1
|
Fadaei M, Lahijan ASN, Jahanmehr D, Ahmadi A, Asadi-Golshan R. Food additives for the central nervous system, useful or harmful? An evidence-based review. Nutr Neurosci 2025:1-18. [PMID: 39777413 DOI: 10.1080/1028415x.2024.2433257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
OBJECTIVES This review examines how food additives impact the central nervous system (CNS) focusing on the effects of sugars, artificial sweeteners, colorings, and preservatives. METHODS A literature search of PubMed, Scopus, and Web of Science was conducted for studies published since 2010. Key search terms included, food additives, neurotoxicity, cognition, and behavior. RESULTS It summarizes research findings on additives such as aspartame, stevia, methylene blue, azo dyes, sodium benzoate, and monosodium glutamate. It also covers mechanisms such as oxidative stress, neuroinflammation, and disruptions in neurotransmitter systems. Furthermore, it emphasizes the properties of natural compounds such as garlic (Allium sativum), tetramethylpyrazine, curcumin, licorice root extract (glycyrrhizin), and polyphenols in mitigating CNS damage caused by food additives. DISCUSSION Although ongoing studies are expanding our knowledge on the effects of these additives, future CNS research should focus on long-term investigations involving subjects to provide a more comprehensive understanding of the cumulative impacts of different additives and update regulatory standards based on new scientific findings.
Collapse
Affiliation(s)
- Mohammadmahdi Fadaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Davood Jahanmehr
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ahmadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Asadi-Golshan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Isaev NK, Genrikhs EE, Stelmashook EV. Methylene blue and its potential in the treatment of traumatic brain injury, brain ischemia, and Alzheimer's disease. Rev Neurosci 2024; 35:585-595. [PMID: 38530227 DOI: 10.1515/revneuro-2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024]
Abstract
Traumatic brain injury (TBI) and brain ischemia/reperfusion cause neurodegenerative processes that can continue after the acute stage with the development of severe brain atrophy with dementia. In this case, the long-term neurodegeneration of the brain is similar to the neurodegeneration characteristic of Alzheimer's disease (AD) and is associated with the accumulation of beta amyloid and tau protein. In the pathogenesis of AD as well as in the pathogenesis of cerebral ischemia and TBI oxidative stress, progressive inflammation, glial activation, blood-brain barrier dysfunction, and excessive activation of autophagy are involved, which implies the presence of many targets that can be affected by neuroprotectors. That is, multivariate cascades of nerve tissue damage represent many potential targets for therapeutic interventions. One of such substances that can be used in multi-purpose therapeutic strategies is methylene blue (MB). This drug can have an antiapoptotic and anti-inflammatory effect, activate autophagy, inhibit the aggregation of proteins with an irregular shape, inhibit NO synthase, and bypass impaired electron transfer in the respiratory chain of mitochondria. MB is a well-described treatment for methemoglobinemia, malaria, and encephalopathy caused by ifosfamide. In recent years, this drug has attracted great interest as a potential treatment for a number of neurodegenerative disorders, including the effects of TBI, ischemia, and AD.
Collapse
Affiliation(s)
- Nickolay K Isaev
- 64935 M.V. Lomonosov Moscow State University , 119991, Moscow, Russia
- Research Center of Neurology, 125367, Moscow, Russia
| | | | | |
Collapse
|
3
|
Martini APR, Schlemmer LM, Lucio Padilha JA, Fabres RB, Couto Pereira NDS, Pereira LO, Dalmaz C, Netto CA. Acrobatic training prevents learning impairments and astrocyte remodeling in the hippocampus of rats undergoing chronic cerebral hypoperfusion: sex-specific benefits. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1375561. [PMID: 38939055 PMCID: PMC11208732 DOI: 10.3389/fresc.2024.1375561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Abstract
Background Chronic cerebral hypoperfusion (CCH) leads to memory and learning impairments associated with degeneration and gliosis in the hippocampus. Treatment with physical exercise carries different therapeutic benefits for each sex. We investigated the effects of acrobatic training on astrocyte remodeling in the CA1 and CA3 subfields of the hippocampus and spatial memory impairment in male and female rats at different stages of the two-vessel occlusion (2VO) model. Methods Wistar rats were randomly allocated into four groups of males and females: 2VO acrobatic, 2VO sedentary, sham acrobatic, and sham sedentary. The acrobatic training was performed for 4 weeks prior to the 2VO procedure. Brain samples were collected for morphological and biochemical analysis at 3 and 7 days after 2VO. The dorsal hippocampi were removed and prepared for Western blot quantification of Akt, p-Akt, COX IV, cleaved caspase-3, PARP, and GFAP. GFAP immunofluorescence was performed on slices of the hippocampus to count astrocytes and apply the Sholl's circle technique. The Morris water maze was run after 45 days of 2VO. Results Acutely, the trained female rats showed increased PARP expression, and the 2VO-trained rats of both sexes presented increased GFAP levels in Western blot. Training, mainly in males, induced an increase in the number of astrocytes in the CA1 subfield. The 2VO rats presented branched astrocytes, while acrobatic training prevented branching. However, the 2VO-induced spatial memory impairment was partially prevented by the acrobatic training. Conclusion Acrobatic training restricted the astrocytic remodeling caused by 2VO in the CA1 and CA3 subfields of the hippocampus. The improvement in spatial memory was associated with more organized glial scarring in the trained rats and better cell viability observed in females.
Collapse
Affiliation(s)
- Ana Paula Rodrigues Martini
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Livia Machado Schlemmer
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Joelma Alves Lucio Padilha
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Bandeira Fabres
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, United States
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Natividade de Sá Couto Pereira
- Psychological Neuroscience Laboratory, Psychology Research Center, School of Psychology, University of Minho, Braga, Portugal
| | - Lenir Orlandi Pereira
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Dalmaz
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
4
|
Wade ZS, Barrett DW, Davis RE, Nguyen A, Venkat S, Gonzalez-Lima F. Histochemical mapping of the duration of action of photobiomodulation on cytochrome c oxidase in the rat brain. Front Neurosci 2023; 17:1243527. [PMID: 37700747 PMCID: PMC10493319 DOI: 10.3389/fnins.2023.1243527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction This is the first study mapping the duration of action of in vivo photobiomodulation (PBM) on cytochrome-c-oxidase (CCO). In cellular bioenergetics, CCO is the terminal rate-limiting enzyme in the mitochondrial electron transport chain, which catalyzes oxygen utilization for aerobic energy production. PBM using transcranial infrared laser stimulation (TILS) is a promising intervention for non-invasively modulating CCO in the brain. TILS of the human prefrontal cortex directly causes CCO photo-oxidation, which is associated with increased cerebral oxygenation and improved cognition. Methods This experiment aimed to map the duration of action of in vivo PBM on CCO activity in discrete neuroanatomic locations within rat brains up to 4 weeks after a single TILS session (50 s, 1064 nm CW, 250 mW/cm2). Control brains from rats treated with a sham session without TILS (laser off) were compared to brains from TILS-treated rats that were collected 1 day, 2 weeks, or 4 weeks post-TILS. Cryostat sections of the 36 collected brains were processed using quantitative enzyme histochemistry and digitally imaged. Densitometric readings of 28 regions of interest were recorded and converted to CCO activity units of oxygen utilization using calibration standards. Data analysis (ANCOVA) compared each laser-treated group to sham with whole-brain average as a covariate. Results The prefrontal infralimbic cortex showed the earliest significant increase in CCO activity between 1-day post-TILS and sham groups, which continued elevated for 2-4 weeks post-TILS. Significant differences in CCO activity between 2-weeks and sham groups were also found in the lateral septum, accumbens core, CA3 of the hippocampus, and the molecular layer of the hippocampus. The medial amygdala showed a significant decrease in CCO activity between 4-weeks and sham. Further analyses showed significant inter-regional CCO activity correlations among the brain regions as the result of TILS, with the most pronounced changes at 4-weeks post-stimulation. Discussion The time course of changes in CCO activity and network connectivity suggested that TILS caused different neuroplasticity types of bioenergetic changes at different time scales, depending on brain region and its depth from the cortex. In conclusion, this controlled CCO histochemical study demonstrated a long-lasting duration of action of PBM in the rat brain.
Collapse
Affiliation(s)
| | | | | | | | | | - F. Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
5
|
López-Taboada I, Sal-Sarria S, Vallejo G, Coto-Montes A, Conejo NM, González-Pardo H. Sexual dimorphism in spatial learning and brain metabolism after exposure to a western diet and early life stress in rats. Physiol Behav 2022; 257:113969. [PMID: 36181786 DOI: 10.1016/j.physbeh.2022.113969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023]
Abstract
Prolonged daily intake of Western-type diet rich in saturated fats and sugars, and exposure to early life stress have been independently linked to impaired neurodevelopment and behaviour in animal models. However, sex-specific effects of both environmental factors combined on spatial learning and memory, behavioural flexibility, and brain oxidative capacity have still not been addressed. The current study aimed to evaluate the impact of maternal and postnatal exposure to a high-fat and high-sugar diet (HFS), and exposure to early life stress by maternal separation in adult male and female Wistar rats. For this purpose, spatial learning and memory and behavioural flexibility were evaluated in the Morris water maze, and regional brain oxidative capacity and oxidative stress levels were measured in the hippocampus and medial prefrontal cortex. Spatial memory, regional brain oxidative metabolism, and levels of oxidative stress differed between females and males, suggesting sexual dimorphism in the effects of a HFS diet and early life stress. Males fed the HFS diet performed better than all other experimental groups independently of early life stress exposure. However, behavioural flexibility evaluated in the spatial reversal leaning task was impaired in males fed the HFS diet. In addition, exposure to maternal separation or the HFS diet increased the metabolic capacity of the prefrontal cortex and dorsal hippocampus in males and females. Levels of oxidative stress measured in the latter brain regions were also increased in groups fed the HFS diet, but maternal separation seemed to dampen regional brain oxidative stress levels. Therefore, these results suggest a compensatory effect resulting from the interaction between prolonged exposure to a HFS diet and early life stress.
Collapse
Affiliation(s)
- Isabel López-Taboada
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Saúl Sal-Sarria
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
| | - Guillermo Vallejo
- Methodology area, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003 Oviedo, Spain
| | - Ana Coto-Montes
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain; Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain.
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| |
Collapse
|
6
|
Martín-Sánchez A, González-Pardo H, Alegre-Zurano L, Castro-Zavala A, López-Taboada I, Valverde O, Conejo NM. Early-life stress induces emotional and molecular alterations in female mice that are partially reversed by cannabidiol. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110508. [PMID: 34973413 DOI: 10.1016/j.pnpbp.2021.110508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/29/2021] [Accepted: 12/24/2021] [Indexed: 12/20/2022]
Abstract
Gender is considered as a pivotal determinant of mental health. Indeed, several psychiatric disorders such as anxiety and depression are more common and persistent in women than in men. In the past two decades, impaired brain energy metabolism has been highlighted as a risk factor for the development of these psychiatric disorders. However, comprehensive behavioural and neurobiological studies in brain regions relevant to anxiety and depression symptomatology are scarce. In the present study, we summarize findings describing cannabidiol effects on anxiety and depression in maternally separated female mice as a well-established rodent model of early-life stress associated with many mental disorders. Our results indicate that cannabidiol could prevent anxiolytic- and depressive-related behaviour in early-life stressed female mice. Additionally, maternal separation with early weaning (MSEW) caused long-term changes in brain oxidative metabolism in both nucleus accumbens and amygdalar complex measured by cytochrome c oxidase quantitative histochemistry. However, cannabidiol treatment could not revert brain oxidative metabolism impairment. Moreover, we identified hyperphosphorylation of mTOR and ERK 1/2 proteins in the amygdala but not in the striatum, that could also reflect altered brain intracellular signalling related with to bioenergetic impairment. Altogether, our study supports the hypothesis that MSEW induces profound long-lasting molecular changes in mTOR signalling and brain energy metabolism related to depressive-like and anxiety-like behaviours in female mice, which were partially ameliorated by CBD administration.
Collapse
Affiliation(s)
- Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Isabel López-Taboada
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
7
|
Cardoso FDS, Barrett DW, Wade Z, Gomes da Silva S, Gonzalez-Lima F. Photobiomodulation of Cytochrome c Oxidase by Chronic Transcranial Laser in Young and Aged Brains. Front Neurosci 2022; 16:818005. [PMID: 35368252 PMCID: PMC8971717 DOI: 10.3389/fnins.2022.818005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/23/2022] [Indexed: 12/15/2022] Open
Abstract
In cellular bioenergetics, cytochrome c oxidase (CCO) is the enzyme responsible for oxygen consumption in the mitochondrial electron transport chain, which drives oxidative phosphorylation for adenosine triphosphate (ATP) production. CCO is also the major intracellular acceptor of photons in the light wavelengths used for photobiomodulation (PBM). Brain function is critically dependent on oxygen consumption by CCO for ATP production. Therefore, our objectives were (1) to conduct the first detailed brain mapping study of the effects of PBM on regional CCO activity, and (2) to compare the chronic effects of PBM on young and aged brains. Specifically, we used quantitative CCO histochemistry to map the differences in CCO activity of brain regions in healthy young (4 months old) and aged (20 months old) rats from control groups with sham stimulation and from treated groups with 58 consecutive days of transcranial laser PBM (810 nm wavelength and 100 mW power). We found that aging predominantly decreased regional brain CCO activity and systems-level functional connectivity, while the chronic laser stimulation predominantly reversed these age-related effects. We concluded that chronic PBM modified the effects of aging by causing the CCO activity on brain regions in laser-treated aged rats to reach levels similar to those found in young rats. Given the crucial role of CCO in bioenergetics, PBM may be used to augment brain and behavioral functions of older individuals by improving oxidative energy metabolism.
Collapse
Affiliation(s)
- Fabrízio dos Santos Cardoso
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, Brazil
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Douglas W. Barrett
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Zachary Wade
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Sérgio Gomes da Silva
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, Brazil
- Centro Universitário UNIFAMINAS, Muriaé, Brazil
- Hospital do Câncer de Muriaé, Fundação Cristiano Varella, Muriaé, Brazil
| | - F. Gonzalez-Lima
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
- *Correspondence: F. Gonzalez-Lima,
| |
Collapse
|
8
|
Pretreatment with combined low-level laser therapy and methylene blue improves learning and memory in sleep-deprived mice. Lasers Med Sci 2022; 37:2403-2412. [PMID: 35059872 DOI: 10.1007/s10103-021-03497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Low-level laser therapy (LLLT) and methylene blue (MB) were proved to have neuroprotective effects. In this study, we evaluated the preventive effects of LLLT and MB alone and in combination to examine their efficacy against sleep deprivation (SD)-induced cognitive impairment. Sixty Balb/c male mice were randomly divided into five groups as follows: wide platform (WP), SD, LLLT, MB, LMB (treatment with both LLLT and MB). Daily MB (0.5 mg/kg) was injected for ten consecutive days. An 810-nm, 10-Hz pulsed laser was used in LLLT every other day. We used the T-maze test, social interaction test (SIT), and shuttle box to assess learning and memory and PSD-95, GAP-43, and synaptophysin (SYN) markers to examine synaptic proteins levels in the hippocampus. Our results showed that SD decreased alternation rate in the T-maze test, sociability and social novelty in SIT, and memory index in the shuttle box. Single treatments were not able to reverse these in most of the behavioral parameters. However, behavioral tests showed a significant difference between combined therapy and the SD group. The levels of synaptic plasticity markers were also significantly reduced after SD. There was a significant difference between the MB group and SD animals in GAP-43 and SYN biomarkers. Combination treatment with LLLT and MB also increased GAP-43, PSD-95, and SYN compared to the SD group. We found that the combined use of LLLT and MB pretreatment is more effective in protecting SD-induced cognitive impairment, which may be imparted via modulation of synaptic proteins.
Collapse
|
9
|
Xue H, Thaivalappil A, Cao K. The Potentials of Methylene Blue as an Anti-Aging Drug. Cells 2021; 10:cells10123379. [PMID: 34943887 PMCID: PMC8699482 DOI: 10.3390/cells10123379] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 01/05/2023] Open
Abstract
Methylene blue (MB), as the first fully man-made medicine, has a wide range of clinical applications. Apart from its well-known applications in surgical staining, malaria, and methemoglobinemia, the anti-oxidative properties of MB recently brought new attention to this century-old drug. Mitochondrial dysfunction has been observed in systematic aging that affects many different tissues, including the brain and skin. This leads to increaseding oxidative stress and results in downstream phenotypes under age-related conditions. MB can bypass Complex I/III activity in mitochondria and diminish oxidative stress to some degree. This review summarizes the recent studies on the applications of MB in treating age-related conditions, including neurodegeneration, memory loss, skin aging, and a premature aging disease, progeria.
Collapse
|
10
|
Sukhorukov VS, Mudzhiri NM, Voronkova AS, Baranich TI, Glinkina VV, Illarioshkin SN. Mitochondrial Disorders in Alzheimer's Disease. BIOCHEMISTRY (MOSCOW) 2021; 86:667-679. [PMID: 34225590 DOI: 10.1134/s0006297921060055] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease is the most common age-related neurodegenerative disease. Understanding of its etiology and pathogenesis is constantly expanding. Thus, the increasing attention of researchers is directed to the study of the role of mitochondrial disorders. In addition, in recent years, the concept of Alzheimer's disease as a stress-induced disease has begun to form more and more actively. The stress-induced damage to the neuronal system can trigger a vicious circle of pathological processes, among which mitochondrial dysfunctions have a significant place, since mitochondria represent a substantial component in the anti-stress activity of the cell. The study of mitochondrial disorders in Alzheimer's disease is relevant for at least two reasons: first, as important pathogenetic component in this disease; second, due to vital role of mitochondria in formation of the body resistance to various conditions, including stressful ones, throughout the life. This literature review analyzes the results of a number of recent studies assessing potential significance of the mitochondrial disorders in Alzheimer's disease. The probable mechanisms of mitochondrial disorders associated with the development of this disease are considered: bioenergetic dysfunctions, changes in mitochondrial DNA (including assessment of the significance of its haplogroup features), disorders in the dynamics of these organelles, oxidative damage to calcium channels, damage to MAM complexes (membranes associated with mitochondria; mitochondria-associated membranes), disruptions of the mitochondrial quality control system, mitochondrial permeability, etc. The issues of the "primary" or "secondary" mitochondrial damage in Alzheimer's disease are discussed. Potentials for the development of new methods for diagnosis and therapy of mitochondrial disorders in Alzheimer's disease are considered.
Collapse
Affiliation(s)
| | | | | | - Tatiana I Baranich
- Research Center of Neurology, Moscow, 125367, Russia.,Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, 117997, Russia
| | - Valeria V Glinkina
- Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, 117997, Russia
| | | |
Collapse
|