1
|
Brandstetter J, Hoffmann L, Koopmann I, Schreiber T, Schulz B, Rosshart SP, Zechner D, Vollmar B, Kumstel S. Burrowing Behavior as Robust Parameter for Early Humane Endpoint Determination in Murine Models for Pancreatic Cancer. Animals (Basel) 2025; 15:1241. [PMID: 40362056 PMCID: PMC12071103 DOI: 10.3390/ani15091241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Due to late-stage diagnoses and limited treatment options, pancreatic cancer is predicted to be the second leading cause of cancer deaths by 2030. Many different murine models were developed over the past decades to test new therapies for this tumor entity. The laws and regulations demand the continuous refinement of animal experiments in order to improve animal welfare sustainably. A key aspect here is the definition of early humane endpoint criteria to avoid severe and lasting suffering of the animals through timely euthanasia. The present study analyzed the welfare of mice in different pancreatic cancer models, various mouse strains, and under different therapeutic interventions in preclinical testing. Their welfare was monitored before any intervention, during tumor progression, and on the days before the individual humane endpoint for each mouse by assessing body weight change, distress score, perianal temperature, burrowing behavior, nesting activity, and mouse grimace scale. The data was retrospectively analyzed via receiver operating characteristic curve analysis to quantify the predictability of each parameter for humane endpoint determination. Burrowing behavior proved to be a robust predictor of the humane endpoint two days in advance under various conditions, including diverse pancreatic cancer models and different therapeutic approaches.
Collapse
Affiliation(s)
- Jakob Brandstetter
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center Rostock, 18057 Rostock, Germany; (J.B.); (L.H.); (I.K.); (T.S.); (D.Z.); (B.V.)
| | - Lisa Hoffmann
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center Rostock, 18057 Rostock, Germany; (J.B.); (L.H.); (I.K.); (T.S.); (D.Z.); (B.V.)
| | - Ingo Koopmann
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center Rostock, 18057 Rostock, Germany; (J.B.); (L.H.); (I.K.); (T.S.); (D.Z.); (B.V.)
| | - Tim Schreiber
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center Rostock, 18057 Rostock, Germany; (J.B.); (L.H.); (I.K.); (T.S.); (D.Z.); (B.V.)
| | - Benjamin Schulz
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center Rostock, 18057 Rostock, Germany; (J.B.); (L.H.); (I.K.); (T.S.); (D.Z.); (B.V.)
| | - Stephan Patrick Rosshart
- Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Dietmar Zechner
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center Rostock, 18057 Rostock, Germany; (J.B.); (L.H.); (I.K.); (T.S.); (D.Z.); (B.V.)
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center Rostock, 18057 Rostock, Germany; (J.B.); (L.H.); (I.K.); (T.S.); (D.Z.); (B.V.)
| | - Simone Kumstel
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center Rostock, 18057 Rostock, Germany; (J.B.); (L.H.); (I.K.); (T.S.); (D.Z.); (B.V.)
| |
Collapse
|
2
|
Ohland PLS, Jack T, Mast M, Melk A, Bleich A, Talbot SR. Continuous monitoring of physiological data using the patient vital status fusion score in septic critical care patients. Sci Rep 2024; 14:7198. [PMID: 38531955 DOI: 10.1038/s41598-024-57712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Accurate and standardized methods for assessing the vital status of patients are crucial for patient care and scientific research. This study introduces the Patient Vital Status (PVS), which quantifies and contextualizes a patient's physical status based on continuous variables such as vital signs and deviations from age-dependent normative values. The vital signs, heart rate, oxygen saturation, respiratory rate, mean arterial blood pressure, and temperature were selected as input to the PVS pipeline. The method was applied to 70 pediatric patients in the intensive care unit (ICU), and its efficacy was evaluated by matching high values with septic events at different time points in patient care. Septic events included systemic inflammatory response syndrome (SIRS) and suspected or proven sepsis. The comparison of maximum PVS values between the presence and absence of a septic event showed significant differences (SIRS/No SIRS: p < 0.0001, η2 = 0.54; Suspected Sepsis/No Suspected Sepsis: p = 0.00047, η2 = 0.43; Proven Sepsis/No Proven Sepsis: p = 0.0055, η2 = 0.34). A further comparison between the most severe PVS in septic patients with the PVS at ICU discharge showed even higher effect sizes (SIRS: p < 0.0001, η2 = 0.8; Suspected Sepsis: p < 0.0001, η2 = 0.8; Proven Sepsis: p = 0.002, η2 = 0.84). The PVS is emerging as a data-driven tool with the potential to assess a patient's vital status in the ICU objectively. Despite real-world data challenges and potential annotation biases, it shows promise for monitoring disease progression and treatment responses. Its adaptability to different disease markers and reliance on age-dependent reference values further broaden its application possibilities. Real-time implementation of PVS in personalized patient monitoring may be a promising way to improve critical care. However, PVS requires further research and external validation to realize its true potential.
Collapse
Affiliation(s)
- Philipp L S Ohland
- Hannover Medical School, Institute for Laboratory Animal Science, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Thomas Jack
- Department of Pediatric Cardiology and Intensive Care Medicine, Hannover Medical School, Hanover, Germany
| | - Marcel Mast
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Hanover, Germany
| | - Anette Melk
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hanover, Germany
| | - André Bleich
- Hannover Medical School, Institute for Laboratory Animal Science, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Steven R Talbot
- Hannover Medical School, Institute for Laboratory Animal Science, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
3
|
Reiber M, von Schumann L, Buchecker V, Boldt L, Gass P, Bleich A, Talbot SR, Potschka H. Evidence-based comparative severity assessment in young and adult mice. PLoS One 2023; 18:e0285429. [PMID: 37862304 PMCID: PMC10588901 DOI: 10.1371/journal.pone.0285429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/21/2023] [Indexed: 10/22/2023] Open
Abstract
In animal-based research, welfare assessments are essential for ethical and legal reasons. However, accurate assessment of suffering in laboratory animals is often complicated by the multidimensional character of distress and pain and the associated affective states. The present study aimed to design and validate multidimensional composite measure schemes comprising behavioral and biochemical parameters based on a bioinformatics approach. Published data sets from induced and genetic mouse models of neurological and psychiatric disorders were subjected to a bioinformatics workflow for cross-model analyses. ROC analyses pointed to a model-specific discriminatory power of selected behavioral parameters. Principal component analyses confirmed that the composite measure schemes developed for adult or young mice provided relevant information with the level of group separation reflecting the expected severity levels. Finally, the validity of the composite measure schemes developed for adult and young mice was further confirmed by k-means-based clustering as a basis for severity classification. The classification systems allowed the allocation of individual animals to different severity levels and a direct comparison of animal groups and other models. In conclusion, the bioinformatics approach confirmed the suitability of the composite measure schemes for evidence-based comparative severity assessment in adult and young mice. In particular, we demonstrated that the composite measure schemes provide a basis for an individualized severity classification in control and experimental groups allowing direct comparison of severity levels across different induced or genetic models. An online tool (R package) is provided, allowing the application of the bioinformatics approach to severity assessment data sets regardless of the parameters or models used. This tool can also be used to validate refinement measures.
Collapse
Affiliation(s)
- Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Lara von Schumann
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Lena Boldt
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Peter Gass
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Steven Roger Talbot
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| |
Collapse
|
4
|
Talbot SR, Kumstel S, Schulz B, Tang G, Abdelrahman A, Seume N, Wendt EHU, Eichberg J, Häger C, Bleich A, Vollmar B, Zechner D. Robustness of a multivariate composite score when evaluating distress of animal models for gastrointestinal diseases. Sci Rep 2023; 13:2605. [PMID: 36788346 PMCID: PMC9929045 DOI: 10.1038/s41598-023-29623-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
The fundament of an evidence-based severity assessment in laboratory animal science is reliable distress parameters. Many readouts are used to evaluate and determine animal distress and the severity of experimental procedures. Therefore, we analyzed four distinct parameters like the body weight, burrowing behavior, nesting, and distress score in the four gastrointestinal animal models (pancreatic ductal adenocarcinoma (PDA), pancreatitis, CCl4 intoxication, and bile duct ligation (BDL)). Further, we determined the parameters' robustness in various experimental subgroups due to slight variations like drug treatment or telemeter implantations. We used non-parametric bootstrapping to get robust estimates and 95% confidence intervals for the experimental groups. It was found that the performance of the readout parameters is model-dependent and that the distress score is prone to experimental variation. On the other hand, we also found that burrowing and nesting can be more robust than, e.g., the body weight when evaluating PDA. However, the body weight still was highly robust in BDL, pancreatitis, and CCl4 intoxication. To address the complex nature of the multi-dimensional severity space, we used the Relative Severity Assessment (RELSA) procedure to combine multiple distress parameters into a score and mapped the subgroups and models against a defined reference set obtained by telemeter implantation. This approach allowed us to compare the severity of individual animals in the experimental subgroups using the maximum achieved severity (RELSAmax). With this, the following order of severity was found for the animal models: CCl4 < PDA ≈ Pancreatitis < BDL. Furthermore, the robustness of the RELSA procedure and outcome was externally validated with a reference set from another laboratory also obtained from telemeter implantation. Since the RELSA procedure reflects the multi-dimensional severity information and is highly robust in estimating the quantitative severity within and between models, it can be deemed a valuable tool for laboratory animal severity assessment.
Collapse
Affiliation(s)
- Steven R Talbot
- Hannover Medical School, Institute for Laboratory Animal Science, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Simone Kumstel
- Rostock University Medical Center, Rudolf-Zenker-Institute for Experimental Surgery, Schillingallee 69a, 18057, Rostock, Germany
| | - Benjamin Schulz
- Rostock University Medical Center, Rudolf-Zenker-Institute for Experimental Surgery, Schillingallee 69a, 18057, Rostock, Germany
| | - Guanglin Tang
- Rostock University Medical Center, Rudolf-Zenker-Institute for Experimental Surgery, Schillingallee 69a, 18057, Rostock, Germany
| | - Ahmed Abdelrahman
- Rostock University Medical Center, Rudolf-Zenker-Institute for Experimental Surgery, Schillingallee 69a, 18057, Rostock, Germany
| | - Nico Seume
- Rostock University Medical Center, Rudolf-Zenker-Institute for Experimental Surgery, Schillingallee 69a, 18057, Rostock, Germany
| | - Edgar H U Wendt
- Rostock University Medical Center, Rudolf-Zenker-Institute for Experimental Surgery, Schillingallee 69a, 18057, Rostock, Germany
| | - Johanna Eichberg
- Rostock University Medical Center, Rudolf-Zenker-Institute for Experimental Surgery, Schillingallee 69a, 18057, Rostock, Germany
| | - Christine Häger
- Hannover Medical School, Institute for Laboratory Animal Science, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - André Bleich
- Hannover Medical School, Institute for Laboratory Animal Science, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Brigitte Vollmar
- Rostock University Medical Center, Rudolf-Zenker-Institute for Experimental Surgery, Schillingallee 69a, 18057, Rostock, Germany
| | - Dietmar Zechner
- Rostock University Medical Center, Rudolf-Zenker-Institute for Experimental Surgery, Schillingallee 69a, 18057, Rostock, Germany
| |
Collapse
|
5
|
Experimenter familiarization is a crucial prerequisite for assessing behavioral outcomes and reduces stress in mice not only under chronic pain conditions. Sci Rep 2023; 13:2289. [PMID: 36759654 PMCID: PMC9911644 DOI: 10.1038/s41598-023-29052-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Rodent behavior is affected by different environmental conditions. These do not only comprise experimental and housing conditions but also familiarization with the experimenter. However, specific effects on pain-related behavior and chronic pain conditions have not been examined. Therefore, we aimed to investigate the impact of different housing conditions, using individually ventilated and standard open top cages, inverted day-night cycles, and experimenter familiarization on male mice following peripheral neuropathy using the spared nerve injury (SNI) model. Using a multimodal approach, we evaluated evoked pain-related- using von Frey hair filaments, measured gait pattern with the CatWalk system, assessed anxiety- and depression-like behavior with the Elevated plus maze and tail suspension test, measured corticosterone metabolite levels in feces and utilized an integrative approach for relative-severity-assessment. Mechanical sensitivity differed between the cage systems and experimenter familiarization and was affected in both sham and SNI mice. Experimenter familiarization and an inverted day-night cycle reduced mechanical hypersensitivity in SNI and sham mice. SNI mice of the inverted day-night group displayed the slightest pronounced alterations in gait pattern in the Catwalk test. Anxiety-related behavior was only found in SNI mice of experimenter-familiarized mice compared to the sham controls. In addition, familiarization reduced the stress level measured by fecal corticosteroid metabolites caused by the pain and the behavioral tests. Although no environmental condition significantly modulated the severity in SNI mice, it influenced pain-affected phenotypes and is, therefore, crucial for designing and interpreting preclinical pain studies. Moreover, environmental conditions should be considered more in the reporting guidelines, described in more detail, and discussed as a potential influence on pain phenotypes.
Collapse
|
6
|
Talbot SR, Struve B, Wassermann L, Heider M, Weegh N, Knape T, Hofmann MCJ, von Knethen A, Jirkof P, Häger C, Bleich A. RELSA-A multidimensional procedure for the comparative assessment of well-being and the quantitative determination of severity in experimental procedures. Front Vet Sci 2022; 9:937711. [PMID: 36439346 PMCID: PMC9691969 DOI: 10.3389/fvets.2022.937711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/24/2022] [Indexed: 08/27/2023] Open
Abstract
Good science in translational research requires good animal welfare according to the principles of 3Rs. In many countries, determining animal welfare is a mandatory legal requirement, implying a categorization of animal suffering, traditionally dominated by subjective scorings. However, how such methods can be objectified and refined to compare impairments between animals, subgroups, and animal models remained unclear. Therefore, we developed the RELative Severity Assessment (RELSA) procedure to establish an evidence-based method based on quantitative outcome measures such as body weight, burrowing behavior, heart rate, heart rate variability, temperature, and activity to obtain a relative metric for severity comparisons. The RELSA procedure provided the necessary framework to get severity gradings in TM-implanted mice, yielding four distinct RELSA thresholds L1<0.27, L2<0.59, L3<0.79, and L4<3.45. We show further that severity patterns in the contributing variables are time and model-specific and use this information to obtain contextualized between animal-model and subgroup comparisons with the severity of sepsis > surgery > restraint stress > colitis. The bootstrapped 95% confidence intervals reliably show that RELSA estimates are conditionally invariant against missing information but precise in ranking the quantitative severity information to the moderate context of the transmitter-implantation model. In conclusion, we propose the RELSA as a validated tool for an objective, computational approach to comparative and quantitative severity assessment and grading. The RELSA procedure will fundamentally improve animal welfare, data quality, and reproducibility. It is also the first step toward translational risk assessment in biomedical research.
Collapse
Affiliation(s)
- Steven R. Talbot
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hanover, Germany
| | - Birgitta Struve
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hanover, Germany
| | - Laura Wassermann
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hanover, Germany
| | - Miriam Heider
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hanover, Germany
| | - Nora Weegh
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hanover, Germany
| | - Tilo Knape
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Martine C. J. Hofmann
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Andreas von Knethen
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Department of Anaesthesiology, Intensive Care Medicine and Pain & Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - Christine Häger
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hanover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hanover, Germany
| |
Collapse
|