1
|
Xiao S, Cunningham WJ, Kondabolu K, Lowet E, Moya MV, Mount RA, Ravasio C, Bortz E, Shaw D, Economo MN, Han X, Mertz J. Large-scale deep tissue voltage imaging with targeted-illumination confocal microscopy. Nat Methods 2024; 21:1094-1102. [PMID: 38840033 PMCID: PMC11500676 DOI: 10.1038/s41592-024-02275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
Voltage imaging with cellular specificity has been made possible by advances in genetically encoded voltage indicators. However, the kilohertz rates required for voltage imaging lead to weak signals. Moreover, out-of-focus fluorescence and tissue scattering produce background that both undermines the signal-to-noise ratio and induces crosstalk between cells, making reliable in vivo imaging in densely labeled tissue highly challenging. We describe a microscope that combines the distinct advantages of targeted illumination and confocal gating while also maximizing signal detection efficiency. The resulting benefits in signal-to-noise ratio and crosstalk reduction are quantified experimentally and theoretically. Our microscope provides a versatile solution for enabling high-fidelity in vivo voltage imaging at large scales and penetration depths, which we demonstrate across a wide range of imaging conditions and different genetically encoded voltage indicator classes.
Collapse
Affiliation(s)
- Sheng Xiao
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | | | | | - Eric Lowet
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Maria V Moya
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Rebecca A Mount
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cara Ravasio
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Emma Bortz
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Dana Shaw
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, MA, USA
| | - Michael N Economo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, MA, USA
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, MA, USA
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, MA, USA
| |
Collapse
|
2
|
Lu X, Wang Y, Liu Z, Gou Y, Jaeger D, St-Pierre F. Widefield imaging of rapid pan-cortical voltage dynamics with an indicator evolved for one-photon microscopy. Nat Commun 2023; 14:6423. [PMID: 37828037 PMCID: PMC10570354 DOI: 10.1038/s41467-023-41975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Widefield imaging with genetically encoded voltage indicators (GEVIs) is a promising approach for understanding the role of large cortical networks in the neural coding of behavior. However, the limited performance of current GEVIs restricts their deployment for single-trial imaging of rapid neuronal voltage dynamics. Here, we developed a high-throughput platform to screen for GEVIs that combine fast kinetics with high brightness, sensitivity, and photostability under widefield one-photon illumination. Rounds of directed evolution produced JEDI-1P, a green-emitting fluorescent indicator with enhanced performance across all metrics. Next, we optimized a neonatal intracerebroventricular delivery method to achieve cost-effective and wide-spread JEDI-1P expression in mice. We also developed an approach to correct optical measurements from hemodynamic and motion artifacts effectively. Finally, we achieved stable brain-wide voltage imaging and successfully tracked gamma-frequency whisker and visual stimulations in awake mice in single trials, opening the door to investigating the role of high-frequency signals in brain computations.
Collapse
Affiliation(s)
- Xiaoyu Lu
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, 77005, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yunmiao Wang
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Biology Department, Emory University, Atlanta, GA, 30322, USA
| | - Zhuohe Liu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yueyang Gou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dieter Jaeger
- Biology Department, Emory University, Atlanta, GA, 30322, USA.
| | - François St-Pierre
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, 77005, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Xiao S, Cunningham WJ, Kondabolu K, Lowet E, Moya MV, Mount R, Ravasio C, Economo MN, Han X, Mertz J. Large-scale deep tissue voltage imaging with targeted illumination confocal microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.548930. [PMID: 37502929 PMCID: PMC10370169 DOI: 10.1101/2023.07.21.548930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Voltage imaging with cellular specificity has been made possible by the tremendous advances in genetically encoded voltage indicators (GEVIs). However, the kilohertz rates required for voltage imaging lead to weak signals. Moreover, out-of-focus fluorescence and tissue scattering produce background that both undermines signal-to-noise ratio (SNR) and induces crosstalk between cells, making reliable in vivo imaging in densely labeled tissue highly challenging. We describe a microscope that combines the distinct advantages of targeted illumination and confocal gating, while also maximizing signal detection efficiency. The resulting benefits in SNR and crosstalk reduction are quantified experimentally and theoretically. Our microscope provides a versatile solution for enabling high-fidelity in vivo voltage imaging at large scales and penetration depths, which we demonstrate across a wide range of imaging conditions and different GEVI classes.
Collapse
Affiliation(s)
- Sheng Xiao
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| | | | | | - Eric Lowet
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| | - Maria V. Moya
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| | - Rebecca Mount
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| | - Cara Ravasio
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| | - Michael N. Economo
- Department of Biomedical Engineering, Boston University, Boston MA 02215
- Neurophotonics Center, Boston University, Boston MA, 02215
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston MA 02215
- Neurophotonics Center, Boston University, Boston MA, 02215
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, Boston MA 02215
- Neurophotonics Center, Boston University, Boston MA, 02215
| |
Collapse
|
4
|
Aseyev N, Ivanova V, Balaban P, Nikitin E. Current Practice in Using Voltage Imaging to Record Fast Neuronal Activity: Successful Examples from Invertebrate to Mammalian Studies. BIOSENSORS 2023; 13:648. [PMID: 37367013 DOI: 10.3390/bios13060648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
The optical imaging of neuronal activity with potentiometric probes has been credited with being able to address key questions in neuroscience via the simultaneous recording of many neurons. This technique, which was pioneered 50 years ago, has allowed researchers to study the dynamics of neural activity, from tiny subthreshold synaptic events in the axon and dendrites at the subcellular level to the fluctuation of field potentials and how they spread across large areas of the brain. Initially, synthetic voltage-sensitive dyes (VSDs) were applied directly to brain tissue via staining, but recent advances in transgenic methods now allow the expression of genetically encoded voltage indicators (GEVIs), specifically in selected neuron types. However, voltage imaging is technically difficult and limited by several methodological constraints that determine its applicability in a given type of experiment. The prevalence of this method is far from being comparable to patch clamp voltage recording or similar routine methods in neuroscience research. There are more than twice as many studies on VSDs as there are on GEVIs. As can be seen from the majority of the papers, most of them are either methodological ones or reviews. However, potentiometric imaging is able to address key questions in neuroscience by recording most or many neurons simultaneously, thus providing unique information that cannot be obtained via other methods. Different types of optical voltage indicators have their advantages and limitations, which we focus on in detail. Here, we summarize the experience of the scientific community in the application of voltage imaging and try to evaluate the contribution of this method to neuroscience research.
Collapse
Affiliation(s)
- Nikolay Aseyev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Violetta Ivanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Pavel Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Evgeny Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| |
Collapse
|
5
|
Guo C, Wang A, Cheng H, Chen L. New imaging instrument in animal models: Two-photon miniature microscope and large field of view miniature microscope for freely behaving animals. J Neurochem 2023; 164:270-283. [PMID: 36281555 DOI: 10.1111/jnc.15711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022]
Abstract
Over the past decade, novel optical imaging tools have been developed for imaging neuronal activities along with the evolution of fluorescence indicators with brighter expression and higher sensitivity. Miniature microscopes, as revolutionary approaches, enable the imaging of large populations of neuron ensembles in freely behaving rodents and mammals, which allows exploring the neural basis of behaviors. Recent progress in two-photon miniature microscopes and mesoscale single-photon miniature microscopes further expand those affordable methods to navigate neural activities during naturalistic behaviors. In this review article, two-photon miniature microscopy techniques are summarized historically from the first documented attempt to the latest ones, and comparisons are made. The driving force behind and their potential for neuroscientific inquiries are also discussed. Current progress in terms of the mesoscale, i.e., the large field-of-view miniature microscopy technique, is addressed as well. Then, pipelines for registering single cells from the data of two-photon and large field-of-view miniature microscopes are discussed. Finally, we present the potential evolution of the techniques.
Collapse
Affiliation(s)
- Changliang Guo
- Beijing Institute of Collaborative Innovation, Beijing, China.,State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
| | - Aimin Wang
- School of Electronics, Peking University, Beijing, China.,State Key Laboratory of Advanced Optical Communication System and Networks, Peking University, Beijing, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China.,Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, China.,Beijing Academy of Artificial Intelligence, Beijing, China
| |
Collapse
|
6
|
Tian T, Yuan Y, Mitra S, Gyongy I, Nolan MF. Single Photon Kilohertz Frame Rate Imaging of Neural Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203018. [PMID: 36068166 PMCID: PMC9631062 DOI: 10.1002/advs.202203018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Establishing the biological basis of cognition and its disorders will require high precision spatiotemporal measurements of neural activity. Recently developed genetically encoded voltage indicators (GEVIs) report both spiking and subthreshold activity of identified neurons. However, maximally capitalizing on the potential of GEVIs will require imaging at millisecond time scales, which remains challenging with standard camera systems. Here, application of single photon avalanche diode (SPAD) sensors is reported to image neural activity at kilohertz frame rates. SPADs are electronic devices that when activated by a single photon cause an avalanche of electrons and a large electric current. An array of SPAD sensors is used to image individual neurons expressing the GEVI Voltron-JF525-HTL. It is shown that subthreshold and spiking activity can be resolved with shot noise limited signals at frame rates of up to 10 kHz. SPAD imaging is able to reveal millisecond scale synchronization of neural activity in an ex vivo seizure model. SPAD sensors may have widespread applications for investigation of millisecond timescale neural dynamics.
Collapse
Affiliation(s)
- Tian Tian
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghEH8 9XDUK
| | - Yifang Yuan
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghEH8 9XDUK
| | - Srinjoy Mitra
- School of EngineeringInstitute for Integrated Micro and Nano SystemsUniversity of EdinburghEdinburghEH9 3JLUK
| | - Istvan Gyongy
- School of EngineeringInstitute for Integrated Micro and Nano SystemsUniversity of EdinburghEdinburghEH9 3JLUK
| | - Matthew F. Nolan
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghEH8 9XDUK
- Simons Initiative for the Developing BrainUniversity of EdinburghEdinburghEH8 9XDUK
| |
Collapse
|
7
|
Howe CL, Quicke P, Song P, Verinaz-Jadan H, Dragotti PL, Foust AJ. Comparing synthetic refocusing to deconvolution for the extraction of neuronal calcium transients from light fields. NEUROPHOTONICS 2022; 9:041404. [PMID: 35445141 PMCID: PMC8922050 DOI: 10.1117/1.nph.9.4.041404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Significance: Light-field microscopy (LFM) enables fast, light-efficient, volumetric imaging of neuronal activity with calcium indicators. Calcium transients differ in temporal signal-to-noise ratio (tSNR) and spatial confinement when extracted from volumes reconstructed by different algorithms. Aim: We evaluated the capabilities and limitations of two light-field reconstruction algorithms for calcium fluorescence imaging. Approach: We acquired light-field image series from neurons either bulk-labeled or filled intracellularly with the red-emitting calcium dye CaSiR-1 in acute mouse brain slices. We compared the tSNR and spatial confinement of calcium signals extracted from volumes reconstructed with synthetic refocusing and Richardson-Lucy three-dimensional deconvolution with and without total variation regularization. Results: Both synthetic refocusing and Richardson-Lucy deconvolution resolved calcium signals from single cells and neuronal dendrites in three dimensions. Increasing deconvolution iteration number improved spatial confinement but reduced tSNR compared with synthetic refocusing. Volumetric light-field imaging did not decrease calcium signal tSNR compared with interleaved, widefield image series acquired in matched planes. Conclusions: LFM enables high-volume rate, volumetric imaging of calcium transients in single cell somata (bulk-labeled) and dendrites (intracellularly loaded). The trade-offs identified for tSNR, spatial confinement, and computational cost indicate which of synthetic refocusing or deconvolution can better realize the scientific requirements of future LFM calcium imaging applications.
Collapse
Affiliation(s)
- Carmel L. Howe
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
| | - Peter Quicke
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
| | - Pingfan Song
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
- Imperial College London, Department of Electrical and Electronic Engineering, London, United Kingdom
| | - Herman Verinaz-Jadan
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
- Imperial College London, Department of Electrical and Electronic Engineering, London, United Kingdom
| | - Pier Luigi Dragotti
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
- Imperial College London, Department of Electrical and Electronic Engineering, London, United Kingdom
| | - Amanda J. Foust
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
| |
Collapse
|
8
|
Xiao S, Lowet E, Gritton HJ, Fabris P, Wang Y, Sherman J, Mount RA, Tseng HA, Man HY, Straub C, Piatkevich KD, Boyden ES, Mertz J, Han X. Large-scale voltage imaging in behaving mice using targeted illumination. iScience 2021; 24:103263. [PMID: 34761183 PMCID: PMC8567393 DOI: 10.1016/j.isci.2021.103263] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 11/26/2022] Open
Abstract
Recent improvements in genetically encoded voltage indicators enabled optical imaging of action potentials and subthreshold transmembrane voltage in vivo. To perform high-speed voltage imaging of many neurons simultaneously over a large anatomical area, widefield microscopy remains an essential tool. However, the lack of optical sectioning makes widefield microscopy prone to background cross-contamination. We implemented a digital-micromirror-device-based targeted illumination strategy to restrict illumination to the cells of interest and quantified the resulting improvement both theoretically and experimentally with SomArchon expressing neurons. We found that targeted illumination increased SomArchon signal contrast, decreased photobleaching, and reduced background cross-contamination. With the use of a high-speed, large-area sCMOS camera, we routinely imaged tens of spiking neurons simultaneously over minutes in behaving mice. Thus, the targeted illumination strategy described here offers a simple solution for widefield voltage imaging of many neurons over a large field of view in behaving animals.
Collapse
Affiliation(s)
- Sheng Xiao
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Eric Lowet
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Howard J. Gritton
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, USA
| | - Pierre Fabris
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Yangyang Wang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jack Sherman
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Rebecca A. Mount
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Hua-an Tseng
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Christoph Straub
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA
| | - Kiryl D. Piatkevich
- School of Life Sciences, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Edward S. Boyden
- MIT McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
9
|
Jang J, Zhu MH, Jogdand AH, Antic SD. Studying Synaptically Evoked Cortical Responses ex vivo With Combination of a Single Neuron Recording (Whole-Cell) and Population Voltage Imaging (Genetically Encoded Voltage Indicator). Front Neurosci 2021; 15:773883. [PMID: 34776858 PMCID: PMC8579014 DOI: 10.3389/fnins.2021.773883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/07/2021] [Indexed: 11/15/2022] Open
Abstract
In a typical electrophysiology experiment, synaptic stimulus is delivered in a cortical layer (1-6) and neuronal responses are recorded intracellularly in individual neurons. We recreated this standard electrophysiological paradigm in brain slices of mice expressing genetically encoded voltage indicators (GEVIs). This allowed us to monitor membrane voltages in the target pyramidal neurons (whole-cell), and population voltages in the surrounding neuropil (optical imaging), simultaneously. Pyramidal neurons have complex dendritic trees that span multiple cortical layers. GEVI imaging revealed areas of the brain slice that experienced the strongest depolarization on a specific synaptic stimulus (location and intensity), thus identifying cortical layers that contribute the most afferent activity to the recorded somatic voltage waveform. By combining whole-cell with GEVI imaging, we obtained a crude distribution of activated synaptic afferents in respect to the dendritic tree of a pyramidal cell. Synaptically evoked voltage waves propagating through the cortical neuropil (dendrites and axons) were not static but rather they changed on a millisecond scale. Voltage imaging can identify areas of brain slices in which the neuropil was in a sustained depolarization (plateau), long after the stimulus onset. Upon a barrage of synaptic inputs, a cortical pyramidal neuron experiences: (a) weak temporal summation of evoked voltage transients (EPSPs); and (b) afterhyperpolarization (intracellular recording), which are not represented in the GEVI population imaging signal (optical signal). To explain these findings [(a) and (b)], we used four voltage indicators (ArcLightD, chi-VSFP, Archon1, and di-4-ANEPPS) with different optical sensitivity, optical response speed, labeling strategy, and a target neuron type. All four imaging methods were used in an identical experimental paradigm: layer 1 (L1) synaptic stimulation, to allow direct comparisons. The population voltage signal showed paired-pulse facilitation, caused in part by additional recruitment of new neurons and dendrites. "Synaptic stimulation" delivered in L1 depolarizes almost an entire cortical column to some degree.
Collapse
Affiliation(s)
| | | | | | - Srdjan D. Antic
- Department of Neuroscience, Institute for Systems Genomics, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
10
|
Mollinedo-Gajate I, Song C, Knöpfel T. Genetically Encoded Voltage Indicators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:209-224. [PMID: 33398815 DOI: 10.1007/978-981-15-8763-4_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Optogenetic approaches combine the power to allocate optogenetic tools (proteins) to specific cell populations (defined genetically or functionally) and the use of light-based interfaces between biological wetware (cells and tissues) and hardware (controllers and recorders). The optogenetic toolbox contains two main compartments: tools to interfere with cellular processes and tools to monitor cellular events. Among the latter are genetically encoded voltage indicators (GEVIs). This chapter outlines the development, current state of the art and prospects of emerging optical GEVI imaging technologies.
Collapse
Affiliation(s)
| | - Chenchen Song
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London, UK
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London, UK.
| |
Collapse
|
11
|
Two-Photon Voltage Imaging of Spontaneous Activity from Multiple Neurons Reveals Network Activity in Brain Tissue. iScience 2020; 23:101363. [PMID: 32717641 PMCID: PMC7393527 DOI: 10.1016/j.isci.2020.101363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/07/2020] [Accepted: 07/09/2020] [Indexed: 11/23/2022] Open
Abstract
Recording the electrical activity of multiple neurons simultaneously would greatly facilitate studies on the function of neuronal circuits. The combination of the fast scanning by random-access multiphoton microscopy (RAMP) and the latest two-photon-compatible high-performance fluorescent genetically encoded voltage indicators (GEVIs) has enabled action potential detection in deep layers in in vivo brain. However, neuron connectivity analysis on optically recorded action potentials from multiple neurons in brain tissue has yet to be achieved. With high expression of a two-photon-compatible GEVI, ASAP3, via in utero electroporation and RAMP, we achieved voltage recording of spontaneous activities from multiple neurons in brain slice. We provide evidence for the developmental changes in intralaminar horizontal connections in somatosensory cortex layer 2/3 with a greater sensitivity than calcium imaging. This method thus enables investigation of neuronal network connectivity at the cellular resolution in brain tissue.
Collapse
|
12
|
Quicke P, Howe CL, Song P, Jadan HV, Song C, Knöpfel T, Neil M, Dragotti PL, Schultz SR, Foust AJ. Subcellular resolution three-dimensional light-field imaging with genetically encoded voltage indicators. NEUROPHOTONICS 2020; 7:035006. [PMID: 32904628 PMCID: PMC7456658 DOI: 10.1117/1.nph.7.3.035006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/07/2020] [Indexed: 05/13/2023]
Abstract
Significance: Light-field microscopy (LFM) enables high signal-to-noise ratio (SNR) and light efficient volume imaging at fast frame rates. Voltage imaging with genetically encoded voltage indicators (GEVIs) stands to particularly benefit from LFM's volumetric imaging capability due to high required sampling rates and limited probe brightness and functional sensitivity. Aim: We demonstrate subcellular resolution GEVI light-field imaging in acute mouse brain slices resolving dendritic voltage signals in three spatial dimensions. Approach: We imaged action potential-induced fluorescence transients in mouse brain slices sparsely expressing the GEVI VSFP-Butterfly 1.2 in wide-field microscopy (WFM) and LFM modes. We compared functional signal SNR and localization between different LFM reconstruction approaches and between LFM and WFM. Results: LFM enabled three-dimensional (3-D) localization of action potential-induced fluorescence transients in neuronal somata and dendrites. Nonregularized deconvolution decreased SNR with increased iteration number compared to synthetic refocusing but increased axial and lateral signal localization. SNR was unaffected for LFM compared to WFM. Conclusions: LFM enables 3-D localization of fluorescence transients, therefore eliminating the need for structures to lie in a single focal plane. These results demonstrate LFM's potential for studying dendritic integration and action potential propagation in three spatial dimensions.
Collapse
Affiliation(s)
- Peter Quicke
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
| | - Carmel L. Howe
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
| | - Pingfan Song
- Imperial College London, Department of Electrical and Electronic Engineering, London, United Kingdom
| | - Herman V. Jadan
- Imperial College London, Department of Electrical and Electronic Engineering, London, United Kingdom
| | - Chenchen Song
- Imperial College London, Department of Brain Sciences, London, United Kingdom
| | - Thomas Knöpfel
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
- Imperial College London, Department of Brain Sciences, London, United Kingdom
| | - Mark Neil
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
- Imperial College London, Department of Physics, London, United Kingdom
| | - Pier L. Dragotti
- Imperial College London, Department of Electrical and Electronic Engineering, London, United Kingdom
| | - Simon R. Schultz
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
- Address all correspondence to Simon R. Schultz, E-mail: ; Amanda J. Foust, E-mail:
| | - Amanda J. Foust
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
- Address all correspondence to Simon R. Schultz, E-mail: ; Amanda J. Foust, E-mail:
| |
Collapse
|
13
|
Sensing Senses: Optical Biosensors to Study Gustation. SENSORS 2020; 20:s20071811. [PMID: 32218129 PMCID: PMC7180777 DOI: 10.3390/s20071811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
Abstract
The five basic taste modalities, sweet, bitter, umami, salty and sour induce changes of Ca2+ levels, pH and/or membrane potential in taste cells of the tongue and/or in neurons that convey and decode gustatory signals to the brain. Optical biosensors, which can be either synthetic dyes or genetically encoded proteins whose fluorescence spectra depend on levels of Ca2+, pH or membrane potential, have been used in primary cells/tissues or in recombinant systems to study taste-related intra- and intercellular signaling mechanisms or to discover new ligands. Taste-evoked responses were measured by microscopy achieving high spatial and temporal resolution, while plate readers were employed for higher throughput screening. Here, these approaches making use of fluorescent optical biosensors to investigate specific taste-related questions or to screen new agonists/antagonists for the different taste modalities were reviewed systematically. Furthermore, in the context of recent developments in genetically encoded sensors, 3D cultures and imaging technologies, we propose new feasible approaches for studying taste physiology and for compound screening.
Collapse
|
14
|
Estimating Time-Varying Applied Current in the Hodgkin-Huxley Model. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10020550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The classic Hodgkin-Huxley model is widely used for understanding the electrophysiological dynamics of a single neuron. While applying a low-amplitude constant current to the system results in a single voltage spike, it is possible to produce multiple voltage spikes by applying time-varying currents, which may not be experimentally measurable. The aim of this work is to estimate time-varying applied currents of different deterministic forms given noisy voltage data. In particular, we utilize an augmented ensemble Kalman filter with parameter tracking to estimate four different time-varying applied current parameters and associated Hodgkin-Huxley model states, along with uncertainty bounds in each case. We test the efficiency of the parameter tracking algorithm in this setting by analyzing the effects of changing the standard deviation of the parameter drift and the frequency of data available on the resulting time-varying applied current estimates and related uncertainty.
Collapse
|
15
|
Beck C, Zhang D, Gong Y. Enhanced genetically encoded voltage indicators advance their applications in neuroscience. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019; 12:111-117. [PMID: 32864526 DOI: 10.1016/j.cobme.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genetically encoded voltage indicators report membrane voltage with high spatiotemporal resolution. Extensive recent efforts to improve the GEVIs' brightness, sensitivity, and kinetics have greatly increased the GEVIs' signal-to-noise performance over ten-fold and lowered their response time to the sub-millisecond regime. Such capabilities have broadened the GEVIs' ability to measure membrane voltage of neural populations at cellular resolution in vitro and in vivo, all at high speeds. The GEVIs' high voltage fidelity and fast response have revealed novel physiological phenomena in multiple neuroscientific applications. Such applications portend future targeted studies of voltage activity that take advantage of the GEVIs' ability to report rapid dynamics from genetically-targeted neural populations.
Collapse
Affiliation(s)
- Connor Beck
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Diming Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yiyang Gong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
16
|
Werner CT, Williams CJ, Fermelia MR, Lin DT, Li Y. Circuit Mechanisms of Neurodegenerative Diseases: A New Frontier With Miniature Fluorescence Microscopy. Front Neurosci 2019; 13:1174. [PMID: 31736701 PMCID: PMC6834692 DOI: 10.3389/fnins.2019.01174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (NDDs), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD), are devastating age-associated brain disorders. Significant efforts have been made to uncover the molecular and cellular pathogenic mechanisms that underlie NDDs. However, our understanding of the neural circuit mechanisms that mediate NDDs and associated symptomatic features have been hindered by technological limitations. Our inability to identify and track individual neurons longitudinally in subcortical brain regions that are preferentially targeted in NDDs has left gaping holes in our knowledge of NDDs. Recent development and advancement of the miniature fluorescence microscope (miniscope) has opened up new avenues for examining spatially and temporally coordinated activity from hundreds of cells in deep brain structures in freely moving rodents. In the present mini-review, we examine the capabilities of current and future miniscope tools and discuss the innovative applications of miniscope imaging techniques that can push the boundaries of our understanding of neural circuit mechanisms of NDDs into new territories.
Collapse
Affiliation(s)
- Craig T Werner
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | | | - Mercedes R Fermelia
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
17
|
Lee S, Song YK, Baker BJ. Engineering Photoactivatability in Genetically Encoded Voltage and pH Indicators. Front Cell Neurosci 2019; 13:482. [PMID: 31736711 PMCID: PMC6828978 DOI: 10.3389/fncel.2019.00482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
Genetically-encoded indicators of neuronal activity enable the labeling of a genetically defined population of neurons to optically monitor their activities. However, researchers often find difficulties in identifying relevant signals from excessive background fluorescence. A photoactivatable version of a genetically encoded calcium indicator, sPA-GCaMP6f is a good example of circumventing such an obstacle by limiting the fluorescence to a region of interest defined by the user. Here, we apply this strategy to genetically encoded voltage (GEVI) and pH (GEPI) indicators. Three photoactivatable GEVI candidates were considered. The first one used a circularly-permuted fluorescent protein, the second design involved a Förster resonance energy transfer (FRET) pair, and the third approach employed a pH-sensitive variant of GFP, ecliptic pHluorin. The candidate with a variant of ecliptic pHluorin exhibited photoactivation and a voltage-dependent fluorescence change. This effort also yielded a pH-sensitive photoactivatable GFP that varies its brightness in response to intracellular pH changes.
Collapse
Affiliation(s)
- Sungmoo Lee
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Yoon-Kyu Song
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Bradley J Baker
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
18
|
Aharoni D, Hoogland TM. Circuit Investigations With Open-Source Miniaturized Microscopes: Past, Present and Future. Front Cell Neurosci 2019; 13:141. [PMID: 31024265 PMCID: PMC6461004 DOI: 10.3389/fncel.2019.00141] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/20/2019] [Indexed: 11/30/2022] Open
Abstract
The ability to simultaneously image the spatiotemporal activity signatures from many neurons during unrestrained vertebrate behaviors has become possible through the development of miniaturized fluorescence microscopes, or miniscopes, sufficiently light to be carried by small animals such as bats, birds and rodents. Miniscopes have permitted the study of circuits underlying song vocalization, action sequencing, head-direction tuning, spatial memory encoding and sleep to name a few. The foundation for these microscopes has been laid over the last two decades through academic research with some of this work resulting in commercialization. More recently, open-source initiatives have led to an even broader adoption of miniscopes in the neuroscience community. Open-source designs allow for rapid modification and extension of their function, which has resulted in a new generation of miniscopes that now permit wire-free or wireless recording, concurrent electrophysiology and imaging, two-color fluorescence detection, simultaneous optical actuation and read-out as well as wide-field and volumetric light-field imaging. These novel miniscopes will further expand the toolset of those seeking affordable methods to probe neural circuit function during naturalistic behaviors. Here, we will discuss the early development, present use and future potential of miniscopes.
Collapse
Affiliation(s)
- Daniel Aharoni
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tycho M Hoogland
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|