1
|
Horvath G, Ducza E, Adlan LG, Büki A, Kekesi G. Distinct Effects of Olanzapine Depot Treatment on Behavior and Muscarinic M1 Receptor Expression in the Triple-Hit Wisket Rat Model of Schizophrenia. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70015. [PMID: 39844699 PMCID: PMC11754962 DOI: 10.1111/gbb.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
This study aimed to characterize the triple-hit schizophrenia-like model rats (Wisket) by the assessment of (1) behavioral parameters in different test conditions (reward-based Ambitus test and HomeManner system) for a prolonged period, (2) cerebral muscarinic M1 receptor (M1R) expression, and (3) the effects of olanzapine treatment on these parameters. Wistar (control) and Wisket rats were injected for three consecutive weeks with olanzapine depot (100 mg/kg) and spent 4 weeks in large cages with environmental enrichment (HomeManner). The vehicle-treated Wisket rats spent longer time awake with decreased grooming activity compared to controls, without changes in their active social behavior (sniffing, playing, fighting) obtained in HomeManner. Olanzapine treatment decreased most of these parameters, only the passive social interaction (huddling during sleeping) enhanced mostly in the Wisket rats on the injection day, which recovered within 4 days. In the Ambitus test, vehicle-treated Wisket rats showed lower locomotor and exploratory activities and impaired cognition compared to control rats, deteriorating by olanzapine in both groups. In Wisket brain samples, the M1R mRNA expression was significantly lower in the cerebral cortex and elevated in the hippocampus, with no difference in the prefrontal cortex versus control. Olanzapine normalized the hippocampal M1R expression, but enhanced it in the prefrontal cortex. The triple-hit Wisket model rats had impaired behavioral characteristics in both acute reward-based test and undisturbed circumstances investigated for prolonged periods, and altered cerebral M1R expression. Chronic olanzapine treatment resulted deterioration of some parameters in control group, and could restore only few negative signs in model rats.
Collapse
Affiliation(s)
- Gyongyi Horvath
- Department of PhysiologyAlbert Szent‐Györgyi Medical School, University of SzegedSzegedHungary
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of PharmacyUniversity of SzegedSzegedHungary
| | | | - Alexandra Büki
- Department of PhysiologyAlbert Szent‐Györgyi Medical School, University of SzegedSzegedHungary
| | - Gabriella Kekesi
- Department of PhysiologyAlbert Szent‐Györgyi Medical School, University of SzegedSzegedHungary
| |
Collapse
|
2
|
Ahuis TP, Smyk MK, Laloux C, Aulehner K, Bray J, Waldron AM, Miljanovic N, Seiffert I, Song D, Boulanger B, Jucker M, Potschka H, Platt B, Riedel G, Voehringer P, Nicholson JR, Drinkenburg WHIM, Kas MJH, Leiser SC. Evaluation of variation in preclinical electroencephalographic (EEG) spectral power across multiple laboratories and experiments: An EQIPD study. PLoS One 2024; 19:e0309521. [PMID: 39471212 PMCID: PMC11521305 DOI: 10.1371/journal.pone.0309521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/13/2024] [Indexed: 11/01/2024] Open
Abstract
The European Quality In Preclinical Data (EQIPD) consortium was born from the fact that publications report challenges with the robustness, rigor, and/or validity of research data, which may impact decisions about whether to proceed with further preclinical testing or to advance to clinical testing, as well as draw conclusions on the predictability of preclinical models. To address this, a consortium including multiple research laboratories from academia and industry participated in a series of electroencephalography (EEG) experiments in mice aimed to detect sources of variance and to gauge how protocol harmonisation and data analytics impact such variance. Ultimately, the goal of this first ever between-laboratory comparison of EEG recordings and analyses was to validate the principles that supposedly increase data quality, robustness, and comparability. Experiments consisted of a Localisation phase, which aimed to identify the factors that influence between-laboratory variability, a Harmonisation phase to evaluate whether harmonisation of standardized protocols and centralised processing and data analysis reduced variance, and a Ring-Testing phase to verify the ability of the harmonised protocol to generate consistent findings. Indeed, between-laboratory variability reduced from Localisation to Harmonisation and this reduction remained during the Ring-Testing phase. Results obtained in this multicentre preclinical qEEG study also confirmed the complex nature of EEG experiments starting from the surgery and data collection through data pre-processing to data analysis that ultimately influenced the results and contributed to variance in findings across laboratories. Overall, harmonisation of protocols and centralized data analysis were crucial in reducing laboratory-to-laboratory variability. To this end, it is recommended that standardized guidelines be updated and followed for collection and analysis of preclinical EEG data.
Collapse
Affiliation(s)
- Tim P. Ahuis
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Magdalena K. Smyk
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Katharina Aulehner
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Jack Bray
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Ann-Marie Waldron
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Nina Miljanovic
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Isabel Seiffert
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Dekun Song
- Translational EEG, PsychoGenics Inc., Paramus, New Jersey, United States of America
| | | | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Bettina Platt
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Patrizia Voehringer
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Janet R. Nicholson
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Wilhelmus H. I. M. Drinkenburg
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Martien J. H. Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Steven C. Leiser
- Translational EEG, PsychoGenics Inc., Paramus, New Jersey, United States of America
| |
Collapse
|
3
|
Percelay S, Lahogue C, Billard JM, Freret T, Boulouard M, Bouet V. The 3-hit animal models of schizophrenia: Improving strategy to decipher and treat the disease? Neurosci Biobehav Rev 2024; 157:105526. [PMID: 38176632 DOI: 10.1016/j.neubiorev.2023.105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
Schizophrenia is a complex disease related to combination and interactions between genetic and environmental factors, with an epigenetic influence. After the development of the first mono-factorial animal models of schizophrenia (1-hit), that reproduced patterns of either positive, negative and/or cognitive symptoms, more complex models combining two factors (2-hit) have been developed to better fit with the multifactorial etiology of the disease. In the two past decades, a new way to design animal models of schizophrenia have emerged by adding a third hit (3-hit). This review aims to discuss the relevance of the risk factors chosen for the tuning of the 3-hit animal models, as well as the validities measurements and their contribution to schizophrenia understanding. We intended to establish a comprehensive overview to help in the choice of factors for the design of multiple-hit animal models of schizophrenia.
Collapse
Affiliation(s)
- Solenn Percelay
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Caroline Lahogue
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France.
| | - Jean-Marie Billard
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Thomas Freret
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Michel Boulouard
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Valentine Bouet
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France.
| |
Collapse
|
4
|
Caffeine-Induced Acute and Delayed Responses in Cerebral Metabolism of Control and Schizophrenia-Like Wisket Rats. Int J Mol Sci 2022; 23:ijms23158186. [PMID: 35897774 PMCID: PMC9331118 DOI: 10.3390/ijms23158186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Recently, morphological impairments have been detected in the brain of a triple-hit rat schizophrenia model (Wisket), and delayed depressive effects of caffeine treatment in both control and Wisket animals have also been shown. The aims of this study were to determine the basal and caffeine-induced acute (30 min) and delayed (24 h) changes in the cerebral 18fluorodeoxyglucose (18F-FDG) uptake by positron emission tomography (PET) in control and Wisket rats. No significant differences were identified in the basal whole-brain metabolism between the two groups, and the metabolism was not modified acutely by a single intraperitoneal caffeine (20 mg/kg) injection in either group. However, one day after caffeine administration, significantly enhanced 18F-FDG uptake was detected in the whole brain and the investigated areas (hippocampus, striatum, thalamus, and hypothalamus) in the control group. Although the Wisket animals showed only moderate enhancements in the 18F-FDG uptake, significantly lower brain metabolism was observed in this group than in the caffeine-treated control group. This study highlights that the basal brain metabolism of Wisket animals was similar to control rats, and that was not influenced acutely by single caffeine treatment at the whole-brain level. Nevertheless, the distinct delayed responsiveness to this psychostimulant in Wisket model rats suggests impaired control of the cerebral metabolism.
Collapse
|