1
|
Jones LAT, Field-Fote EC, Magnuson D, Tom V, Basso DM, Fouad K, Mulcahey MJ. Outcome measures in rodent models for spinal cord injury and their human correlates. Exp Neurol 2025; 386:115169. [PMID: 39884330 DOI: 10.1016/j.expneurol.2025.115169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Pre-clinical research is intended to inform clinical research, however, communication between these researchers is lacking. A better understanding of what can be learned from animal and human models and what cannot, is essential. This includes a better understanding of where underlying constructs in outcome measures in rodents and humans align and where they diverge to improve dialogue between human and animal researchers. The goal of this review is to promote an understanding of similarities and differences in outcome measures and encourage consideration of these differences when planning, interpreting, and communicating findings from animal or human experiments. Seven individuals with a range of expertise in human and animal research and outcome measures reviewed rat and human measures focused on sensorimotor and functional outcomes. They then discussed where measures corresponded and where they did not, based on the underlying construct the assessment is intended to measure. Key findings are that measures of impairment (such as strength) often used in clinical trials are not commonly used in rodents. Measures such as speed and distance of locomotion are commonly assessed in humans and, while not commonly assessed in rodents, can be collected through existing outcome measures. Additional findings are that animal and human outcome measures are often developed and evaluated differently, with more standardized processes applied to human outcome measures. A deeper understanding and communication of similarities and differences in outcome measures, and where differences are necessary due to interspecies differences, may improve translation from animals to humans and humans to animals.
Collapse
Affiliation(s)
- L A T Jones
- Thomas Jefferson University, Department of Physical Medicine and Rehabilitation, Center for Outcomes and Measurement, Philadelphia, PA, USA.
| | - E C Field-Fote
- Shepherd Center, Spinal Cord Injury Research Program, Atlanta, GA, USA; Emory University School of Medicine, Division of Physical Therapy, Atlanta, GA, USA; Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, USA
| | - D Magnuson
- University of Louisville, Kentucky Spinal Cord Injury Research Center, Louisville, KY, USA
| | - V Tom
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - D M Basso
- The Ohio State University, School of Health and Rehabilitation Sciences, Columbus, OH, USA
| | - K Fouad
- University of Alberta, Rehabilitation Medicine, Edmonton, AB, Canada
| | - M J Mulcahey
- Thomas Jefferson University, Department of Occupational Therapy, Center for Outcomes and Measurement, Philadelphia, PA, USA
| |
Collapse
|
2
|
Cucarian J, Raposo P, Vavrek R, Nguyen A, Nelson B, Monnier P, Torres-Espin A, Fenrich K, Fouad K. No impact of anti-inflammatory medication on inflammation-driven recovery following cervical spinal cord injury in rats. Exp Neurol 2024; 383:115039. [PMID: 39481514 DOI: 10.1016/j.expneurol.2024.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Following spinal cord injury (SCI), inflammation is associated with the exacerbation of damage to spinal tissue. Consequently, managing inflammation during the acute and subacute phases is a common target in SCI treatment. However, inflammation may also induce potential benefits, including the stimulation of neuroplasticity and repair. This positive role of inflammation in spinal cord healing and functional recovery is not fully understood. To address this knowledge gap, we examined the effects of two common anti-inflammatory medications, Diphenhydramine and Methylprednisolone, on the efficacy of rehabilitative motor training on recovery from subacute cervical SCI in adult rats. Training depends critically on neuroplasticity thus if inflammation is a key regulator, we propose that anti-inflammatory drugs will reduce subsequent recovery. Both drugs were administered orally over one month, alongside task-specific reaching and grasping training. After treatment, no substantial changes in motor recovery or lesion size between the treated and control groups were observed. Treated animals also did not show any discernible changes in sensory function or anxiety-like behavior. Taken together, our data indicate that the prolonged use of these anti-inflammatory agents at commonly used doses did not profoundly impact recovery following an SCI. Therefore, considering earlier reports of the benefits of pro-inflammatory stimuli on plasticity, further studies in this area are imperative to elucidate the true impact of treating inflammation and its implications for recovery after spinal cord injuries.
Collapse
Affiliation(s)
- Jaison Cucarian
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
| | - Pamela Raposo
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Romana Vavrek
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Antoinette Nguyen
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Brooklynn Nelson
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Philippe Monnier
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Abel Torres-Espin
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada; School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada; Department of Neurological Surgery and Brain and Spinal Injury Center (BASIC), Faculty of Medicine, University of California San Francisco, San Francisco, USA
| | - Keith Fenrich
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
3
|
Preservation of functional descending input to paralyzed upper extremity muscles in motor complete cervical spinal cord injury. Clin Neurophysiol 2023; 150:56-68. [PMID: 37004296 DOI: 10.1016/j.clinph.2023.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/13/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE Spinal cord injury (SCI) is classified as complete or incomplete depending on the extent of sensorimotor preservation below the injury level. However, individuals with complete SCIs can voluntarily activate paralyzed lower limb muscles alone or by engaging non-paralyzed muscles during neurophysiological assessments, indicating presence of residual pathways across the injury. However, similar phenomena have not been explored for the upper extremity (UE) muscles following cervical SCIs. METHODS Eighteen individuals with motor complete cervical SCI (AIS A or B) and five age-matched non-injured (NI) individuals performed various UE events against manual resistance during functional neurophysiological assessment (FNPA), and electromyographic (EMG) activity was recorded from UE muscles. RESULTS Our findings demonstrated i) voluntary activation of clinically paralyzed muscles as evident from EMG readouts, ii) increased activity in these muscles during events engaging muscles above the injury level, iii) reduced spectral properties of paralyzed muscles in SCI compared to NI participants. CONCLUSIONS Functional EMG activity in clinically paralyzed muscles indicate presence of residual pathways across the injury establishing supralesional control over the sublesional neural circuitry. SIGNIFICANCE The findings may help explain the neurophysiological basis for UE recovery and can be exploited in designing rehabilitation techniques to facilitate UE recovery following cervical SCIs.
Collapse
|
4
|
Moderate-Intensity Treadmill Exercise Promotes mTOR-Dependent Motor Cortical Neurotrophic Factor Expression and Functional Recovery in a Murine Model of Crush Spinal Cord Injury (SCI). Mol Neurobiol 2023; 60:960-978. [PMID: 36385234 DOI: 10.1007/s12035-022-03117-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
Treadmill exercise is widely considered an effective strategy for restoration of skilled motor function after spinal cord injury (SCI). However, the specific exercise intensity that optimizes recovery and the underlying mechanistic basis of this recovery remain unclear. To that end, we sought to investigate the effect of different treadmill exercise intensities on cortical mTOR activity, a key regulator of functional recovery following CNS trauma, in an animal model of C5 crush spinal cord injury (SCI). Following injury, animals were subjected to treadmill exercise for 4 consecutive weeks at three different intensities (low intensity [LEI]; moderate intensity [MEI]; and high intensity [HEI]). Motor function recovery was assessed by horizontal ladder test, cylinder rearing test, and electrophysiology, while neurotrophic factors and cortical mechanistic target of rapamycin (mTOR) pathway-related proteins were assessed by Western blotting. The activation of the cortical mTOR pathway and axonal sprouting was evaluated by immunofluorescence and the changes of plasticity in motor cortex neurons were assessed by Golgi staining. In keeping with previous studies, we found that 4 weeks of treadmill training resulted in improved skilled motor function, enhanced nerve conduction capability, increased neuroplasticity, and axonal sprouting. Importantly, we also demonstrated that when compared with the LEI group, MEI and HEI groups demonstrated elevated expression of brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), phosphorylated ribosomal S6 protein (p-S6), and protein kinase B (p-Akt), consistent with an intensity-dependent activation of the mTOR pathway and neurotrophic factor expression in the motor cortex. We also observed impaired exercise endurance and higher mortality during training in the HEI group than in the LEI and MEI groups. Collectively, our findings suggest that treadmill exercise following SCI is an effective means of promoting recovery and highlight the importance of the cortical mTOR pathway and neurotrophic factors as mediators of this effect. Importantly, our findings also demonstrate that excessive exercise can be detrimental, suggesting that moderation may be the optimal strategy. These findings provide an important foundation for further investigation of treadmill training as a modality for recovery following spinal cord injury and of the underlying mechanisms.
Collapse
|
5
|
Wang Y, Luo H, Liu Y, Yang C, Yin Y, Tan B. Multimodal rehabilitation promotes axonal sprouting and functional recovery in a murine model of spinal cord injury (SCI). Neurosci Lett 2023; 795:137029. [PMID: 36566832 DOI: 10.1016/j.neulet.2022.137029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder affecting millions of people worldwide, resulting in severe and permanent disabilities that significantly impact the individual's life. Rehabilitation is a commonly accepted and effective clinical treatment modality for neurological disabilities. A single form of rehabilitation training is, however, limited. Indeed, recent studies have reported that a combination of various training strategies may be more promising in promoting functional recovery. However, few studies have focused on combining different forms of rehabilitative training. Here, we investigated the effect of combining treadmill training and single pellet grasping in a well-established model of murine SCI to assess whether combining rehabilitation approaches improve outcomes. In brief, one week following crush SCI, mice were subjected to the treadmill and single pellet grasping training (SPG) for a period of six weeks. Biotinylated dextran amine (BDA) was used to anterogradely trace corticospinal tract axons to assess functionally relevant axonal sprouting. Our results revealed that the combined training upregulated p-S6 expression, facilitated axonal sprouting, increased the formation of functional synaptic connections, and promoted functional recovery of the upper limb. Our study provides experimental evidence for the benefit of combining multiple modalities of rehabilitative strategies.
Collapse
Affiliation(s)
- Yunhang Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Haodong Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yuan Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ying Yin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Botao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
6
|
Zheng Y, Gallegos CM, Xue H, Li S, Kim DH, Zhou H, Xia X, Liu Y, Cao Q. Transplantation of Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Promotes Forelimb Functional Recovery after Cervical Spinal Cord Injury. Cells 2022; 11:2765. [PMID: 36078173 PMCID: PMC9454923 DOI: 10.3390/cells11172765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023] Open
Abstract
Locomotor function after spinal cord injury (SCI) is critical for assessing recovery. Currently, available means to improve locomotor function include surgery, physical therapy rehabilitation and exoskeleton. Stem cell therapy with neural progenitor cells (NPCs) transplantation is a promising reparative strategy. Along this line, patient-specific induced pluripotent stem cells (iPSCs) are a remarkable autologous cell source, which offer many advantages including: great potential to generate isografts avoiding immunosuppression; the availability of a variety of somatic cells without ethical controversy related to embryo use; and vast differentiation. In this current work, to realize the therapeutic potential of iPSC-NPCs for the treatment of SCI, we transplanted purified iPSCs-derived NPCs into a cervical contusion SCI rat model. Our results showed that the iPSC-NPCs were able to survive and differentiate into both neurons and astrocytes and, importantly, improve forelimb locomotor function as assessed by the grooming task and horizontal ladder test. Purified iPSC-NPCs represent a promising cell type that could be further tested and developed into a clinically useful cell source for targeted cell therapy for cervical SCI patients.
Collapse
Affiliation(s)
- Yiyan Zheng
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chrystine M. Gallegos
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haipeng Xue
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shenglan Li
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dong H. Kim
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hongxia Zhou
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Xugang Xia
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Ying Liu
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qilin Cao
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
7
|
Flores Á, López-Santos D, García-Alías G. When Spinal Neuromodulation Meets Sensorimotor Rehabilitation: Lessons Learned From Animal Models to Regain Manual Dexterity After a Spinal Cord Injury. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:755963. [PMID: 36188826 PMCID: PMC9397786 DOI: 10.3389/fresc.2021.755963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022]
Abstract
Electrical neuromodulation has strongly hit the foundations of spinal cord injury and repair. Clinical and experimental studies have demonstrated the ability to neuromodulate and engage spinal cord circuits to recover volitional motor functions lost after the injury. Although the science and technology behind electrical neuromodulation has attracted much of the attention, it cannot be obviated that electrical stimulation must be applied concomitantly to sensorimotor rehabilitation, and one would be very difficult to understand without the other, as both need to be finely tuned to efficiently execute movements. The present review explores the difficulties faced by experimental and clinical neuroscientists when attempting to neuromodulate and rehabilitate manual dexterity in spinal cord injured subjects. From a translational point of view, we will describe the major rehabilitation interventions employed in animal research to promote recovery of forelimb motor function. On the other hand, we will outline some of the state-of-the-art findings when applying electrical neuromodulation to the spinal cord in animal models and human patients, highlighting how evidences from lumbar stimulation are paving the path to cervical neuromodulation.
Collapse
Affiliation(s)
- África Flores
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Diego López-Santos
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Guillermo García-Alías
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
- Institut Guttmann de Neurorehabilitació, Badalona, Spain
- *Correspondence: Guillermo García-Alías
| |
Collapse
|
8
|
Tashiro S, Tsuji O, Shinozaki M, Shibata T, Yoshida T, Tomioka Y, Unai K, Kondo T, Itakura G, Kobayashi Y, Yasuda A, Nori S, Fujiyoshi K, Nagoshi N, Kawakami M, Uemura O, Yamada S, Tsuji T, Okano H, Nakamura M. Current progress of rehabilitative strategies in stem cell therapy for spinal cord injury: a review. NPJ Regen Med 2021; 6:81. [PMID: 34824291 PMCID: PMC8616941 DOI: 10.1038/s41536-021-00191-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
Stem cell-based regenerative therapy has opened an avenue for functional recovery of patients with spinal cord injury (SCI). Regenerative rehabilitation is attracting wide attention owing to its synergistic effects, feasibility, non-invasiveness, and diverse and systemic properties. In this review article, we summarize the features of rehabilitation, describe the mechanism of combinatorial treatment, and discuss regenerative rehabilitation in the context of SCI. Although conventional rehabilitative methods have commonly been implemented alone, especially in studies of acute-to-subacute SCI, the combinatorial effects of intensive and advanced methods, including various neurorehabilitative approaches, have also been reported. Separating the concept of combined rehabilitation from regenerative rehabilitation, we suggest that the main roles of regenerative rehabilitation can be categorized as conditioning/reconditioning, functional training, and physical exercise, all of which are indispensable for enhancing functional recovery achieved using stem cell therapies.
Collapse
Affiliation(s)
- Syoichi Tashiro
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan. .,Department of Rehabilitation Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| | - Osahiko Tsuji
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Takahiro Shibata
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Takashi Yoshida
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yohei Tomioka
- Department of Rehabilitation, Murayama Medical Center, Musashi-Murayama, Tokyo, Japan
| | - Kei Unai
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Takahiro Kondo
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Go Itakura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yoshiomi Kobayashi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Orthopaedic Surgery, Murayama Medical Center, Musashi-Murayama, Tokyo, Japan
| | - Akimasa Yasuda
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Orthopaedic surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Satoshi Nori
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Kanehiro Fujiyoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Orthopaedic Surgery, Murayama Medical Center, Musashi-Murayama, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Osamu Uemura
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Rehabilitation, Murayama Medical Center, Musashi-Murayama, Tokyo, Japan
| | - Shin Yamada
- Department of Rehabilitation Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Tetsuya Tsuji
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| |
Collapse
|
9
|
Neural Stem Cells: Promoting Axonal Regeneration and Spinal Cord Connectivity. Cells 2021; 10:cells10123296. [PMID: 34943804 PMCID: PMC8699545 DOI: 10.3390/cells10123296] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Spinal cord injury (SCI) leads to irreversible functional impairment caused by neuronal loss and the disruption of neuronal connections across the injury site. While several experimental strategies have been used to minimize tissue damage and to enhance axonal growth and regeneration, the corticospinal projection, which is the most important voluntary motor system in humans, remains largely refractory to regenerative therapeutic interventions. To date, one of the most promising pre-clinical therapeutic strategies has been neural stem cell (NSC) therapy for SCI. Over the last decade we have found that host axons regenerate into spinal NSC grafts placed into sites of SCI. These regenerating axons form synapses with the graft, and the graft in turn extends very large numbers of new axons from the injury site over long distances into the distal spinal cord. Here we discuss the pathophysiology of SCI that makes the spinal cord refractory to spontaneous regeneration, the most recent findings of neural stem cell therapy for SCI, how it has impacted motor systems including the corticospinal tract and the implications for sensory feedback.
Collapse
|
10
|
Baylo-Marín O, Flores Á, García-Alías G. Long-term rehabilitation reduces task error variability in cervical spinal cord contused rats. Exp Neurol 2021; 348:113928. [PMID: 34813841 DOI: 10.1016/j.expneurol.2021.113928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/27/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
To promote skilled forelimb function following a spinal cord injury, we have evaluated whether long-term voluntary sensorimotor rehabilitation can promote substantial reaching and grasping recovery. Long-Evans rats were trained to reach single pellets and then received a moderate 100 kdyn contusion to the C5 lateral funiculi. During the first eight months post-injury, a group of animals was enrolled in daily skilled reaching rehabilitation consisting of grabbing and manipulating seeds from the bottom of a grid. Single-pellet reaching and grasping recovery was tested biweekly throughout the functional follow-up and the recovery was compared to a second group of contused but non-rehabilitated animals. Following the injury, reaching and grasping success dropped to zero in both groups and remained absent for three months post-injury, followed by a slight recovery that remained constant until the end of the follow-up. No differences in reaching success were found between groups. Nevertheless, the type of gesture errors in the failed attempts were categorized and scored. The errors ranged from the animal's inability to lift the paw and initiate the movement to the final stage of the attempt, in which the pellet falls during grasping and retraction of the paw towards the mouth. Both groups of animals exhibited similar types of errors but the animals with rehabilitation showed less error variability and those that occurred at the latest stages of the attempt predominated compared to those performed by the non-trained animals. Histological examination of the injury showed that injury severity was similar between groups and that the damage was circumscribed to the site of impact, affecting mainly the dorsal and medial region of the lateral funiculi, with preservation of the dorsal component of the corticospinal tract and the interneurons and motoneurons of the spinal segments beyond the site of injury. The results indicate that activity-dependent plasticity driven by voluntary rehabilitation decreases task error variability and drives the recovery of the movement gestures. However, the plasticity achieved is insufficient to attain full functional recovery to successfully reach, grasp and release the pellets in the mouth, indicating the necessity for additional interventional therapies to promote repair.
Collapse
Affiliation(s)
- Olaia Baylo-Marín
- Department of Cell Biology, Physiology and Immunology & Institute of Neuroscience, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - África Flores
- Department of Cell Biology, Physiology and Immunology & Institute of Neuroscience, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Guillermo García-Alías
- Department of Cell Biology, Physiology and Immunology & Institute of Neuroscience, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain; Institut Guttmann de Neurorehabilitació, Badalona, Spain.
| |
Collapse
|
11
|
Walker JR, Detloff MR. Plasticity in Cervical Motor Circuits following Spinal Cord Injury and Rehabilitation. BIOLOGY 2021; 10:biology10100976. [PMID: 34681075 PMCID: PMC8533179 DOI: 10.3390/biology10100976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Spinal cord injury results in a decreased quality of life and impacts hundreds of thousands of people in the US alone. This review discusses the underlying cellular mechanisms of injury and the concurrent therapeutic hurdles that impede recovery. It then describes the phenomena of neural plasticity—the nervous system’s ability to change. The primary focus of the review is on the impact of cervical spinal cord injury on control of the upper limbs. The neural plasticity that occurs without intervention is discussed, which shows new connections growing around the injury site and the involvement of compensatory movements. Rehabilitation-driven neural plasticity is shown to have the ability to guide connections to create more normal functions. Various novel stimulation and recording technologies are outlined for their role in further improving rehabilitative outcomes and gains in independence. Finally, the importance of sensory input, an often-overlooked aspect of motor control, is shown in driving neural plasticity. Overall, this review seeks to delineate the historical and contemporary research into neural plasticity following injury and rehabilitation to guide future studies. Abstract Neuroplasticity is a robust mechanism by which the central nervous system attempts to adapt to a structural or chemical disruption of functional connections between neurons. Mechanical damage from spinal cord injury potentiates via neuroinflammation and can cause aberrant changes in neural circuitry known as maladaptive plasticity. Together, these alterations greatly diminish function and quality of life. This review discusses contemporary efforts to harness neuroplasticity through rehabilitation and neuromodulation to restore function with a focus on motor recovery following cervical spinal cord injury. Background information on the general mechanisms of plasticity and long-term potentiation of the nervous system, most well studied in the learning and memory fields, will be reviewed. Spontaneous plasticity of the nervous system, both maladaptive and during natural recovery following spinal cord injury is outlined to provide a baseline from which rehabilitation builds. Previous research has focused on the impact of descending motor commands in driving spinal plasticity. However, this review focuses on the influence of physical therapy and primary afferent input and interneuron modulation in driving plasticity within the spinal cord. Finally, future directions into previously untargeted primary afferent populations are presented.
Collapse
|
12
|
Mah KM, Torres-Espín A, Hallworth BW, Bixby JL, Lemmon VP, Fouad K, Fenrich KK. Automation of training and testing motor and related tasks in pre-clinical behavioural and rehabilitative neuroscience. Exp Neurol 2021; 340:113647. [PMID: 33600814 PMCID: PMC10443427 DOI: 10.1016/j.expneurol.2021.113647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Testing and training animals in motor and related tasks is a cornerstone of pre-clinical behavioural and rehabilitative neuroscience. Yet manually testing and training animals in these tasks is time consuming and analyses are often subjective. Consequently, there have been many recent advances in automating both the administration and analyses of animal behavioural training and testing. This review is an in-depth appraisal of the history of, and recent developments in, the automation of animal behavioural assays used in neuroscience. We describe the use of common locomotor and non-locomotor tasks used for motor training and testing before and after nervous system injury. This includes a discussion of how these tasks help us to understand the underlying mechanisms of neurological repair and the utility of some tasks for the delivery of rehabilitative training to enhance recovery. We propose two general approaches to automation: automating the physical administration of behavioural tasks (i.e., devices used to facilitate task training, rehabilitative training, and motor testing) and leveraging the use of machine learning in behaviour analysis to generate large volumes of unbiased and comprehensive data. The advantages and disadvantages of automating various motor tasks as well as the limitations of machine learning analyses are examined. In closing, we provide a critical appraisal of the current state of automation in animal behavioural neuroscience and a prospective on some of the advances in machine learning we believe will dramatically enhance the usefulness of these approaches for behavioural neuroscientists.
Collapse
Affiliation(s)
- Kar Men Mah
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Abel Torres-Espín
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ben W Hallworth
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - John L Bixby
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA; Department of Molecular & Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Vance P Lemmon
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Karim Fouad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physical Therapy, University of Alberta, Edmonton, Alberta, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
13
|
Bilchak JN, Caron G, Côté MP. Exercise-Induced Plasticity in Signaling Pathways Involved in Motor Recovery after Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms22094858. [PMID: 34064332 PMCID: PMC8124911 DOI: 10.3390/ijms22094858] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) leads to numerous chronic and debilitating functional deficits that greatly affect quality of life. While many pharmacological interventions have been explored, the current unsurpassed therapy for most SCI sequalae is exercise. Exercise has an expansive influence on peripheral health and function, and by activating the relevant neural pathways, exercise also ameliorates numerous disorders of the central nervous system (CNS). While the exact mechanisms by which this occurs are still being delineated, major strides have been made in the past decade to understand the molecular underpinnings of this essential treatment. Exercise rapidly and prominently affects dendritic sprouting, synaptic connections, neurotransmitter production and regulation, and ionic homeostasis, with recent literature implicating an exercise-induced increase in neurotrophins as the cornerstone that binds many of these effects together. The field encompasses vast complexity, and as the data accumulate, disentangling these molecular pathways and how they interact will facilitate the optimization of intervention strategies and improve quality of life for individuals affected by SCI. This review describes the known molecular effects of exercise and how they alter the CNS to pacify the injury environment, increase neuronal survival and regeneration, restore normal neural excitability, create new functional circuits, and ultimately improve motor function following SCI.
Collapse
|
14
|
Wei H, Wu X, You Y, Duran RCD, Zheng Y, Narayanan KL, Hai B, Li X, Tallapragada N, Prajapati TJ, Kim DH, Deneen B, Cao QL, Wu JQ. Systematic analysis of purified astrocytes after SCI unveils Zeb2os function during astrogliosis. Cell Rep 2021; 34:108721. [PMID: 33535036 PMCID: PMC7920574 DOI: 10.1016/j.celrep.2021.108721] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/24/2020] [Accepted: 01/12/2021] [Indexed: 10/27/2022] Open
Abstract
Spinal cord injury (SCI) is one of the most devastating neural injuries without effective therapeutic solutions. Astrocytes are the predominant component of the scar. Understanding the complex contributions of reactive astrocytes to SCI pathophysiologies is fundamentally important for developing therapeutic strategies. We have studied the molecular changes in the injury environment and the astrocyte-specific responses by astrocyte purification from injured spinal cords from acute to chronic stages. In addition to protein-coding genes, we have systematically analyzed the expression profiles of long non-coding RNAs (lncRNAs) (>200 bp), which are regulatory RNAs that play important roles in the CNS. We have identified a highly conserved lncRNA, Zeb2os, and demonstrated using functional assays that it plays an important role in reactive astrogliosis through the Zeb2os/Zeb2/Stat3 axis. These studies provide valuable insights into the molecular basis of reactive astrogliosis and fill the knowledge gap regarding the function(s) of lncRNAs in astrogliosis and SCI.
Collapse
Affiliation(s)
- Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Xizi Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Yanan You
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Raquel Cuevas-Diaz Duran
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L. 64710, Mexico
| | - Yiyan Zheng
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - K Lakshmi Narayanan
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Bo Hai
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Xu Li
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | | | | | - Dong H Kim
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qi-Lin Cao
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|