perfused, and their brains processed for the immunofluorescent detection of doublecortin and the endogenous proliferation marker Ki67. We found that maternal separation induced a significant increase in the body weight of males, but not females. Further, maternally separated mice displayed increased exploratory-like behavior (i.e., head dipping, velocity and total distance traveled in the elevated plus maze), but no significant differences in anxiety-like behavior or corticosterone levels after behavioral testing. Finally, we observed a significant increase in the number of complex doublecortin neurons in the piriform cortex, but not in the olfactory bulbs, of mice submitted to maternal separation. Interestingly, most doublecortin neurons in the piriform cortex, but not the olfactory bulb, express the epigenetic reader MeCP2. In summary, mild early life stress results, during adolescence, in a male-specific increase in body weight, alteration of the exploratory behaviors, and an increase in doublecortin neurons in the piriform cortex, suggesting an alteration in their maturation process.
Collapse
Affiliation(s)
- María Abellán-Álvaro
- Unitat Mixta d’Investigació en Neuroanatomia Funcional, Departament de Biologia Cel⋅lular, Biologia Funcional i Antropologia Física, Universitat de València, València, Spain
| | - Anna Teruel-Sanchis
- Unitat Mixta d’Investigació en Neuroanatomia Funcional, Departament de Biologia Cel⋅lular, Biologia Funcional i Antropologia Física, Universitat de València, València, Spain
| | - Maria Francisca Madeira
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Enrique Lanuza
- Unitat Mixta d’Investigació en Neuroanatomia Funcional, Departament de Biologia Cel⋅lular, Biologia Funcional i Antropologia Física, Universitat de València, València, Spain
| | - Mónica Santos
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Carmen Agustín-Pavón
- Unitat Mixta d’Investigació en Neuroanatomia Funcional, Departament de Biologia Cel⋅lular, Biologia Funcional i Antropologia Física, Universitat de València, València, Spain
| |
Collapse
|
4
|
McClafferty SR, Paniagua-Ugarte C, Hannabass ZM, Jackson PA, Hayes DM. Comparing the effects of infant maternal and sibling separation on adolescent behavior in rats (Rattus norvegicus). PLoS One 2024; 19:e0308958. [PMID: 39150925 PMCID: PMC11329123 DOI: 10.1371/journal.pone.0308958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/01/2024] [Indexed: 08/18/2024] Open
Abstract
Maternal separation in early life has been observed to have lasting, detrimental effects that impair personal and social development and can persist into adulthood. Maternal separation during infancy can be most detrimental during adolescence, leading to long-term adverse effects on development and social behavior. This research study compared the effects of sibling and maternal separation in infancy on anxiety, sociability, or memory later in adolescence (postnatal day, PND, 50-58) in male and female Long-Evans Rats (Rattus norvegicus). Rat pups were semi-randomly assigned into eight conditions for daily isolation (PND 1-14). The groups were separated by the duration of isolation between 15 minutes (control group) or 180 minutes (experimental group) and the sex of the rat. They were also separated by comfort conditions with the dam present in an adjoining cage versus not present and siblings present or not present during isolation. The result was a 2 (15-min vs. 180-min) x 2 (dam vs. no dam) x 2 (single vs. grouped) x 2 (male vs. female) design. Once pups had reached adolescence (PND 50), researchers tested for differences in anxiety, activity, and social behavior using elevated plus-maze, open field habituation, a three-chamber social interaction, and a social discrimination task. Results indicate that longer isolation was more stressful and caused lower body weight. The female rats showed more anxious behavior in the open field but only if they were in the shorter isolation group. Social interaction showed that the rats isolated with the dam had different effects of isolation. In males, shorter isolation with the dam increased sociability but decreased sociability in females. These complicated findings may be due to the effects of inoculation, which describes how moderate stress combined with comfort may produce adaptation or immunity to stress and affect males and females differently.
Collapse
Affiliation(s)
- Shane R McClafferty
- Radford University, Radford, VA, United States of America
- Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America
| | | | | | | | - Dayna M Hayes
- Radford University, Radford, VA, United States of America
| |
Collapse
|
5
|
Calanni JS, Rosenstein RE. Consequences of early life stress on the structure and function of the adult mouse retina. Neural Regen Res 2024; 19:150-151. [PMID: 37488857 PMCID: PMC10479852 DOI: 10.4103/1673-5374.375325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 07/26/2023] Open
Affiliation(s)
- Juan S. Calanni
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Ruth E. Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| |
Collapse
|
6
|
Ronquillo J, Nguyen MT, Rothi LY, Bui‐Tu T, Yang J, Halladay LR. Nature and nurture: Comparing mouse behavior in classic versus revised anxiety-like and social behavioral assays in genetically or environmentally defined groups. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12869. [PMID: 37872655 PMCID: PMC10733577 DOI: 10.1111/gbb.12869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Widely used rodent anxiety assays like the elevated plus maze (EPM) and the open field test (OFT) are conflated with rodents' natural preference for dark over light environments or protected over open spaces. The EPM and OFT have been used for decades but are often criticized by behavioral scientists. Years ago, two revised anxiety assays were designed to improve upon the "classic" tests by excluding the possibility to avoid or escape aversion. The 3-D radial arm maze (3DR) and the 3-D open field test (3Doft) utilize continual motivational conflict to better model anxiety; each consist of an open space connected to ambiguous paths toward uncertain escape. Despite their utility, the revised assays have not caught on. This could be because no study yet has directly compared classic and revised assays in the same animals. To remedy this, we contrasted behavior from a battery of assays (EPM, OFT, 3DR, 3Doft and a sociability test) in mice defined genetically by isogenic strain, or environmentally by postnatal experience. One major motivation for this work is to inform future studies by offering a transparent look at individual outcomes on these assays, as there is no one-size-fits-all test to assess rodent anxiety-like behavior. Findings suggest that classic assays may sufficiently characterize differences across genetically defined groups, but the revised 3DR may be advantageous for investigating more nuanced behavioral differences such as those stemming from environmental factors. Finally, exposure to multiple assays significantly affected sociability, highlighting concerns for designing and interpreting batteries of rodent behavioral tests.
Collapse
Affiliation(s)
- Janet Ronquillo
- Department of PsychologySanta Clara UniversitySanta ClaraCaliforniaUSA
| | - Michael T. Nguyen
- Department of PsychologySanta Clara UniversitySanta ClaraCaliforniaUSA
| | - Linnea Y. Rothi
- Department of PsychologySanta Clara UniversitySanta ClaraCaliforniaUSA
| | - Trung‐Dan Bui‐Tu
- Department of PsychologySanta Clara UniversitySanta ClaraCaliforniaUSA
| | - Jocelyn Yang
- Department of PsychologySanta Clara UniversitySanta ClaraCaliforniaUSA
| | | |
Collapse
|
7
|
Ronquillo J, Nguyen MT, Rothi L, Bui-Tu TD, Yang J, Halladay LR. Nature and nurture: comparing mouse behavior in classic versus revised anxiety-like and social behavioral assays in genetically or environmentally defined groups. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545212. [PMID: 37398211 PMCID: PMC10312802 DOI: 10.1101/2023.06.16.545212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Widely used rodent anxiety assays like the elevated plus maze (EPM) and the open field test (OFT) are often conflated with rodents' natural preference for dark over light environments or protected over open spaces. The EPM and OFT have been used for many decades, yet have also been criticized by generations of behavioral scientists. Several years ago, two revised anxiety assays were designed to improve upon the "classic" tests by excluding the possibility to avoid or escape aversive areas of each maze. The 3-D radial arm maze (3DR) and the 3-D open field test (3Doft) each consist of an open space connected to ambiguous paths toward uncertain escape. This introduces continual motivational conflict, thereby increasing external validity as an anxiety model. But despite this improvement, the revised assays have not caught on. One issue may be that studies to date have not directly compared classic and revised assays in the same animals. To remedy this, we contrasted behavior in a battery of assays (EPM, OFT, 3DR, 3Doft, and a sociability test) in mice defined either genetically by isogenic strain, or environmentally by postnatal experience. Findings indicate that the optimal assay to assess anxiety-like behavior may depend upon grouping variable (e.g. genetic versus environment). We argue that the 3DR may be the most ecologically valid of the anxiety assays tested, while the OFT and 3Doft provided the least useful information. Finally, exposure to multiple assays significantly affected sociability measures, raising concerns for designing and interpreting batteries of behavioral tests in mice.
Collapse
Affiliation(s)
- Janet Ronquillo
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Michael T. Nguyen
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Linnea Rothi
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Trung-Dan Bui-Tu
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Jocelyn Yang
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Lindsay R. Halladay
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| |
Collapse
|
8
|
Scopano MR, Jones HE, Stea SG, Freeman MZ, Grisel JE. Age, β-endorphin, and sex dependent effects of maternal separation on locomotor activity, anxiety-like behavior, and alcohol reward. Front Behav Neurosci 2023; 17:1155647. [PMID: 37091593 PMCID: PMC10113444 DOI: 10.3389/fnbeh.2023.1155647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionChildhood adversity is pervasive and linked to numerous disadvantages in adulthood, including physical health problems, mental illness, and substance use disorders. Initial sensitivity to the rewarding effects of alcohol predicts the risk of developing an alcohol use disorder, and may be linked to developmental stress. The opioid peptide β-endorphin (β-E) regulates the stress response and is also implicated in the risk for excessive alcohol consumption.MethodsWe explored the influence of β-E in an animal model of early life adversity using controlled maternal separation by evaluating changes in locomotor activity, anxiety-like behavior, and the initial rewarding effects of alcohol in a single exposure conditioned place preference paradigm in control C57BL/6J and β-E deficient β-E +/+ 0.129S2-Pomc tm1Low/J; β-E −/− mice. Maternal separation (MS) occurred for 3 h each day from post-natal days (PND) 5–18 in approximately half the subjects.ResultsMaternal interactions increased following the separation protocol equally in both genotypes. MS and control subjects were tested as adolescents (PND 26–32) or adults (PND 58–72); the effects of MS were generally more pronounced in older subjects. Adults were more active than adolescents in the open field, and MS decreased activity in adolescent mice but increased it in adults. The increase in adult activity as a result of early life stress depended on both β-E and sex. β-E also influenced the effect of maternal separation on anxiety-like behavior in the Elevated Plus Maze. MS promoted rewarding effects of alcohol in male β-E deficient mice of either age, but had no effect in other groups.DiscussionTaken together, these results suggest that the effects of MS develop over time and are β-E and sex dependent and may aid understanding of how individual differences influence the impact of adverse childhood experiences.
Collapse
|
9
|
Sanchís-Ollé M, Belda X, Gagliano H, Visa J, Nadal R, Armario A. Animal models of PTSD: Comparison of the neuroendocrine and behavioral sequelae of immobilization and a modified single prolonged stress procedure that includes immobilization. J Psychiatr Res 2023; 160:195-203. [PMID: 36842332 DOI: 10.1016/j.jpsychires.2023.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
A single exposure to some stressors results in long-lasting consequences reminiscent of those found in post-traumatic stress disorder (PTSD), but results are very often controversial. Although there is no consensus regarding the best animal models of PTSD, the single prolonged stress (SPS) model, consisting of sequential exposure within the same day to various stressors (typically restraint, forced swim, and ether), has gained acceptance. However, results, particularly those related to the hypothalamic-pituitary-adrenal (HPA) axis, are inconsistent and there is no evidence that SPS is clearly distinct from models using a single severe stressor. In the present study, we compared in male rats the behavioral and neuroendocrine (HPA) consequences of exposure to immobilization on boards (IMO) with a SPS-like model (SPSi) in which IMO and isoflurane were substituted for restraint and ether, respectively. Both procedures caused a similar impact on food intake and body weight as well as on sensitization of the HPA response to a novel environment (hole-board) on the following day. Reduction of activity/exploration in the hole-board was also similar with both stressors, although the impact of sudden noise was higher in SPSi than IMO. Neither IMO nor SPSi significantly affected contextual fear conditioning acquisition, although a similar trend for impaired fear extinction was observed compared to controls. Exposure to additional stressors in the SPSi did not interfere with homotypic adaptation of the HPA axis to IMO. Thus, only modest neuroendocrine and behavioral differences were observed between IMO and SPSi and more studies comparing putative PTSD models are needed.
Collapse
Affiliation(s)
- María Sanchís-Ollé
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Xavier Belda
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Joan Visa
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Roser Nadal
- Unitat Mixta Translacional, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain
| | - Antonio Armario
- Unitat Mixta Translacional, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
10
|
The role of estrogen receptor manipulation during traumatic stress on changes in emotional memory induced by traumatic stress. Psychopharmacology (Berl) 2023; 240:1049-1061. [PMID: 36879072 DOI: 10.1007/s00213-023-06342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
RATIONALE Traumatic stress leads to persistent fear, which is a core feature of post-traumatic stress disorder (PTSD). Women are more likely than men to develop PTSD after trauma exposure, which suggests women are differentially sensitive to traumatic stress. However, it is unclear how this differential sensitivity manifests. Cyclical changes in vascular estrogen release could be a contributing factor where levels of vascular estrogens (and activation of estrogen receptors) at the time of traumatic stress alter the impact of traumatic stress. METHODS To examine this, we manipulated estrogen receptors at the time of stress and observed the effect this had on fear and extinction memory (within the single prolonged stress (SPS) paradigm) in female rats. In all experiments, freezing and darting were used to measure fear and extinction memory. RESULTS In Experiment 1, SPS enhanced freezing during extinction testing, and this effect was blocked by nuclear estrogen receptor antagonism prior to SPS. In Experiment 2, SPS decreased conditioned freezing during the acquisition and testing of extinction. Administration of 17β-estradiol altered freezing in control and SPS animals during the acquisition of extinction, but this treatment had no effect on freezing during the testing of extinction memory. In all experiments, darting was only observed to footshock onset during fear conditioning. CONCLUSION The results suggest multiple behaviors (or different behavioral paradigms) are needed to characterize the nature of traumatic stress effects on emotional memory in female rats and that nuclear estrogen receptor antagonism prior to SPS blocks SPS effects on emotional memory in female rats.
Collapse
|
11
|
Halladay LR, Herron SM. Lasting impact of postnatal maternal separation on the developing BNST: Lifelong socioemotional consequences. Neuropharmacology 2023; 225:109404. [PMID: 36572178 PMCID: PMC9926961 DOI: 10.1016/j.neuropharm.2022.109404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Nearly one percent of children in the US experience childhood neglect or abuse, which can incite lifelong emotional and behavioral disorders. Many studies investigating the neural underpinnings of maleffects inflicted by early life stress have largely focused on dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. Newer veins of evidence suggest that exposure to early life stressors can interrupt neural development in extrahypothalamic areas as well, including the bed nucleus of the stria terminalis (BNST). One widely used approach in this area is rodent maternal separation (MS), which typically consists of separating pups from the dam for extended periods of time, over several days during the first weeks of postnatal life - a time when pups are highly dependent on maternal care for survival. MS has been shown to incite myriad lasting effects not limited to increased anxiety-like behavior, hyper-responsiveness to stressors, and social behavior deficits. The behavioral effects of MS are widespread and thus unlikely to be limited to hypothalamic mechanisms. Recent work has highlighted the BNST as a critical arbiter of some of the consequences of MS, especially socioemotional behavioral deficits. The BNST is a well-documented modulator of anxiety, reward, and social behavior by way of its connections with hypothalamic and extra-hypothalamic systems. Moreover, during the postnatal period when MS is typically administered, the BNST undergoes critical neural developmental events. This review highlights evidence that MS interferes with neural development to permanently alter BNST circuitry, which may account for a variety of behavioral deficits seen following early life stress. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.
Collapse
Affiliation(s)
- Lindsay R Halladay
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA.
| | - Steven M Herron
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| |
Collapse
|
12
|
Parekh SV, Adams LO, Barkell GA, Lysle DT. Sex-differences in anxiety, neuroinflammatory markers, and enhanced fear learning following chronic heroin withdrawal. Psychopharmacology (Berl) 2023; 240:347-359. [PMID: 36633660 PMCID: PMC9879843 DOI: 10.1007/s00213-023-06310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Post-traumatic stress disorder (PTSD) and opioid use disorder (OUD) are comorbid in clinical populations. However, both pre-clinical and clinical studies of these co-occurring disorders have disproportionately represented male subjects, limiting the applicability of these findings. Our previous work has identified chronic escalating heroin administration and withdrawal can produce enhanced fear learning. This behavior is associated with an increase in dorsal hippocampal (DH) interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and glial fibrillary acidic protein (GFAP) immunoreactivity. Further, we have shown that these increases in IL-1β and TNF-α are mechanistically necessary for the development of enhanced fear learning. Although these are exciting findings, this paradigm has only been studied in males. The current studies aim to examine sex differences in the behavioral and neuroimmune effects of chronic heroin withdrawal and future enhanced fear learning. In turn, we determined that chronic escalating heroin administration can produce withdrawal in female rats comparable to male rats. Subsequently, we examined the consequence of heroin withdrawal on future enhanced fear learning and IL-1β, TNF-α, and GFAP immunoreactivity. Strikingly, we identified sex differences in these neuroimmune measures, as chronic heroin administration and withdrawal does not produce enhanced fear learning or immunoreactivity changes in females. Moreover, we determined whether heroin withdrawal produces short-term and long-term anxiety behaviors in both female and males. Collectively, these novel experiments are the first to test whether heroin withdrawal can sensitize future fear learning, produce neurobiological changes, and cause short-term and long-term anxiety behaviors in female rats.
Collapse
Affiliation(s)
- Shveta V Parekh
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3720, Chapel Hill, NC, 27599-3270, USA
| | - Lydia O Adams
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3720, Chapel Hill, NC, 27599-3270, USA
| | - Gillian A Barkell
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3720, Chapel Hill, NC, 27599-3270, USA
| | - Donald T Lysle
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3720, Chapel Hill, NC, 27599-3270, USA.
| |
Collapse
|
13
|
Calanni JS, Dieguez HH, González Fleitas MF, Canepa E, Berardino B, Repetto EM, Villarreal A, Dorfman D, Rosenstein RE. Early life stress induces visual dysfunction and retinal structural alterations in adult mice. J Neurochem 2022; 165:362-378. [PMID: 36583234 DOI: 10.1111/jnc.15752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Early life stress (ELS) is defined as a period of severe and/or chronic trauma, as well as environmental/social deprivation or neglect in the prenatal/early postnatal stage. Presently, the impact of ELS on the retina in the adult stage is unknown. The long-term consequences of ELS at retinal level were analyzed in an animal model of maternal separation with early weaning (MSEW), which mimics early life maternal neglect. For this purpose, mice were separated from the dams for 2 h at postnatal days (PNDs) 4-6, for 3 h at PNDs 7-9, for 4 h at PNDs 10-12, for 6 h at PNDs 13-16, and weaned at PND17. At the end of each separation period, mothers were subjected to movement restriction for 10 min. Control pups were left undisturbed from PND0, and weaned at PND21. Electroretinograms, visual evoked potentials, vision-guided behavioral tests, retinal anterograde transport, and retinal histopathology were examined at PNDs 60-80. MSEW induced long-lasting functional and histological effects at retinal level, including decreased retinal ganglion cell function and alterations in vision-guided behaviors, likely associated to decreased synaptophysin content, retina-superior colliculus communication deficit, increased microglial phagocytic activity, and retinal ganglion cell loss through a corticoid-dependent mechanism. A treatment with mifepristone, injected every 3 days between PNDs 4 and16, prevented functional and structural alterations induced by MSEW. These results suggest that retinal alterations might be included among the childhood adversity-induced threats to life quality, and that an early intervention with mifepristone avoided ELS-induced retinal disturbances.
Collapse
Affiliation(s)
- Juan S Calanni
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Hernán H Dieguez
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María F González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Eduardo Canepa
- Neuroepigenetics Laboratory, Department of Biological Chemistry and Institute of Biological Chemistry, School of Science, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Bruno Berardino
- Neuroepigenetics Laboratory, Department of Biological Chemistry and Institute of Biological Chemistry, School of Science, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Esteban M Repetto
- Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Alejandro Villarreal
- Molecular Neuropathology Laboratory, School of Medicine, Cellular Biology and Neuroscience Institute, "Prof. E. De Robertis", University of Buenos Aires/CONICET, Argentina
| | - Damian Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| |
Collapse
|
14
|
Mbiydzenyuy NE, Hemmings SMJ, Qulu L. Prenatal maternal stress and offspring aggressive behavior: Intergenerational and transgenerational inheritance. Front Behav Neurosci 2022; 16:977416. [PMID: 36212196 PMCID: PMC9539686 DOI: 10.3389/fnbeh.2022.977416] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Even though studies have shown that prenatal maternal stress is associated with increased reactivity of the HPA axis, the association between prenatal maternal stress and fetal glucocorticoid exposure is complex and most likely dependent on unidentified and poorly understood variables including nature and timing of prenatal insults. The precise mechanisms in which prenatal maternal stress influence neuroendocrine signaling between the maternal-placental-fetal interface are still unclear. The aim of this review article is to bring comprehensive basic concepts about prenatal maternal stress and mechanisms of transmission of maternal stress to the fetus. This review covers recent studies showing associations between maternal stress and alterations in offspring aggressive behavior, as well as the possible pathways for the “transmission” of maternal stress to the fetus: (1) maternal-fetal HPA axis dysregulation; (2) intrauterine environment disruption due to variations in uterine artery flow; (3) epigenetic modifications of genes implicated in aggressive behavior. Here, we present evidence for the phenomenon of intergenerational and transgenerational transmission, to better understands the mechanism(s) of transmission from parent to offspring. We discuss studies showing associations between maternal stress and alterations in offspring taking note of neuroendocrine, brain architecture and epigenetic changes that may suggest risk for aggressive behavior. We highlight animal and human studies that focus on intergenerational transmission following exposure to stress from a biological mechanistic point of view, and maternal stress-induced epigenetic modifications that have potential to impact on aggressive behavior in later generations.
Collapse
Affiliation(s)
- Ngala Elvis Mbiydzenyuy
- Department of Basic Science, School of Medicine, Copperbelt University, Ndola, Zambia
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Cape Town, South Africa
- *Correspondence: Ngala Elvis Mbiydzenyuy,
| | - Sian Megan Joanna Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lihle Qulu
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
15
|
Waters RC, Gould E. Early Life Adversity and Neuropsychiatric Disease: Differential Outcomes and Translational Relevance of Rodent Models. Front Syst Neurosci 2022; 16:860847. [PMID: 35813268 PMCID: PMC9259886 DOI: 10.3389/fnsys.2022.860847] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
It is now well-established that early life adversity (ELA) predisposes individuals to develop several neuropsychiatric conditions, including anxiety disorders, and major depressive disorder. However, ELA is a very broad term, encompassing multiple types of negative childhood experiences, including physical, sexual and emotional abuse, physical and emotional neglect, as well as trauma associated with chronic illness, family separation, natural disasters, accidents, and witnessing a violent crime. Emerging literature suggests that in humans, different types of adverse experiences are more or less likely to produce susceptibilities to certain conditions that involve affective dysfunction. To investigate the driving mechanisms underlying the connection between experience and subsequent disease, neuroscientists have developed several rodent models of ELA, including pain exposure, maternal deprivation, and limited resources. These studies have also shown that different types of ELA paradigms produce different but somewhat overlapping behavioral phenotypes. In this review, we first investigate the types of ELA that may be driving different neuropsychiatric outcomes and brain changes in humans. We next evaluate whether rodent models of ELA can provide translationally relevant information regarding links between specific types of experience and changes in neural circuits underlying dysfunction.
Collapse
Affiliation(s)
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| |
Collapse
|
16
|
Matheson K, Seymour A, Landry J, Ventura K, Arsenault E, Anisman H. Canada's Colonial Genocide of Indigenous Peoples: A Review of the Psychosocial and Neurobiological Processes Linking Trauma and Intergenerational Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6455. [PMID: 35682038 PMCID: PMC9179992 DOI: 10.3390/ijerph19116455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022]
Abstract
The policies and actions that were enacted to colonize Indigenous Peoples in Canada have been described as constituting cultural genocide. When one considers the long-term consequences from the perspective of the social and environmental determinants of health framework, the impacts of such policies on the physical and mental health of Indigenous Peoples go well beyond cultural loss. This paper addresses the impacts of key historical and current Canadian federal policies in relation to the health and well-being of Indigenous Peoples. Far from constituting a mere lesson in history, the connections between colonialist policies and actions on present-day outcomes are evaluated in terms of transgenerational and intergenerational transmission processes, including psychosocial, developmental, environmental, and neurobiological mechanisms and trauma responses. In addition, while colonialist policies have created adverse living conditions for Indigenous Peoples, resilience and the perseverance of many aspects of culture may be maintained through intergenerational processes.
Collapse
Affiliation(s)
- Kimberly Matheson
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada; (J.L.); (K.V.); (E.A.); (H.A.)
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, ON K1Z 7K4, Canada
| | - Ann Seymour
- School of Social Work, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Jyllenna Landry
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada; (J.L.); (K.V.); (E.A.); (H.A.)
| | - Katelyn Ventura
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada; (J.L.); (K.V.); (E.A.); (H.A.)
| | - Emily Arsenault
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada; (J.L.); (K.V.); (E.A.); (H.A.)
| | - Hymie Anisman
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada; (J.L.); (K.V.); (E.A.); (H.A.)
| |
Collapse
|