1
|
Maraslioglu-Sperber A, Pizzi E, Fisch JO, Kattler K, Ritter T, Friauf E. Molecular and functional profiling of cell diversity and identity in the lateral superior olive, an auditory brainstem center with ascending and descending projections. Front Cell Neurosci 2024; 18:1354520. [PMID: 38846638 PMCID: PMC11153811 DOI: 10.3389/fncel.2024.1354520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 06/09/2024] Open
Abstract
The lateral superior olive (LSO), a prominent integration center in the auditory brainstem, contains a remarkably heterogeneous population of neurons. Ascending neurons, predominantly principal neurons (pLSOs), process interaural level differences for sound localization. Descending neurons (lateral olivocochlear neurons, LOCs) provide feedback into the cochlea and are thought to protect against acoustic overload. The molecular determinants of the neuronal diversity in the LSO are largely unknown. Here, we used patch-seq analysis in mice at postnatal days P10-12 to classify developing LSO neurons according to their functional and molecular profiles. Across the entire sample (n = 86 neurons), genes involved in ATP synthesis were particularly highly expressed, confirming the energy expenditure of auditory neurons. Two clusters were identified, pLSOs and LOCs. They were distinguished by 353 differentially expressed genes (DEGs), most of which were novel for the LSO. Electrophysiological analysis confirmed the transcriptomic clustering. We focused on genes affecting neuronal input-output properties and validated some of them by immunohistochemistry, electrophysiology, and pharmacology. These genes encode proteins such as osteopontin, Kv11.3, and Kvβ3 (pLSO-specific), calcitonin-gene-related peptide (LOC-specific), or Kv7.2 and Kv7.3 (no DEGs). We identified 12 "Super DEGs" and 12 genes showing "Cluster similarity." Collectively, we provide fundamental and comprehensive insights into the molecular composition of individual ascending and descending neurons in the juvenile auditory brainstem and how this may relate to their specific functions, including developmental aspects.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Erika Pizzi
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Jonas O. Fisch
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Kathrin Kattler
- Genetics/Epigenetics Group, Department of Biological Sciences, Saarland University, Saarbrücken, Germany
| | - Tamara Ritter
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
2
|
Kladisios N, Wicke KD, Pätz-Warncke C, Felmy F. Species-Specific Adaptation for Ongoing High-Frequency Action Potential Generation in MNTB Neurons. J Neurosci 2023; 43:2714-2729. [PMID: 36898837 PMCID: PMC10089249 DOI: 10.1523/jneurosci.2320-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Comparative analysis of evolutionarily conserved neuronal circuits between phylogenetically distant mammals highlights the relevant mechanisms and specific adaptations to information processing. The medial nucleus of the trapezoid body (MNTB) is a conserved mammalian auditory brainstem nucleus relevant for temporal processing. While MNTB neurons have been extensively investigated, a comparative analysis of phylogenetically distant mammals and the spike generation is missing. To understand the suprathreshold precision and firing rate, we examined the membrane, voltage-gated ion channel and synaptic properties in Phyllostomus discolor (bat) and in Meriones unguiculatus (rodent) of either sex. Between the two species, the membrane properties of MNTB neurons were similar at rest with only minor differences, while larger dendrotoxin (DTX)-sensitive potassium currents were found in gerbils. Calyx of Held-mediated EPSCs were smaller and frequency dependence of short-term plasticity (STP) less pronounced in bats. Simulating synaptic train stimulations in dynamic clamp revealed that MNTB neurons fired with decreasing success rate near conductance threshold and at increasing stimulation frequency. Driven by STP-dependent conductance decrease, the latency of evoked action potentials increased during train stimulations. The spike generator showed a temporal adaptation at the beginning of train stimulations that can be explained by sodium current inactivation. Compared with gerbils, the spike generator of bats sustained higher frequency input-output functions and upheld the same temporal precision. Our data mechanistically support that MNTB input-output functions in bats are suited to sustain precise high-frequency rates, while for gerbils, temporal precision appears more relevant and an adaptation to high output-rates can be spared.SIGNIFICANCE STATEMENT Neurons in the mammalian medial nucleus of the trapezoid body (MNTB) convey precise, faithful inhibition vital for binaural hearing and gap detection. The MNTB's structure and function appear evolutionarily well conserved. We compared the cellular physiology of MNTB neurons in bat and gerbil. Because of their adaptations to echolocation or low frequency hearing both species are model systems for hearing research, yet with largely overlapping hearing ranges. We find that bat neurons sustain information transfer with higher ongoing rates and precision based on synaptic and biophysical differences in comparison to gerbils. Thus, even in evolutionarily conserved circuits species-specific adaptations prevail, highlighting the importance for comparative research to differentiate general circuit functions and their specific adaptations.
Collapse
Affiliation(s)
- Nikolaos Kladisios
- Institute of Zoology, University of Veterinary Medicine Hannover Foundation 30559 Hannover, Germany
- Hannover Graduate School for Neurosciences, Infection Medicine and Veterinary Sciences (HGNI), 30559 Hannover, Germany
| | - Kathrin D Wicke
- Institute of Zoology, University of Veterinary Medicine Hannover Foundation 30559 Hannover, Germany
- Hannover Graduate School for Neurosciences, Infection Medicine and Veterinary Sciences (HGNI), 30559 Hannover, Germany
| | - Christina Pätz-Warncke
- Institute of Zoology, University of Veterinary Medicine Hannover Foundation 30559 Hannover, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine Hannover Foundation 30559 Hannover, Germany
| |
Collapse
|
3
|
Brughera A, Ballestero JA, McAlpine D. Sensitivity to Envelope Interaural Time Differences: Modeling Auditory Modulation Filtering. J Assoc Res Otolaryngol 2022; 23:35-57. [PMID: 34741225 PMCID: PMC8782955 DOI: 10.1007/s10162-021-00816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 08/30/2021] [Indexed: 02/03/2023] Open
Abstract
For amplitude-modulated sound, the envelope interaural time difference (ITDENV) is a potential cue for sound-source location. ITDENV is encoded in the lateral superior olive (LSO) of the auditory brainstem, by excitatory-inhibitory (EI) neurons receiving ipsilateral excitation and contralateral inhibition. Between human listeners, sensitivity to ITDENV varies considerably, but ultimately decreases with increasing stimulus carrier frequency, and decreases more strongly with increasing modulation rate. Mechanisms underlying the variation in behavioral sensitivity remain unclear. Here, with increasing carrier frequency (4-10 kHz), as we phenomenologically model the associated decrease in ITDENV sensitivity using arbitrarily fewer neurons consistent across populations, we computationally model the variable sensitivity across human listeners and modulation rates (32-800 Hz) as the decreasing range of membrane frequency responses in LSO neurons. Transposed tones stimulate a bilateral auditory-periphery model, driving model EI neurons where electrical membrane impedance filters the frequency content of inputs driven by amplitude-modulated sound, evoking modulation filtering. Calculated from Fisher information in spike-rate functions of ITDENV, for model EI neuronal populations distinctly reflecting the LSO range in membrane frequency responses, just-noticeable differences in ITDENV collectively reproduce the largest variation in ITDENV sensitivity across human listeners. These slow to fast model populations each generally match the best human ITDENV sensitivity at a progressively higher modulation rate, by membrane-filtering and spike-generation properties producing realistically less than Poisson variance. Non-resonant model EI neurons are also sensitive to interaural intensity differences. With peripheral filters centered between carrier frequency and modulation sideband, fast resonant model EI neurons extend ITDENV sensitivity above 500-Hz modulation.
Collapse
Affiliation(s)
- Andrew Brughera
- grid.1004.50000 0001 2158 5405Department of Linguistics, and the Australian Hearing Hub, Macquarie University, Macquarie Park, New South Wales Australia ,grid.189504.10000 0004 1936 7558Department of Biomedical Engineering, Boston University, Boston, MA USA
| | - Jimena A. Ballestero
- Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - David McAlpine
- grid.1004.50000 0001 2158 5405Department of Linguistics, and the Australian Hearing Hub, Macquarie University, Macquarie Park, New South Wales Australia
| |
Collapse
|
4
|
Mayadali ÜS, Fleuriet J, Mustari M, Straka H, Horn AKE. Transmitter and ion channel profiles of neurons in the primate abducens and trochlear nuclei. Brain Struct Funct 2021; 226:2125-2151. [PMID: 34181058 PMCID: PMC8354957 DOI: 10.1007/s00429-021-02315-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/04/2021] [Indexed: 01/28/2023]
Abstract
Extraocular motoneurons initiate dynamically different eye movements, including saccades, smooth pursuit and vestibulo-ocular reflexes. These motoneurons subdivide into two main types based on the structure of the neuro-muscular interface: motoneurons of singly-innervated (SIF), and motoneurons of multiply-innervated muscle fibers (MIF). SIF motoneurons are thought to provoke strong and brief/fast muscle contractions, whereas MIF motoneurons initiate prolonged, slow contractions. While relevant for adequate functionality, transmitter and ion channel profiles associated with the morpho-physiological differences between these motoneuron types, have not been elucidated so far. This prompted us to investigate the expression of voltage-gated potassium, sodium and calcium ion channels (Kv1.1, Kv3.1b, Nav1.6, Cav3.1-3.3, KCC2), the transmitter profiles of their presynaptic terminals (vGlut1 and 2, GlyT2 and GAD) and transmitter receptors (GluR2/3, NMDAR1, GlyR1α) using immunohistochemical analyses of abducens and trochlear motoneurons and of abducens internuclear neurons (INTs) in macaque monkeys. The main findings were: (1) MIF and SIF motoneurons express unique voltage-gated ion channel profiles, respectively, likely accounting for differences in intrinsic membrane properties. (2) Presynaptic glutamatergic synapses utilize vGlut2, but not vGlut1. (3) Trochlear motoneurons receive GABAergic inputs, abducens neurons receive both GABAergic and glycinergic inputs. (4) Synaptic densities differ between MIF and SIF motoneurons, with MIF motoneurons receiving fewer terminals. (5) Glutamatergic receptor subtypes differ between MIF and SIF motoneurons. While NMDAR1 is intensely expressed in INTs, MIF motoneurons lack this receptor subtype entirely. The obtained cell-type-specific transmitter and conductance profiles illuminate the structural substrates responsible for differential contributions of neurons in the abducens and trochlear nuclei to eye movements.
Collapse
Affiliation(s)
- Ümit Suat Mayadali
- Institute of Anatomy and Cell Biology, Dept. I, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, 80336, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Jérome Fleuriet
- Washington National Primate Research Center, Department of Ophthalmology, University of Washington Seattle, Seattle, WA, USA
- Intensive Care Unit, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris, Garches, France
| | - Michael Mustari
- Washington National Primate Research Center, Department of Ophthalmology, University of Washington Seattle, Seattle, WA, USA
| | - Hans Straka
- Department of Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Anja Kerstin Ellen Horn
- Institute of Anatomy and Cell Biology, Dept. I, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, 80336, Munich, Germany.
| |
Collapse
|
5
|
Kim EJ, Nip K, Blanco C, Kim JH. Structural Refinement of the Auditory Brainstem Neurons in Baboons During Perinatal Development. Front Cell Neurosci 2021; 15:648562. [PMID: 33897372 PMCID: PMC8062779 DOI: 10.3389/fncel.2021.648562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/09/2021] [Indexed: 01/22/2023] Open
Abstract
Children born prematurely suffer from learning disabilities and exhibit reading, speech, and cognitive difficulties, which are associated with an auditory processing disorder. However, it is unknown whether gestational age at delivery and the unnatural auditory environment in neonatal intensive care units (NICU) collectively affect proper auditory development and neuronal circuitry in premature newborns. We morphologically characterized fetal development of the medial superior olivary nucleus (MSO), an area important for binaural hearing and sound localization, in the auditory brainstem of baboon neonates at different gestational ages. Axonal and synaptic structures and the tonotopic differentiation of ion channels in the MSO underwent profound refinements after hearing onset in the uterus. These developmental refinements of the MSO were significantly altered in preterm baboon neonates in the NICU. Thus, the maternal environment in uterus is critical for auditory nervous system development during the last trimester of pregnancy and critically affects the anatomic and functional formation of synapses and neural circuitry in the preterm newborn brain.
Collapse
Affiliation(s)
- Eun Jung Kim
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Kaila Nip
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Cynthia Blanco
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, United States
| | - Jun Hee Kim
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
6
|
Kelley C, Dura-Bernal S, Neymotin SA, Antic SD, Carnevale NT, Migliore M, Lytton WW. Effects of Ih and TASK-like shunting current on dendritic impedance in layer 5 pyramidal-tract neurons. J Neurophysiol 2021; 125:1501-1516. [PMID: 33689489 PMCID: PMC8282219 DOI: 10.1152/jn.00015.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Pyramidal neurons in neocortex have complex input-output relationships that depend on their morphologies, ion channel distributions, and the nature of their inputs, but which cannot be replicated by simple integrate-and-fire models. The impedance properties of their dendritic arbors, such as resonance and phase shift, shape neuronal responses to synaptic inputs and provide intraneuronal functional maps reflecting their intrinsic dynamics and excitability. Experimental studies of dendritic impedance have shown that neocortical pyramidal tract neurons exhibit distance-dependent changes in resonance and impedance phase with respect to the soma. We, therefore, investigated how well several biophysically detailed multicompartment models of neocortical layer 5 pyramidal tract neurons reproduce the location-dependent impedance profiles observed experimentally. Each model tested here exhibited location-dependent impedance profiles, but most captured either the observed impedance amplitude or phase, not both. The only model that captured features from both incorporates hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and a shunting current, such as that produced by Twik-related acid-sensitive K+ (TASK) channels. TASK-like channel density in this model was proportional to local HCN channel density. We found that although this shunting current alone is insufficient to produce resonance or realistic phase response, it modulates all features of dendritic impedance, including resonance frequencies, resonance strength, synchronous frequencies, and total inductive phase. We also explored how the interaction of HCN channel current (Ih) and a TASK-like shunting current shape synaptic potentials and produce degeneracy in dendritic impedance profiles, wherein different combinations of Ih and shunting current can produce the same impedance profile.NEW & NOTEWORTHY We simulated chirp current stimulation in the apical dendrites of 5 biophysically detailed multicompartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.
Collapse
Affiliation(s)
- Craig Kelley
- Program in Biomedical Engineering, SUNY Downstate Health Sciences University and NYU Tandon School of Engineering, Brooklyn, New York
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Samuel A Neymotin
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
- Department of Psychiatry, NYU Grossman School of Medicine, New York City, New York
| | - Srdjan D Antic
- Neuroscience Department, Institute of Systems Genomics, University of Connecticut Health, Farmington, Connecticut
| | | | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - William W Lytton
- Program in Biomedical Engineering, SUNY Downstate Health Sciences University and NYU Tandon School of Engineering, Brooklyn, New York
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York
- Department of Neurology, Kings County Hospital Center, Brooklyn, New York
- The Robert F. Furchgott Center for Neural and Behavioral Science, Brooklyn, New York
| |
Collapse
|
7
|
Siveke I, Myoga MH, Grothe B, Felmy F. Ambient noise exposure induces long-term adaptations in adult brainstem neurons. Sci Rep 2021; 11:5139. [PMID: 33664302 PMCID: PMC7933235 DOI: 10.1038/s41598-021-84230-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/12/2021] [Indexed: 11/09/2022] Open
Abstract
To counterbalance long-term environmental changes, neuronal circuits adapt the processing of sensory information. In the auditory system, ongoing background noise drives long-lasting adaptive mechanism in binaural coincidence detector neurons in the superior olive. However, the compensatory cellular mechanisms of the binaural neurons in the medial superior olive (MSO) to long-term background changes are unexplored. Here we investigated the cellular properties of MSO neurons during long-lasting adaptations induced by moderate omnidirectional noise exposure. After noise exposure, the input resistance of MSO neurons of mature Mongolian gerbils was reduced, likely due to an upregulation of hyperpolarisation-activated cation and low voltage-activated potassium currents. Functionally, the long-lasting adaptations increased the action potential current threshold and facilitated high frequency output generation. Noise exposure accelerated the occurrence of spontaneous postsynaptic currents. Together, our data suggest that cellular adaptations in coincidence detector neurons of the MSO to continuous noise exposure likely increase the sensitivity to differences in sound pressure levels.
Collapse
Affiliation(s)
- Ida Siveke
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany. .,Institute of Zoology and Neurobiology, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
| | - Mike H Myoga
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Felix Felmy
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany. .,Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30599, Hannover, Germany.
| |
Collapse
|
8
|
Wu J, Kaczmarek LK. Modulation of Neuronal Potassium Channels During Auditory Processing. Front Neurosci 2021; 15:596478. [PMID: 33613177 PMCID: PMC7887315 DOI: 10.3389/fnins.2021.596478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
The extraction and localization of an auditory stimulus of interest from among multiple other sounds, as in the ‘cocktail-party’ situation, requires neurons in auditory brainstem nuclei to encode the timing, frequency, and intensity of sounds with high fidelity, and to compare inputs coming from the two cochleae. Accurate localization of sounds requires certain neurons to fire at high rates with high temporal accuracy, a process that depends heavily on their intrinsic electrical properties. Studies have shown that the membrane properties of auditory brainstem neurons, particularly their potassium currents, are not fixed but are modulated in response to changes in the auditory environment. Here, we review work focusing on how such modulation of potassium channels is critical to shaping the firing pattern and accuracy of these neurons. We describe how insights into the role of specific channels have come from human gene mutations that impair localization of sounds in space. We also review how short-term and long-term modulation of these channels maximizes the extraction of auditory information, and how errors in the regulation of these channels contribute to deficits in decoding complex auditory information.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
9
|
Arrangement of Excitatory Synaptic Inputs on Dendrites of the Medial Superior Olive. J Neurosci 2021; 41:269-283. [PMID: 33208467 DOI: 10.1523/jneurosci.1055-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 11/21/2022] Open
Abstract
Neurons in the medial superior olive (MSO) detect 10 µs differences in the arrival times of a sound at the two ears. Such acuity requires exquisitely precise integration of binaural synaptic inputs. There is substantial understanding of how neuronal phase locking of afferent MSO structures, and MSO membrane biophysics subserve such high precision. However, we still lack insight into how the entirety of excitatory inputs is integrated along the MSO dendrite under sound stimulation. To understand how the dendrite integrates excitatory inputs as a whole, we combined anatomic quantifications of the afferent innervation in gerbils of both sexes with computational modeling of a single cell. We present anatomic data from confocal and transmission electron microscopy showing that single afferent fibers follow a single dendrite mostly up to the soma and contact it at multiple (median 4) synaptic sites, each containing multiple independent active zones (the overall density of active zones is estimated as 1.375 per μm2). Thus, any presynaptic action potential may elicit temporally highly coordinated synaptic vesicle release at tens of active zones, thereby achieving secure transmission. Computer simulations suggest that such an anatomic arrangement boosts the amplitude and sharpens the time course of excitatory postsynaptic potentials by reducing current sinks and more efficiently recruiting subthreshold potassium channels. Both effects improve binaural coincidence detection compared with single large synapses at the soma. Our anatomic data further allow for estimation of a lower bound of 7 and an upper bound of 70 excitatory fibers per dendrite.SIGNIFICANCE STATEMENT Passive dendritic propagation attenuates the amplitude of postsynaptic potentials and widens their temporal spread. Neurons in the medial superior olive, with their large bilateral dendrites, however, can detect coincidence of binaural auditory inputs with submillisecond precision, a computation that is in stark contrast to passive dendritic processing. Here, we show that dendrites can counteract amplitude attenuation and even decrease the temporal spread of postsynaptic potentials, if active subthreshold potassium conductances are triggered in temporal coordination along the whole dendrite. Our anatomic finding that axons run in parallel to the dendrites and make multiple synaptic contacts support such coordination since incoming action potentials would depolarize the dendrite at multiple sites within a brief time interval.
Collapse
|
10
|
Kim WB, Kang KW, Sharma K, Yi E. Distribution of K v3 Subunits in Cochlear Afferent and Efferent Nerve Fibers Implies Distinct Role in Auditory Processing. Exp Neurobiol 2020; 29:344-355. [PMID: 33154197 PMCID: PMC7649084 DOI: 10.5607/en20043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 11/19/2022] Open
Abstract
Kv3 family K+ channels, by ensuring speedy repolarization of action potential, enable rapid and high frequency neuronal firing and high precision temporal coding of auditory information in various auditory synapses in the brain. Expression of different Kv3 subtypes within the auditory end organ has been reported. Yet, their precise role at the hair cell synaptic transmission has not been fully elucidated. Using immunolabeling and confocal microscopy we examined the expression pattern of different Kv3 family K+ channel subunits in the nerve fibers innervating the cochlear hair cells. Kv3.1b was found in NKA-positive type 1 afferent fibers, exhibiting high signal intensity at the cell body, the unmyelinated dendritic segment, first heminode and nodes of Ranvier. Kv3.3 signal was detected in the cell body and the unmyelinated dendritic segment of NKA-positive type 1 afferent fibers but not in peripherin-positive type 2 afferent. Kv3.4 was found in ChAT-positive LOC and MOC efferent fibers as well as peripherin-positive type 2 afferent fibers. Such segregated expression pattern implies that each Kv3 subunits participate in different auditory tasks, for example, Kv3.1b and Kv3.3 in ascending signaling while Kv3.4 in feedback upon loud noise exposure.
Collapse
Affiliation(s)
- Woo Bin Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Kwon-Woo Kang
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Kushal Sharma
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Eunyoung Yi
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| |
Collapse
|