1
|
Yang H, Xu Y, Yuan Y, Liu X, Zhang J, Li J, Zhang R, Cao J, Cheng T, Liu C. Identification and function of the Pax gene Bmgsb in the silk gland of Bombyx mori. INSECT MOLECULAR BIOLOGY 2024; 33:173-184. [PMID: 38238257 DOI: 10.1111/imb.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/29/2023] [Indexed: 05/08/2024]
Abstract
Paired box (Pax) genes are highly conserved throughout evolution, and the Pax protein is an important transcription factor of embryonic development. The Pax gene Bmgsb is expressed in the silk glands of silkworm, but its biological functions remain unclear. This study aimed to investigate the expression pattern of Bmgsb in the silk gland and explore its functions using RNA interference (RNAi). Here, we identified eight Pax genes in Bombyx mori. Phylogenetic analysis showed that the B. mori Pax genes were highly homologous to the Pax genes in other insects and highly evolutionarily conserved. The tissue expression profile showed that Bmgsb was expressed in the anterior silk gland and anterior part of the middle silk gland (AMSG). RNAi of Bmgsb resulted in defective development of the AMSG, and the larvae were mostly unable to cocoon in the wandering stage. RNA-seq analysis showed that the fibroin genes fib-l, fib-h and p25, cellular heat shock response-related genes and phenol oxidase genes were considerably upregulated upon Bmgsb knockdown. Furthermore, quantitative reverse transcription-PCR results showed that the fibroin genes and ubiquitin proteolytic enzyme-related genes were significantly upregulated in the AMSG after Bmgsb knockdown. This study provides a foundation for future research on the biological functions of B. mori Pax genes. In addition, it demonstrates the important roles of Bmgsb in the transcriptional regulation of fibroin genes and silk gland development.
Collapse
Affiliation(s)
- Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yongping Xu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yutong Yuan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xuebing Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Jikailang Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Jiaojiao Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Ran Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
2
|
Weaver KJ, Holt RA, Henry E, Lyu Y, Pletcher SD. Effects of hunger on neuronal histone modifications slow aging in Drosophila. Science 2023; 380:625-632. [PMID: 37167393 PMCID: PMC11837410 DOI: 10.1126/science.ade1662] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Hunger is an ancient drive, yet the molecular nature of pressures of this sort and how they modulate physiology are unknown. We find that hunger modulates aging in Drosophila. Limitation of branched-chain amino acids (BCAAs) or activation of hunger-promoting neurons induced a hunger state that extended life span despite increased feeding. Alteration of the neuronal histone acetylome was associated with BCAA limitation, and preventing these alterations abrogated the effect of BCAA limitation to increase feeding and extend life span. Hunger acutely increased feeding through usage of the histone variant H3.3, whereas prolonged hunger seemed to decrease a hunger set point, resulting in beneficial consequences for aging. Demonstration of the sufficiency of hunger to extend life span reveals that motivational states alone can be deterministic drivers of aging.
Collapse
Affiliation(s)
- KJ Weaver
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan; Ann Arbor, MI 48109, U.S.A
| | - RA Holt
- College of Literature, Science, and the Arts, Biomedical Sciences and Research Building, University of Michigan; Ann Arbor, MI 48109, U.S.A
| | - E Henry
- Program in Cellular and Molecular Biology, University of Michigan; Ann Arbor, MI 48109, U.S.A
| | - Y Lyu
- Department of Molecular Biology & Biochemistry, Rutgers University; Piscataway, NJ 08855, U.S.A
| | - SD Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan; Ann Arbor, MI 48109, U.S.A
| |
Collapse
|
3
|
King BH, Gunathunga PB. Gustation in insects: taste qualities and types of evidence used to show taste function of specific body parts. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:11. [PMID: 37014302 PMCID: PMC10072106 DOI: 10.1093/jisesa/iead018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
The insect equivalent of taste buds are gustatory sensilla, which have been found on mouthparts, pharynxes, antennae, legs, wings, and ovipositors. Most gustatory sensilla are uniporous, but not all apparently uniporous sensilla are gustatory. Among sensilla containing more than one neuron, a tubular body on one dendrite is also indicative of a taste sensillum, with the tubular body adding tactile function. But not all taste sensilla are also tactile. Additional morphological criteria are often used to recognize if a sensillum is gustatory. Further confirmation of such criteria by electrophysiological or behavioral evidence is needed. The five canonical taste qualities to which insects respond are sweet, bitter, sour, salty, and umami. But not all tastants that insects respond to easily fit in these taste qualities. Categories of insect tastants can be based not only on human taste perception, but also on whether the response is deterrent or appetitive and on chemical structure. Other compounds that at least some insects taste include, but are not limited to: water, fatty acids, metals, carbonation, RNA, ATP, pungent tastes as in horseradish, bacterial lipopolysaccharides, and contact pheromones. We propose that, for insects, taste be defined not only as a response to nonvolatiles but also be restricted to responses that are, or are thought to be, mediated by a sensillum. This restriction is useful because some of the receptor proteins in gustatory sensilla are also found elsewhere.
Collapse
Affiliation(s)
- B H King
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | | |
Collapse
|
4
|
Drosophila melanogaster Chemosensory Pathways as Potential Targets to Curb the Insect Menace. INSECTS 2022; 13:insects13020142. [PMID: 35206716 PMCID: PMC8874460 DOI: 10.3390/insects13020142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The perception and processing of chemosensory stimuli are indispensable to the survival of living organisms. In insects, olfaction and gustation play a critical role in seeking food, finding mates and avoiding signs of danger. This review aims to present updated information about olfactory and gustatory signaling in the fruit fly Drosophila melanogaster. We have described the mechanisms involved in olfactory and gustatory perceptions at the molecular level, the receptors along with the allied molecules involved, and their signaling pathways in the fruit fly. Due to the magnifying problems of disease-causing insect vectors and crop pests, the applications of chemosensory signaling in controlling pests and insect vectors are also discussed. Abstract From a unicellular bacterium to a more complex human, smell and taste form an integral part of the basic sensory system. In fruit flies Drosophila melanogaster, the behavioral responses to odorants and tastants are simple, though quite sensitive, and robust. They explain the organization and elementary functioning of the chemosensory system. Molecular and functional analyses of the receptors and other critical molecules involved in olfaction and gustation are not yet completely understood. Hence, a better understanding of chemosensory cue-dependent fruit flies, playing a major role in deciphering the host-seeking behavior of pathogen transmitting insect vectors (mosquitoes, sandflies, ticks) and crop pests (Drosophila suzukii, Queensland fruit fly), is needed. Using D. melanogaster as a model organism, the knowledge gained may be implemented to design new means of controlling insects as well as in analyzing current batches of insect and pest repellents. In this review, the complete mechanisms of olfactory and gustatory perception, along with their implementation in controlling the global threat of disease-transmitting insect vectors and crop-damaging pests, are explained in fruit flies.
Collapse
|
5
|
Requirement for an Otopetrin-like protein for acid taste in Drosophila. Proc Natl Acad Sci U S A 2021; 118:2110641118. [PMID: 34911758 PMCID: PMC8713817 DOI: 10.1073/pnas.2110641118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Receptors for bitter, sugar, and other tastes have been identified in the fruit fly Drosophila melanogaster, while a broadly tuned receptor for the taste of acid has been elusive. Previous work showed that such a receptor was unlikely to be encoded by a gene within one of the two major families of taste receptors in Drosophila, the "gustatory receptors" and "ionotropic receptors." Here, to identify the acid taste receptor, we tested the contributions of genes encoding proteins distantly related to the mammalian Otopertrin1 (OTOP1) proton channel that functions as a sour receptor in mice. RNA interference (RNAi) knockdown or mutation by CRISPR/Cas9 of one of the genes, Otopetrin-Like A (OtopLA), but not of the others (OtopLB or OtopLC) severely impaired the behavioral rejection to a sweet solution laced with high levels of HCl or carboxylic acids and greatly reduced acid-induced action potentials measured from taste hairs. An isoform of OtopLA that we isolated from the proboscis was sufficient to restore behavioral sensitivity and acid-induced action potential firing in OtopLA mutant flies. At lower concentrations, HCl was attractive to the flies, and this attraction was abolished in the OtopLA mutant. Cell type-specific rescue experiments showed that OtopLA functions in distinct subsets of gustatory receptor neurons for repulsion and attraction to high and low levels of protons, respectively. This work highlights a functional conservation of a sensory receptor in flies and mammals and shows that the same receptor can function in both appetitive and repulsive behaviors.
Collapse
|
6
|
Excessive energy expenditure due to acute physical restraint disrupts Drosophila motivational feeding response. Sci Rep 2021; 11:24208. [PMID: 34921197 PMCID: PMC8683507 DOI: 10.1038/s41598-021-03575-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
To study the behavior of Drosophila, it is often necessary to restrain and mount individual flies. This requires removal from food, additional handling, anesthesia, and physical restraint. We find a strong positive correlation between the length of time flies are mounted and their subsequent reflexive feeding response, where one hour of mounting is the approximate motivational equivalent to ten hours of fasting. In an attempt to explain this correlation, we rule out anesthesia side-effects, handling, additional fasting, and desiccation. We use respirometric and metabolic techniques coupled with behavioral video scoring to assess energy expenditure in mounted and free flies. We isolate a specific behavior capable of exerting large amounts of energy in mounted flies and identify it as an attempt to escape from restraint. We present a model where physical restraint leads to elevated activity and subsequent faster nutrient storage depletion among mounted flies. This ultimately further accelerates starvation and thus increases reflexive feeding response. In addition, we show that the consequences of the physical restraint profoundly alter aerobic activity, energy depletion, taste, and feeding behavior, and suggest that careful consideration is given to the time-sensitive nature of these highly significant effects when conducting behavioral, physiological or imaging experiments that require immobilization.
Collapse
|
7
|
Chen YCD, Menon V, Joseph RM, Dahanukar AA. Control of Sugar and Amino Acid Feeding via Pharyngeal Taste Neurons. J Neurosci 2021; 41:5791-5808. [PMID: 34031164 PMCID: PMC8265808 DOI: 10.1523/jneurosci.1794-20.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
Insect gustatory systems comprise multiple taste organs for detecting chemicals that signal palatable or noxious quality. Although much is known about how taste neurons sense various chemicals, many questions remain about how individual taste neurons in each taste organ control feeding. Here, we use the Drosophila pharynx as a model to investigate how taste information is encoded at the cellular level to regulate consumption of sugars and amino acids. We first generate taste-blind animals and establish a critical role for pharyngeal input in food selection. We then investigate feeding behavior of both male and female flies in which only selected classes of pharyngeal neurons are restored via binary choice feeding preference assays as well as Fly Liquid-Food Interaction Counter assays. We find instances of integration as well as redundancy in how pharyngeal neurons control behavioral responses to sugars and amino acids. Additionally, we find that pharyngeal neurons drive sugar feeding preference based on sweet taste but not on nutritional value. Finally, we demonstrate functional specialization of pharyngeal and external neurons using optogenetic activation. Overall, our genetic taste neuron protection system in a taste-blind background provides a powerful approach to elucidate principles of pharyngeal taste coding and demonstrates functional overlap and subdivision among taste neurons.SIGNIFICANCE STATEMENT Dietary intake of nutritious chemicals such as sugars and amino acids is essential for the survival of an animal. In insects, distinct classes of taste neurons control acceptance or rejection of food sources. Here, we develop a genetic system to investigate how individual taste neurons in the Drosophila pharynx encode specific tastants, focusing on sugars and amino acids. By examining flies in which only a single class of taste neurons is active, we find evidence for functional overlap as well as redundancy in responses to sugars and amino acids. We also uncover a functional subdivision between pharyngeal and external neurons in driving feeding responses. Overall, we find that different pharyngeal neurons act together to control intake of the two categories of appetitive tastants.
Collapse
Affiliation(s)
- Yu-Chieh David Chen
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, California 92521
| | - Vaibhav Menon
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, California 92521
| | - Ryan Matthew Joseph
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, California 92521
| | - Anupama Arun Dahanukar
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, California 92521
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, California 92521
| |
Collapse
|
8
|
Chen YCD, Park SJ, Joseph RM, Ja WW, Dahanukar AA. Combinatorial Pharyngeal Taste Coding for Feeding Avoidance in Adult Drosophila. Cell Rep 2020; 29:961-973.e4. [PMID: 31644916 PMCID: PMC6860367 DOI: 10.1016/j.celrep.2019.09.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/18/2019] [Accepted: 09/12/2019] [Indexed: 01/05/2023] Open
Abstract
Taste drives appropriate food preference and intake. In Drosophila, taste neurons are housed in both external and internal organs, but the latter have been relatively underexplored. Here, we report that Poxn mutants with a minimal taste system of pharyngeal neurons can avoid many aversive tastants, including bitter compounds, acid, and salt, suggesting that pharyngeal taste is sufficient for rejecting intake of aversive compounds. Optogenetic activation of selected pharyngeal bitter neurons during feeding events elicits changes in feeding parameters that can suppress intake. Functional dissection experiments indicate that multiple classes of pharyngeal neurons are involved in achieving behavioral avoidance, by virtue of being inhibited or activated by aversive tastants. Tracing second-order pharyngeal circuits reveals two main relay centers for processing pharyngeal taste inputs. Together, our results suggest that the pharynx can control the ingestion of harmful compounds by integrating taste input from different classes of pharyngeal neurons. Chen et al. perform functional and behavioral experiments to study the roles of different subsets of pharyngeal neurons in governing food avoidance in flies. They find evidence that rejection of different categories of aversive compounds is dependent on distinct combinations of pharyngeal taste neurons.
Collapse
Affiliation(s)
- Yu-Chieh David Chen
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, USA
| | - Scarlet Jinhong Park
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA; Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ryan Matthew Joseph
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - William W Ja
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA; Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Anupama Arun Dahanukar
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, USA; Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
9
|
Park SJ, Ja WW. Absolute ethanol intake predicts ethanol preference in Drosophilamelanogaster. J Exp Biol 2020; 223:jeb224121. [PMID: 32366685 PMCID: PMC7295594 DOI: 10.1242/jeb.224121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
Factors that mediate ethanol preference in Drosophila melanogaster are not well understood. A major confound has been the use of diverse methods to estimate ethanol consumption. We measured fly consumptive ethanol preference on base diets varying in nutrients, taste and ethanol concentration. Both sexes showed an ethanol preference that was abolished on high nutrient concentration diets. Additionally, manipulating total food intake without altering the nutritive value of the base diet or the ethanol concentration was sufficient to evoke or eliminate ethanol preference. Absolute ethanol intake and food volume consumed were stronger predictors of ethanol preference than caloric intake or the dietary caloric content. Our findings suggest that the effect of the base diet on ethanol preference is largely mediated by total consumption associated with the delivery medium, which ultimately determines the level of ethanol intake. We speculate that a physiologically relevant threshold for ethanol intake is essential for preferential ethanol consumption.
Collapse
Affiliation(s)
- Scarlet J Park
- Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - William W Ja
- Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
10
|
Chen YCD, Ahmad S, Amin K, Dahanukar A. A subset of brain neurons controls regurgitation in adult Drosophila melanogaster. J Exp Biol 2019; 222:jeb210724. [PMID: 31511344 PMCID: PMC6806010 DOI: 10.1242/jeb.210724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/03/2019] [Indexed: 12/26/2022]
Abstract
Taste is essential for animals to evaluate food quality and make important decisions about food choice and intake. How complex brains process sensory information to produce behavior is an essential question in the field of sensory neurobiology. Currently, little is known about higher-order taste circuits in the brain as compared with those of other sensory systems. Here, we used the common vinegar fly, Drosophila melanogaster, to screen for candidate neurons labeled by different transgenic GAL4 lines in controlling feeding behaviors. We found that activation of one line (VT041723-GAL4) produces 'proboscis holding' behavior (extrusion of the mouthpart without withdrawal). Further analysis showed that the proboscis holding phenotype indicates an aversive response, as flies pre-fed with either sucrose or water prior to neuronal activation exhibited regurgitation. Anatomical characterization of VT041723-GAL4-labeled neurons suggests that they receive sensory input from peripheral taste neurons. Overall, our study identifies a subset of brain neurons labeled by VT041723-GAL4 that may be involved in a taste circuit that controls regurgitation.
Collapse
Affiliation(s)
- Yu-Chieh David Chen
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, USA
| | - Sameera Ahmad
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Kush Amin
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Anupama Dahanukar
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, USA
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|