1
|
Alrasheed AS, Aljahdali TA, Alghafli IA, Alghafli GA, Almuslim MF, AlMohish NM, Alabdali MM. Safety and Efficacy of Stem Cell Therapy in Ischemic Stroke: A Comprehensive Systematic Review and Meta-Analysis. J Clin Med 2025; 14:2118. [PMID: 40142929 PMCID: PMC11943215 DOI: 10.3390/jcm14062118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Although recent advancements in ischemic stroke management have reduced associated mortality rates, there remains a pressing need for more reliable, efficacious, and well-tolerated therapeutic approaches due to the narrow therapeutic window of current treatment approaches. The current meta-analysis sought to evaluate the safety and efficacy of stem cell-based therapeutic options for patients with ischemic stroke. Methods: PubMed, Web of Science, and Cochrane library databases were searched to retrieve randomized controlled trials (RCTs) evaluating the efficacy and safety of stem cell therapy (SCT) in ischemic stroke patients. Key outcomes included the National Institutes of Health Stroke Scale (NIHSS), modified Rankin Scale (mRS), Barthel Index (BI), Fugl-Meyer Assessment (FMA), infarct size, and safety profile. The random effects model with the continuous method was used to calculate the pooled effect size in Review Manager 5.4.1, and subgroup analyses were performed based on demographics, stroke duration, and SCT delivery protocols. Results: A total of 18 RCTs involving 1026 patients were analyzed, with 538 in the treatment group and 488 in the control group. The mean change in NIHSS score was comparable between groups [MD = -0.80; 95% CI: -2.25, 0.65, p < 0.0001]. However, SCT showed better outcomes in mRS [MD = -0.56; 95% CI: -0.76, -0.35, p = 0.30] and BI scores [MD = 12.00; 95% CI: 4.00, 20.00, p = 0.007]. Additionally, the mean change in FMA score was significantly greater with SCT [MD = 18.16; 95% CI: 6.58, 29.75, p = 0.03]. The mean change in infarct volume also favored stem cell therapy [MD = 8.89; 95% CI: -5.34, 23.12, p = 0.08]. The safety profile was favorable, with adverse event rates comparable to or lower than controls. Conclusions: SCT offers a safe and effective approach to improving functional outcomes in stroke patients, particularly with early intervention. These findings highlight the potential of SCT in ischemic stroke rehabilitation while underscoring the need for standardized protocols and long-term safety evaluation.
Collapse
Affiliation(s)
| | - Tala Abdullah Aljahdali
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia;
| | | | - Ghadeer Aqeel Alghafli
- College of Applied Medical Sciences, Nursing Department, King Faisal University, Al Ahsa 31982, Saudi Arabia; (G.A.A.); (M.F.A.)
| | - Majd Fouad Almuslim
- College of Applied Medical Sciences, Nursing Department, King Faisal University, Al Ahsa 31982, Saudi Arabia; (G.A.A.); (M.F.A.)
| | - Noor Mohammad AlMohish
- Neurology Department, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Khobar 31441, Saudi Arabia;
| | - Majed Mohammad Alabdali
- Neurology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Khobar 31441, Saudi Arabia;
| |
Collapse
|
2
|
Chen S, Han C, Shi Z, Guan X, Cheng L, Wang L, Zou W, Liu J. Umbilical mesenchymal stem cells mitigate T-cell compartments shift and Th17/Treg imbalance in acute ischemic stroke via mitochondrial transfer. Stem Cell Res Ther 2025; 16:134. [PMID: 40075467 PMCID: PMC11905603 DOI: 10.1186/s13287-025-04224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Acute ischemic stroke (AIS) initiates secondary injuries that worsen neurological damage and hinder recovery. While peripheral immune responses play a key role in stroke outcomes, clinical results from immunotherapy have been suboptimal, with limited focus on T-cell dynamics. Umbilical mesenchymal stem cells (UMSCs) offer therapeutic potential due to their immunomodulatory properties. They can regulate immune responses and reduce neuroinflammation, potentially enhancing recovery by fostering a pro-regenerative peripheral immune environment. However, the effect of UMSCs on T-cell dynamics in AIS remains underexplored. This study investigates T-cell dynamics following AIS and examines how UMSCs may mitigate immune dysregulation to develop better treatment strategies. METHODS AIS patients (NIHSS scores 0-15) were recruited within 72 h of stroke onset, with peripheral blood samples collected on Day 0 (enrollment) and Day 7. T-cell compartments were identified by flow cytometry, and plasma cytokine levels were quantified using a cytometric bead array (CBA). Mitochondria in UMSCs were labeled with MitoTracker. Peripheral blood mononuclear cells from patients were isolated, treated with lipopolysaccharide (LPS), and cocultured with UMSCs in both direct contact and Transwell systems. Flow cytometry, CBA, RT-qPCR, and immunofluorescence assays were used to detect T-cell compartments, gene expression markers for helper T (Th) cell differentiation, cytokine profiles, mitochondrial transfer, reactive oxygen species (ROS) production, and mitochondrial membrane potential. Additionally, mitochondrial DNA in UMSCs was depleted. The effects of UMSCs and mitochondria-depleted UMSCs on ischemic stroke mice were compared through behavioral assessments and analysis of the peripheral immune microenvironment. RESULTS In AIS, T-cell compartments underwent a phenotypic shift from naïve to effector or memory states, with a specific increase in Th17 cells and a decrease in regulatory T cells, leading to alterations in T-cell-mediated immune functions. In an ex vivo co-culture system, LPS stimulation further amplified these disparities, inducing mitochondrial dysfunction and oxidative stress in T cells. Notably, UMSCs restored mitochondrial function and reversed the shift in T-cell compartments through mitochondrial transfer. Critically, UMSC treatment significantly improved both neurological deficits and peripheral immune disorders in ischemic stroke mice, whereas mitochondria-depleted UMSCs failed to produce this effect. CONCLUSIONS Our comprehensive insights into the key attributes of T-cell compartments in acute ischemic stroke and the immune regulatory mechanisms of UMSCs provide a crucial theoretical foundation for understanding peripheral immune disorders in ischemic stroke and the therapeutic potential of UMSC treatment.
Collapse
Affiliation(s)
- Shuna Chen
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Chao Han
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
- College of Integrated Chinese and Western Medicine, Dalian Medical University, Dalian, People's Republic of China
| | - Zihan Shi
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
- College of Integrated Chinese and Western Medicine, Dalian Medical University, Dalian, People's Republic of China
| | - Xin Guan
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
| | - Liyuan Cheng
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
- College of Integrated Chinese and Western Medicine, Dalian Medical University, Dalian, People's Republic of China
| | - Wei Zou
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China.
| |
Collapse
|
3
|
Greșiță A, Hermann DM, Boboc IKS, Doeppner TR, Petcu E, Semida GF, Popa-Wagner A. Glial Cell Reprogramming in Ischemic Stroke: A Review of Recent Advancements and Translational Challenges. Transl Stroke Res 2025:10.1007/s12975-025-01331-7. [PMID: 39904845 DOI: 10.1007/s12975-025-01331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
Ischemic stroke, the second leading cause of death worldwide and the leading cause of long-term disabilities, presents a significant global health challenge, particularly in aging populations where the risk and severity of cerebrovascular events are significantly increased. The aftermath of stroke involves neuronal loss in the infarct core and reactive astrocyte proliferation, disrupting the neurovascular unit, especially in aged brains. Restoring the balance between neurons and non-neuronal cells within the perilesional area is crucial for post-stroke recovery. The aged post-stroke brain mounts a fulminant proliferative astroglial response, leading to gliotic scarring that prevents neural regeneration. While countless therapeutic techniques have been attempted for decades with limited success, alternative strategies aim to transform inhibitory gliotic tissue into an environment conducive to neuronal regeneration and axonal growth through genetic conversion of astrocytes into neurons. This concept gained momentum following discoveries that in vivo direct lineage reprogramming in the adult mammalian brain is a feasible strategy for reprogramming non-neuronal cells into neurons, circumventing the need for cell transplantation. Recent advancements in glial cell reprogramming, including transcription factor-based methods with factors like NeuroD1, Ascl1, and Neurogenin2, as well as small molecule-induced reprogramming and chemical induction, show promise in converting glial cells into functional neurons. These approaches leverage the brain's intrinsic plasticity for neuronal replacement and circuit restoration. However, applying these genetic conversion therapies in the aged, post-stroke brain faces significant challenges, such as the hostile inflammatory environment and compromised regenerative capacity. There is a critical need for safe and efficient delivery methods, including viral and non-viral vectors, to ensure targeted and sustained expression of reprogramming factors. Moreover, addressing the translational gap between preclinical successes and clinical applications is essential, emphasizing the necessity for robust stroke models that replicate human pathophysiology. Ethical considerations and biosafety concerns are critically evaluated, particularly regarding the long-term effects and potential risks of genetic reprogramming. By integrating recent research findings, this comprehensive review provides an in-depth understanding of the current landscape and future prospects of genetic conversion therapy for ischemic stroke rehabilitation, highlighting the potential to enhance personalized stroke management and regenerative strategies through innovative approaches.
Collapse
Affiliation(s)
- Andrei Greșiță
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Dirk M Hermann
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147, Essen, Germany
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Ianis Kevyn Stefan Boboc
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
| | - Eugen Petcu
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, 11568, USA
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Ghinea Flavia Semida
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147, Essen, Germany.
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| |
Collapse
|
4
|
Wu S, Chu X, Lv G, Gao J, Huang Y, Li H, Jiang X, Liu Y, Zhang J, Fang X, Yao Z, Bu W. Mesenchymal Stem Cells With Polydopamine-Coated NaGdF 4 Nanoparticles with Ca 2+ Chelation Ability for Ischemic Stroke Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416020. [PMID: 39887461 DOI: 10.1002/adma.202416020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/21/2024] [Indexed: 02/01/2025]
Abstract
Mesenchymal stem cells (MSCs) transplantation is a promising therapeutic strategy for ischemic stroke. However, the survival of transplanted MSCs is often compromised by the excessive levels of reactive oxygen species (ROS) and calcium ions (Ca2+) in the ischemic microenvironment following blood flow occlusion. In this study, a protective strategy is developed using functional nanomaterials to escort and shield MSCs. Specifically, NaGdF4@PDA-ALD nanoparticles (NPANs) are synthesized, featuring a NaGdF4 core coated with polydopamine (PDA) for ROS scavenging and further modified with alendronate sodium (ALD) for Ca2+ chelation. The internalization of NPANs by MSCs protected them from oxidative damage and calcium overload, thereby promoting their viability and functionality. Furthermore, NaGdF4 generated T1 signal enhancement, enabling in vivo tracking of MSCs via magnetic resonance imaging. The NPANs-treated MSCs demonstrated improved survival and migration to the ischemic region, promoting blood flow restoration and angiogenesis. These findings confirm the feasibility of employing functional nanoparticles to augment MSCs-based therapies, offering a promising strategy to improve their therapeutic efficacy in ischemic stroke treatment.
Collapse
Affiliation(s)
- Shiman Wu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xu Chu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Guanglei Lv
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Jiahao Gao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yuxin Huang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Yanyan Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Jiawen Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiangming Fang
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu, 214023, P. R. China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Wenbo Bu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
5
|
Mulia GJ, Anna N, Wu JCC, Ma HP, Chiang YH, Ou JC, Chen KY. Stem Cell-Based Therapies via Different Administration Route for Stroke: A Meta-analysis of Comparative Studies. Cell Transplant 2025; 34:9636897251315121. [PMID: 39925239 PMCID: PMC11808770 DOI: 10.1177/09636897251315121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Stroke, a neurological condition from compromised cerebral blood perfusion, remains a major global cause of mortality and disability. Conventional therapies like tissue plasminogen activator are limited by narrow therapeutic windows and potential adverse effects, highlighting the urgency for novel treatments. Stem cell-based therapies, with their neuroprotective and regenerative properties, present a promising yet highly diverse alternative. By conducting literature search and data extraction from the PubMed, Embase, and Cochrane databases, this meta-analysis assessed the clinical efficacy and safety of stem cell-based therapies administered via intravenous (IV) and non-IV routes in 17 studies with stroke patients. Primary outcomes included the National Institute of Health Stroke Scale (NIHSS), Barthel Index (BI), and modified Rankin Scale (mRS), while secondary outcomes included mortality and adverse events. Results demonstrated significant improvements in NIHSS, BI, and mRS scores, particularly in non-IV groups within 6- and 12-month follow-ups, suggesting delayed but enhanced therapeutic efficacy. Mortality was reduced in both IV and non-IV groups, indicating treatment safety. Adverse events, categorized into neurological and systemic complications, showed no significant differences between intervention and control groups, further emphasizing the safety of stem cell therapies. Non-IV routes showed more long-term benefits, potentially due to enhanced cell delivery and integration. These findings demonstrate the potential of stem cell therapies to improve functional recovery and survival in stroke patients, regardless of administration route. However, the delayed response underscores the need for extended follow-up in clinical applications. Further research is required to standardize treatment protocols, optimize cell types and doses, and address patient-specific factors to integrate stem cell therapies into routine clinical practice.
Collapse
Affiliation(s)
- Gabriella Jeanne Mulia
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei
| | - Novelia Anna
- Department of Biotechnology, Indonesia International Institute for Life Sciences, East Jakarta, Indonesia
| | - John Chung-Che Wu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei
- Research Center for Neuroscience, Taipei Medical University, Taipei
- Taipei Neuroscience Institute, Taipei Medical University, Taipei
| | - Hon-Ping Ma
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei
- Department of Emergency medicine, Shuang Ho Hospital, Taipei Medical University, Taipei
| | - Yung-Hsiao Chiang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei
- Research Center for Neuroscience, Taipei Medical University, Taipei
- Taipei Neuroscience Institute, Taipei Medical University, Taipei
| | - Ju-Chi Ou
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei
- Research Center for Neuroscience, Taipei Medical University, Taipei
| | - Kai-Yun Chen
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei
- Research Center for Neuroscience, Taipei Medical University, Taipei
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
6
|
Wang Y, Yuan T, Lyu T, Zhang L, Wang M, He Z, Wang Y, Li Z. Mechanism of inflammatory response and therapeutic effects of stem cells in ischemic stroke: current evidence and future perspectives. Neural Regen Res 2025; 20:67-81. [PMID: 38767477 PMCID: PMC11246135 DOI: 10.4103/1673-5374.393104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 11/21/2023] [Indexed: 05/22/2024] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide, with an increasing trend and tendency for onset at a younger age. China, in particular, bears a high burden of stroke cases. In recent years, the inflammatory response after stroke has become a research hotspot: understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment. This review summarizes several major cells involved in the inflammatory response following ischemic stroke, including microglia, neutrophils, monocytes, lymphocytes, and astrocytes. Additionally, we have also highlighted the recent progress in various treatments for ischemic stroke, particularly in the field of stem cell therapy. Overall, understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes. Stem cell therapy may potentially become an important component of ischemic stroke treatment.
Collapse
Affiliation(s)
- Yubo Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tingli Yuan
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
| | - Tianjie Lyu
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiying He
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yongjun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Zixiao Li
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| |
Collapse
|
7
|
Kawaguchi T, Mori T, Adachi K, Fujii J, Maegaki Y, Obata F. Effects of Muse Cell on a Mouse Model With Acute Encephalopathy. Brain Behav 2025; 15:e70242. [PMID: 39829154 PMCID: PMC11743977 DOI: 10.1002/brb3.70242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/28/2024] [Accepted: 12/14/2024] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Acute encephalopathy (AE) in childhood due to a viral infection causes convulsions and altered consciousness, leading to severe sequelae and death. Among the four types of AE, cytokine storm-induced AE is the most severe and causes serious damage to the brain. Moreover, a fundamental treatment for AE has not been established yet. Recently, it has been shown that the administration of multilineage-differentiating stress-enduring (Muse) cells, a population of mesenchymal stem cells, improves symptoms in various types of brain injuries when administered in the subacute phase (1-7 days after brain damage). We aimed to examine the effects of Muse cells in a cytokine storm-induced AE animal model using immunocompromised nonobese diabetic/severe combined immunodeficiency (NOD/SCID) neonatal mice. METHODS We established a modified protocol to induce AE-like symptoms in NOD/SCID. Then, Muse cells were injected at an acute phase (2-4 h after hyperthermia treatment). RESULTS Injection of Muse cells significantly improved body weight gain 1 day after treatment and the survival ratio for 3 weeks. CONCLUSION These effects could be a result of the direct and/or indirect upregulation of IL-10, an anti-inflammatory cytokine, in the Muse cell-treated brain. Although non-Muse cells, a residual cell population in the bone marrow after isolating Muse cells, also improved some symptoms, their effects were weaker than those of Muse cells. Our results indicate that the injection of Muse cells in the acute phase has an effect on AE, suggesting that they exert their therapeutic effects not only in the subacute phase but also in the acute phase.
Collapse
Affiliation(s)
- Tatsuya Kawaguchi
- Division of Child Neurology, Department of Brain and Neurosciences, Faculty of MedicineTottori UniversityYonagoJapan
- Department of Biological Regulation, School of Health Science, Faculty of MedicineTottori UniversityYonagoJapan
- Department of PediatricsNara Medical University HospitalKashiharaJapan
| | - Tetsuji Mori
- Department of Biological Regulation, School of Health Science, Faculty of MedicineTottori UniversityYonagoJapan
| | - Kaori Adachi
- Research Initiative Center, Organization for Research Initiative and PromotionTottori UniversityYonagoJapan
| | - Jun Fujii
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of MedicineTottori UniversityYonagoJapan
| | - Yoshihiro Maegaki
- Division of Child Neurology, Department of Brain and Neurosciences, Faculty of MedicineTottori UniversityYonagoJapan
| | - Fumiko Obata
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of MedicineTottori UniversityYonagoJapan
| |
Collapse
|
8
|
Cao Y, Wang D, Zhou D. MSC Promotes the Secretion of Exosomal lncRNA KLF3-AS1 to Regulate Sphk1 Through YY1-Musashi-1 Axis and Improve Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2024; 61:10462-10480. [PMID: 38735900 DOI: 10.1007/s12035-024-04150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 03/11/2024] [Indexed: 05/14/2024]
Abstract
Stroke remains the 3rd leading cause of long-term disability globally. Over the past decade, mesenchymal stem cell (MSC) transplantation has been proven as an effective therapy for ischemic stroke. However, the mechanism of MSC-derived exosomal lncRNAs during cerebral ischemia/reperfusion (I/R) remains ambiguous. The oxygen-glucose deprivation/reoxygenation (OGD/R) and middle cerebral artery occlusion (MCAO) rat model were generated. MSCs were isolated and characterized by flow cytometry and histochemical staining, and MSC exosomes were purified and characterized by transmission electron microscopy, flow cytometry and Western blot. Western blot, RT-qPCR and ELISA assay were employed to examine the expression or secretion of key molecules. CCK-8 and TUNEL assays were used to assess cell viability and apoptosis. RNA immunoprecipitation and RNA pull-down were used to investigate the direct association between krüppel-like factor 3 antisense RNA 1 (KLF3-AS1) and musashi-1(MSI1). Yin Yang 1 (YY1)-mediated transcriptional regulation was assessed by chromatin immunoprecipitation and luciferase assays. The histological changes and immunoreactivity of key molecules in brain tissues were examined by H&E and immunohistochemistry. MSCs were successfully isolated and exhibited directionally differential potentials. MSC exosomal KLF3-AS1 alleviated OGD/R-induced inflammation in SK-N-SH and SH-SY5Y cells via modulating Sphk1. Mechanistical studies showed that MSI1 positively regulated KLF3-AS1 expression through its direct binding to KLF3-AS1. YY1 was identified as a transcription activator of MSI1 in MSCs. Functionally, YY1/MSI1 axis regulated the release of MSC exosomal KLF3-AS1 to modulate sphingosine kinase 1 (Sphk1)/NF-κB pathway, thereby ameliorating OGD/R- or cerebral I/R-induced injury. MSCs promote the release of exosomal KLF3-AS1 to regulate Sphk1 through YY1/MSI axis and improve cerebral I/R injury.
Collapse
Affiliation(s)
- Yu Cao
- Department of Comprehensive Surgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410000, Hunan Province, People's Republic of China
| | - Daodao Wang
- Department of Neurosurgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410000, Hunan Province, People's Republic of China
| | - Dingzhou Zhou
- Department of Neurosurgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410000, Hunan Province, People's Republic of China.
| |
Collapse
|
9
|
Rust R, Nih LR, Liberale L, Yin H, El Amki M, Ong LK, Zlokovic BV. Brain repair mechanisms after cell therapy for stroke. Brain 2024; 147:3286-3305. [PMID: 38916992 PMCID: PMC11449145 DOI: 10.1093/brain/awae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Cell-based therapies hold great promise for brain repair after stroke. While accumulating evidence confirms the preclinical and clinical benefits of cell therapies, the underlying mechanisms by which they promote brain repair remain unclear. Here, we briefly review endogenous mechanisms of brain repair after ischaemic stroke and then focus on how different stem and progenitor cell sources can promote brain repair. Specifically, we examine how transplanted cell grafts contribute to improved functional recovery either through direct cell replacement or by stimulating endogenous repair pathways. Additionally, we discuss recently implemented preclinical refinement methods, such as preconditioning, microcarriers, genetic safety switches and universal (immune evasive) cell transplants, as well as the therapeutic potential of these pharmacologic and genetic manipulations to further enhance the efficacy and safety of cell therapies. By gaining a deeper understanding of post-ischaemic repair mechanisms, prospective clinical trials may be further refined to advance post-stroke cell therapy to the clinic.
Collapse
Affiliation(s)
- Ruslan Rust
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
| | - Lina R Nih
- Department of Brain Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Mohamad El Amki
- Department of Neurology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Lin Kooi Ong
- School of Health and Medical Sciences & Centre for Health Research, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
10
|
Gordon J, Borlongan CV. An update on stem cell therapy for stroke patients: Where are we now? J Cereb Blood Flow Metab 2024; 44:1469-1479. [PMID: 38639015 PMCID: PMC11418600 DOI: 10.1177/0271678x241227022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 04/20/2024]
Abstract
With a foundation built upon initial work from the 1980s demonstrating graft viability in cerebral ischemia, stem cell transplantation has shown immense promise in promoting survival, enhancing neuroprotection and inducing neuroregeneration, while mitigating both histological and behavioral deficits that frequently accompany ischemic stroke. These findings have led to a number of clinical trials that have thoroughly supported a strong safety profile for stem cell therapy in patients but have generated variable efficacy. As preclinical evidence continues to expand through the investigation of new cell lines and optimization of stem cell delivery, it remains critical for translational models to adhere to the protocols established through basic scientific research. With the recent shift in approach towards utilization of stem cells as a conjunctive therapy alongside standard thrombolytic treatments, key issues including timing, route of administration, and stem cell type must each be appropriately translated from the laboratory in order to resolve the question of stem cell efficacy for cerebral ischemia that ultimately will enhance therapeutics for stroke patients towards improving quality of life.
Collapse
Affiliation(s)
- Jonah Gordon
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
11
|
Mohamed GA, Lench DH, Grewal P, Rosenberg M, Voeks J. Stem cell therapy: a new hope for stroke and traumatic brain injury recovery and the challenge for rural minorities in South Carolina. Front Neurol 2024; 15:1419867. [PMID: 39184380 PMCID: PMC11342809 DOI: 10.3389/fneur.2024.1419867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024] Open
Abstract
Stroke and traumatic brain injury (TBI) are a significant cause of death and disability nationwide. Both are considered public health concerns in rural communities in the state of South Carolina (SC), particularly affecting the African American population resulting in considerable morbidity, mortality, and economic burden. Stem cell therapy (SCT) has emerged as a potential intervention for both diseases with increasing research trials showing promising results. In this perspective article, the authors aim to discuss the current research in the field of SCT, the results of early phase trials, and the utilization of outcome measures and biomarkers of recovery. We searched PubMed from inception to December 2023 for articles on stem cell therapy in stroke and traumatic brain injury and its impact on rural communities, particularly in SC. Early phase trials of SCT in Stroke and Traumatic Brain injury yield promising safety profile and efficacy results, but the findings have not yet been consistently replicated. Early trials using mesenchymal stem cells for stroke survivors showed safety, feasibility, and improved functional outcomes using broad and domain-specific outcome measures. Neuroimaging markers of recovery such as Functional Magnetic Resonance Imaging (fMRI) and electroencephalography (EEG) combined with neuromodulation, although not widely used in SCT research, could represent a breakthrough when evaluating brain injury and its functional consequences. This article highlights the role of SCT as a promising intervention while addressing the underlying social determinants of health that affect therapeutic outcomes in relation to rural communities such as SC. It also addresses the challenges ethical concerns of stem cell sourcing, the high cost of autologous cell therapies, and the technical difficulties in ensuring transplanted cell survival and strategies to overcome barriers to clinical trial enrollment such as the ethical concerns of stem cell sourcing, the high cost of autologous cell therapies, and the technical difficulties in ensuring transplanted cell survival and equitable healthcare.
Collapse
Affiliation(s)
- Ghada A. Mohamed
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | | | | | | | | |
Collapse
|
12
|
Liu X, Jia X. Neuroprotection of Stem Cells Against Ischemic Brain Injury: From Bench to Clinic. Transl Stroke Res 2024; 15:691-713. [PMID: 37415004 PMCID: PMC10771544 DOI: 10.1007/s12975-023-01163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 07/08/2023]
Abstract
Neurological injuries can have numerous debilitating effects on functional status including sensorimotor deficits, cognitive impairment, and behavioral symptoms. Despite the disease burden, treatment options remain limited. Current pharmacological interventions are targeted at symptom management but are ineffective in reversing ischemic brain damage. Stem cell therapy for ischemic brain injury has shown promising preclinical and clinical results and has attracted attention as a potential therapeutic option. Various stem cell sources (embryonic, mesenchymal/bone marrow, and neural stem cells) have been investigated. This review provides an overview of the advances made in our understanding of the various types of stem cells and progress made in the use of these stem cells for the treatment of ischemic brain injuries. In particular, the use of stem cell therapy in global cerebral ischemia following cardiac arrest and in focal cerebral ischemia after ischemic stroke are discussed. The proposed mechanisms of stem cells' neuroprotective effects in animal models (rat/mice, pig/swine) and other clinical studies, different routes of administration (intravenous/intra-arterial/intracerebroventricular/intranasal/intraperitoneal/intracranial) and stem cell preconditioning are discussed. Much of the promising data on stem cell therapies after ischemic brain injury remains in the experimental stage and several limitations remain unsettled. Future investigation is needed to further assess the safety and efficacy and to overcome the remaining obstacles.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
13
|
Brooks B, D'Egidio F, Borlongan MC, Borlongan MC, Lee JY. Stem cell grafts enhance endogenous extracellular vesicle expression in the stroke brain. Brain Res Bull 2024; 214:110999. [PMID: 38851436 DOI: 10.1016/j.brainresbull.2024.110999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Endogenous brain repair occurs following an ischemic stroke but is transient, thus unable to fully mount a neuroprotective response against the evolving secondary cell death. Finding a treatment strategy that may render robust and long-lasting therapeutic effects stands as a clinically relevant therapy for stroke. Extracellular vesicles appear to be upregulated after stroke, which may represent a candidate target for neuroprotection. In this study, we probed whether transplanted stem cells could enhance the expression of extracellular vesicles to afford stable tissue remodeling in the ischemic stroke brain. Aged rats were initially exposed to the established ischemic stroke model of middle cerebral artery occlusion then received intravenous delivery of either bone marrow-derived mesenchymal stem cell transplantation or vehicle. A year later, the animals were assayed for brain damage, inflammation, and extracellular vesicle expression. Our findings revealed that while core infarction was not reduced, the stroke animals transplanted with stem cells displayed a significant reduction in peri-infarct cell loss that coincided with downregulated Iba1-labeled inflammatory cells and upregulated CD63-positive extracellular vesicles that appeared to be co-localized with GFAP-positive astrocytes. Interestingly, grafted stem cells were not detected at one year post-transplantation period, suggesting that the extracellular vesicles likely originated within the host brain. That long-lasting functional benefits persisted in the absence of surviving transplanted stem cells, but with upregulation of endogenous extracellular vesicles, advances the concept that transplantation of stem cells acutely after stroke propels host extracellular vesicles to the ischemic brain, altogether promoting chronic brain remodeling.
Collapse
Affiliation(s)
- Beverly Brooks
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, United States
| | - Francesco D'Egidio
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, United States
| | - Maximillian C Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, United States
| | - Mia C Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, United States
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, United States.
| |
Collapse
|
14
|
Chen X, Qian W, Zhang Y, Zhao P, Lin X, Yang S, Zhuge Q, Ni H. Ginsenoside CK cooperates with bone mesenchymal stem cells to enhance angiogenesis post-stroke via GLUT1 and HIF-1α/VEGF pathway. Phytother Res 2024. [PMID: 38990183 DOI: 10.1002/ptr.8235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 07/12/2024]
Abstract
The transplantation of bone marrow mesenchymal stem cells (MSCs) in stroke is hindered by the restricted rates of survival and differentiation. Ginsenoside compound K (CK), is reported to have a neuroprotective effect and regulate energy metabolism. We applied CK to investigate if CK could promote the survival of MSCs and differentiation into brain microvascular endothelial-like cells (BMECs), thereby alleviating stroke symptoms. Therefore, transwell and middle cerebral artery occlusion (MCAO) models were used to mimic oxygen and glucose deprivation (OGD) in vitro and in vivo, respectively. Our results demonstrated that CK had a good affinity for GLUT1, which increased the expression of GLUT1 and the production of ATP, facilitated the proliferation and migration of MSCs, and activated the HIF-1α/VEGF signaling pathway to promote MSC differentiation. Moreover, CK cooperated with MSCs to protect BMECs, promote angiogenesis and vascular density, enhance neuronal and astrocytic proliferation, thereby reducing infarct volume and consequently improving neurobehavioral outcomes. These results suggest that the synergistic effects of CK and MSCs could potentially be a promising strategy for stroke.
Collapse
Affiliation(s)
- Xijun Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenqi Qian
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peiqi Zhao
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangxiang Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Su Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoqi Ni
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
Xie J, Li C, Shi M. Correlation between marital status and the prognosis of older patients with cerebrovascular disease in intensive care units: A retrospective cohort study. Health Sci Rep 2024; 7:e2177. [PMID: 38915359 PMCID: PMC11194471 DOI: 10.1002/hsr2.2177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 05/08/2024] [Accepted: 05/26/2024] [Indexed: 06/26/2024] Open
Abstract
Background and Aims Marital status has been shown to be associated with mortality, but evidence in critically ill elder intensive care unit (ICU) patients with cerebrovascular diseases (CeVD) is limited. This study was to explore the correlation between marital status and the prognosis of patients with CeVD aged 65 years and over in the ICU. Methods In the present study, 3564 patients were enrolled in the Medical Information Mart for Intensive Care IV database (version 2.2). Patients were divided into four groups based on marital status: married, single, divorced, and widowed. The primary outcome was all-cause mortality as patients were followed up for 3-, 6-, 9-, and 12-month. All-cause mortality risk for patients with different marital status was compared. Univariate and multivariable logistic regression analyses, survival curves and stratified analyses were performed to determine the correlation between marital status and mortality in critically ill patients with CeVD aged ≥65 years. Results Of the patients, 51.2% (1825/3564) were married, followed by 23.8% (847/3564) were widowed, 18.2% (647/3564) were single, and 6.9% (245/3567) were divorced. Compared with the married, the unmarried had a higher proportion of female (p < 0.001), older (p < 0.001), and less proportion of mechanical ventilation (p = 0.045). Multivariate analyses showed that no differences were observed for mortality risk among different marital statuses (p > 0.05), while at late follow-up, widowed had a significance higher mortality risk than the married (9-month: odds ratio [OR]: 1.30, 95% confidence interval [CI]: 1.05-1.61, p = 0.02; 12-month: OR: 1.38, 95% CI: 1.12-1.71, p = 0.003). Stratified analyses indicated a stable correlation between marital status and 12-month mortality rate in sub-analysis for gender (p = 0.46) and age (p = 0.35). Conclusion Marital status is associated with long-term prognosis in older patients with CeVD admitted to ICU. Widowed people should receive more societal attention irrespective of sex or age.
Collapse
Affiliation(s)
- Jun Xie
- Department of RespirationFirst People's Hospital of Changzhou, Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Chong Li
- Department of RespirationFirst People's Hospital of Changzhou, Third Affiliated Hospital of Soochow UniversityChangzhouChina
- Changzhou Forth People's HospitalChangzhouChina
| | - Min Shi
- Department of GastroenterologyChangzhou Maternal and Child Health Care HospitalChangzhouChina
| |
Collapse
|
16
|
Maldonado VV, Pokharel S, Powell JG, Samsonraj RM. Phenotypic and Functional Characterization of Bovine Adipose-Derived Mesenchymal Stromal Cells. Animals (Basel) 2024; 14:1292. [PMID: 38731296 PMCID: PMC11083126 DOI: 10.3390/ani14091292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are increasingly trialed in cellular therapy applications in humans. They can also be applied to treat a range of diseases in animals, particularly in cattle to combat inflammatory conditions and aging-associated degenerative disorders. We sought to demonstrate the feasibility of obtaining MSCs from adipose tissue and characterizing them using established assays. METHODS Bovine adipose MSCs (BvAdMSCs) were isolated using in-house optimized tissue digestion protocols and characterized by performing a colony formation assay, cell growth assessments, cell surface marker analysis by immunocytochemistry and flow cytometry, osteogenic and adipogenic differentiation, and secretion of indoleamine 2,3-dioxygenease (IDO). RESULTS Our results demonstrate the feasibility of successful MSC isolation and culture expansion from bovine adipose tissues with characteristic features of colony formation, in vitro multilineage differentiation into osteogenic and adipogenic lineages, and cell surface marker expression of CD105, CD73, CD90, CD44, and CD166 with negative expression of CD45. BvAdMSCs secreted significant amounts of IDO with or without interferon-gamma stimulation, indicating ability for immunomodulation. CONCLUSIONS We report a viable approach to obtaining autologous adipose-derived MSCs that can be applied as potential adjuvant cell therapy for tissue repair and regeneration in cattle. Our methodology can be utilized by veterinary cell therapy labs for preparing MSCs for disease management in cattle.
Collapse
Affiliation(s)
- Vitali V. Maldonado
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (V.V.M.); (S.P.)
| | - Sriya Pokharel
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (V.V.M.); (S.P.)
| | - Jeremy G. Powell
- Department of Animal Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Rebekah M. Samsonraj
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (V.V.M.); (S.P.)
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
17
|
Kanemura Y, Yamamoto A, Katsuma A, Fukusumi H, Shofuda T, Kanematsu D, Handa Y, Sumida M, Yoshioka E, Mine Y, Yamaguchi R, Okada M, Igarashi M, Sekino Y, Shirao T, Nakamura M, Okano H. Human-Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Showed Neuronal Differentiation, Neurite Extension, and Formation of Synaptic Structures in Rodent Ischemic Stroke Brains. Cells 2024; 13:671. [PMID: 38667286 PMCID: PMC11048851 DOI: 10.3390/cells13080671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Ischemic stroke is a major cerebrovascular disease with high morbidity and mortality rates; however, effective treatments for ischemic stroke-related neurological dysfunction have yet to be developed. In this study, we generated neural progenitor cells from human leukocyte antigen major loci gene-homozygous-induced pluripotent stem cells (hiPSC-NPCs) and evaluated their therapeutic effects against ischemic stroke. hiPSC-NPCs were intracerebrally transplanted into rat ischemic brains produced by transient middle cerebral artery occlusion at either the subacute or acute stage, and their in vivo survival, differentiation, and efficacy for functional improvement in neurological dysfunction were evaluated. hiPSC-NPCs were histologically identified in host brain tissues and showed neuronal differentiation into vGLUT-positive glutamatergic neurons, extended neurites into both the ipsilateral infarct and contralateral healthy hemispheres, and synaptic structures formed 12 weeks after both acute and subacute stage transplantation. They also improved neurological function when transplanted at the subacute stage with γ-secretase inhibitor pretreatment. However, their effects were modest and not significant and showed a possible risk of cells remaining in their undifferentiated and immature status in acute-stage transplantation. These results suggest that hiPSC-NPCs show cell replacement effects in ischemic stroke-damaged neural tissues, but their efficacy is insufficient for neurological functional improvement after acute or subacute transplantation. Further optimization of cell preparation methods and the timing of transplantation is required to balance the efficacy and safety of hiPSC-NPC transplantation.
Collapse
Affiliation(s)
- Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka 540-0006, Japan; (A.Y.); (A.K.); (H.F.); (M.S.)
- Department of Neurosurgery, NHO Osaka National Hospital, Osaka 540-0006, Japan
| | - Atsuyo Yamamoto
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka 540-0006, Japan; (A.Y.); (A.K.); (H.F.); (M.S.)
| | - Asako Katsuma
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka 540-0006, Japan; (A.Y.); (A.K.); (H.F.); (M.S.)
| | - Hayato Fukusumi
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka 540-0006, Japan; (A.Y.); (A.K.); (H.F.); (M.S.)
| | - Tomoko Shofuda
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka 540-0006, Japan; (A.Y.); (A.K.); (H.F.); (M.S.)
| | - Daisuke Kanematsu
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka 540-0006, Japan; (A.Y.); (A.K.); (H.F.); (M.S.)
| | - Yukako Handa
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka 540-0006, Japan; (A.Y.); (A.K.); (H.F.); (M.S.)
| | - Miho Sumida
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka 540-0006, Japan; (A.Y.); (A.K.); (H.F.); (M.S.)
| | - Ema Yoshioka
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka 540-0006, Japan; (A.Y.); (A.K.); (H.F.); (M.S.)
| | - Yutaka Mine
- Department of Neurosurgery, NHO Tokyo Medical Center, Tokyo 152-8902, Japan;
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (R.Y.); (H.O.)
| | - Ryo Yamaguchi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (R.Y.); (H.O.)
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Masayasu Okada
- Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan;
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine, Graduate School of Medical, Dental Sciences Niigata University, Niigata 951-8510, Japan;
| | - Yuko Sekino
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| | | | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (R.Y.); (H.O.)
- Keio Regenerative Medicine Research Center, Keio University, Kawasaki 210-0821, Japan
| |
Collapse
|
18
|
Zhao J, Liu S, Xiang X, Zhu X. Versatile strategies for adult neurogenesis: avenues to repair the injured brain. Neural Regen Res 2024; 19:774-780. [PMID: 37843211 PMCID: PMC10664121 DOI: 10.4103/1673-5374.382224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/22/2023] [Accepted: 07/10/2023] [Indexed: 10/17/2023] Open
Abstract
Brain injuries due to trauma or stroke are major causes of adult death and disability. Unfortunately, few interventions are effective for post-injury repair of brain tissue. After a long debate on whether endogenous neurogenesis actually happens in the adult human brain, there is now substantial evidence to support its occurrence. Although neurogenesis is usually significantly stimulated by injury, the reparative potential of endogenous differentiation from neural stem/progenitor cells is usually insufficient. Alternatively, exogenous stem cell transplantation has shown promising results in animal models, but limitations such as poor long-term survival and inefficient neuronal differentiation make it still challenging for clinical use. Recently, a high focus was placed on glia-to-neuron conversion under single-factor regulation. Despite some inspiring results, the validity of this strategy is still controversial. In this review, we summarize historical findings and recent advances on neurogenesis strategies for neurorepair after brain injury. We also discuss their advantages and drawbacks, as to provide a comprehensive account of their potentials for further studies.
Collapse
Affiliation(s)
- Junyi Zhao
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Siyu Liu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Xianyuan Xiang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Xinzhou Zhu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong Province, China
| |
Collapse
|
19
|
Namestnikova DD, Cherkashova EA, Gumin IS, Chekhonin VP, Yarygin KN, Gubskiy IL. Estimation of the Ischemic Lesion in the Experimental Stroke Studies Using Magnetic Resonance Imaging (Review). Bull Exp Biol Med 2024; 176:649-657. [PMID: 38733482 DOI: 10.1007/s10517-024-06086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 05/13/2024]
Abstract
In translational animal study aimed at evaluation of the effectiveness of innovative methods for treating cerebral stroke, including regenerative cell technologies, of particular importance is evaluation of the dynamics of changes in the volume of the cerebral infarction in response to therapy. Among the methods for assessing the focus of infarction, MRI is the most effective and convenient tool for use in preclinical studies. This review provides a description of MR pulse sequences used to visualize cerebral ischemia at various stages of its development, and a detailed description of the MR semiotics of cerebral infarction. A comparison of various methods for morphometric analysis of the focus of a cerebral infarction, including systems based on artificial intelligence for a more objective measurement of the volume of the lesion, is also presented.
Collapse
Affiliation(s)
- D D Namestnikova
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E A Cherkashova
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I S Gumin
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - V P Chekhonin
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I L Gubskiy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia.
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
20
|
Namestnikova DD, Kovalenko DB, Pokusaeva IA, Chudakova DA, Gubskiy IL, Yarygin KN, Baklaushev VP. Mesenchymal stem cells in the treatment of ischemic stroke. КЛИНИЧЕСКАЯ ПРАКТИКА 2024; 14:49-64. [DOI: 10.17816/clinpract624157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Over the past two decades, multiple preclinical studies have shown that transplantation of mesenchymal stem cells leads to a pronounced positive effect in animals with experimental stroke. Based on the promising results of preclinical studies, several clinical trials on the transplantation of mesenchymal stem cells to stroke patients have also been conducted. In this review, we present and analyze the results of completed clinical trials dedicated to the mesenchymal stem cells transplantation in patients with ischemic stroke. According to the obtained results, it can be concluded that transplantation of mesenchymal stem cells is safe and feasible from the economic and biomedical point of view. For the further implementa-tion of this promising approach into the clinical practice, randomized, placebo-controlled, multicenter clinical trials are needed with a large sample of patients and optimized cell transplantation protocols and patient inclusion criteria. In this review we also discuss possi-ble strategies to enhance the effectiveness of cell therapy with the use of mesenchymal stem cells.
Collapse
Affiliation(s)
- Daria D. Namestnikova
- Federal Center of Brain Research and Neurotechnologies
- Pirogov Russian National Research Medical University
| | | | | | | | - Ilya L. Gubskiy
- Federal Center of Brain Research and Neurotechnologies
- Pirogov Russian National Research Medical University
| | | | - Vladimir P. Baklaushev
- Federal Center of Brain Research and Neurotechnologies
- Pirogov Russian National Research Medical University
- Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency
| |
Collapse
|
21
|
Primak AL, Skryabina MN, Dzhauari SS, Tkachuk VA, Karagyaur MN. [The secretome of mesenchymal stromal cells as a new hope in the treatment of acute brain tissue injuries]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:83-91. [PMID: 38512099 DOI: 10.17116/jnevro202412403283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Ischemic and hemorrhagic strokes, traumatic brain injury, bacterial and viral encephalitis, toxic and metabolic encephalopathies are very different pathologies. But, they have much more in common than it might seem at first glance. In this review, the authors propose to consider these brain pathologies from the point of view of the unity of their pathogenetic mechanisms and approaches to therapy. Particular attention is paid to promising therapeutic approaches, such as therapy using cells and their secretion products: an analysis of the accumulated experimental data, the advantages and limitations of these approaches in the treatment of brain damage was carried out. The review may be of interest both to specialists in the field of neurology, neurosurgery and neurorehabilitation, and to readers who want to learn more about the progress of regenerative biomedicine in the treatment of brain pathologies.
Collapse
Affiliation(s)
- A L Primak
- Lomonosov Moscow State University, Moscow, Russia
| | | | - S S Dzhauari
- Lomonosov Moscow State University, Moscow, Russia
| | - V A Tkachuk
- Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
22
|
Marín-Medina DS, Arenas-Vargas PA, Arias-Botero JC, Gómez-Vásquez M, Jaramillo-López MF, Gaspar-Toro JM. New approaches to recovery after stroke. Neurol Sci 2024; 45:55-63. [PMID: 37697027 PMCID: PMC10761524 DOI: 10.1007/s10072-023-07012-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
After a stroke, several mechanisms of neural plasticity can be activated, which may lead to significant recovery. Rehabilitation therapies aim to restore surviving tissue over time and reorganize neural connections. With more patients surviving stroke with varying degrees of neurological impairment, new technologies have emerged as a promising option for better functional outcomes. This review explores restorative therapies based on brain-computer interfaces, robot-assisted and virtual reality, brain stimulation, and cell therapies. Brain-computer interfaces allow for the translation of brain signals into motor patterns. Robot-assisted and virtual reality therapies provide interactive interfaces that simulate real-life situations and physical support to compensate for lost motor function. Brain stimulation can modify the electrical activity of neurons in the affected cortex. Cell therapy may promote regeneration in damaged brain tissue. Taken together, these new approaches could substantially benefit specific deficits such as arm-motor control and cognitive impairment after stroke, and even the chronic phase of recovery, where traditional rehabilitation methods may be limited, and the window for repair is narrow.
Collapse
Affiliation(s)
- Daniel S Marín-Medina
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Paula A Arenas-Vargas
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan C Arias-Botero
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuela Gómez-Vásquez
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuel F Jaramillo-López
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jorge M Gaspar-Toro
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
23
|
Wang X, Tian H, Yang X, Zhao H, Liang X, Li Y. Mesenchymal Stem Cells‐Derived Extracellular Vesicles in Orthopedic Diseases: Recent Advances and Therapeutic Potential. ADVANCED THERAPEUTICS 2023; 6. [DOI: 10.1002/adtp.202300193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 01/06/2025]
Abstract
AbstractEver since the first application of mesenchymal stem cell (MSC) transplantation treating human hematologic malignancies in 1995, MSC‐based treatments have demonstrated great therapeutic potential in clinical settings. However, only a few MSC‐based cell therapy products have been clinically approved. Accumulating evidence suggests that the beneficial effects of MSCs are mainly attributed to the release of paracrine factors or extracellular vesicles (EVs) rather than their mesodermal differentiation potential. Therefore, MSC‐derived EVs (MSC‐EVs), such as exosomes and microvesicles, have merged as promising alternatives to traditional cell‐based therapeutics in clinical practice. They offer several advantages such as better safety, lower immunogenicity, protection of cargoes from degradation, and the ability to overcome biological barriers. Moreover, there have been multiple clinical studies exploring the potential of MSC‐EVs for treating various diseases, including orthopedic disorders. However, there is no definitive “cure” for conditions such as osteoporosis and other bone disorders, but MSC‐EVs have displayed significant therapeutic potential for these orthopedic ailments. Therefore, the objective of this study is to conduct a systematic review of current knowledge related to MSC‐EVs and emphasize their potential application in treating orthopedic diseases, such as bone defects, osteoarthritis, osteoporosis, intervertebral disc degeneration, osteosarcoma, and osteoradionecrosis.
Collapse
Affiliation(s)
- Xinwen Wang
- Department of Foot and Ankle Surgery, Honghui Hospital Xi'an Jiaotong University Xi'an Shaanxi Province 710054 P. R. China
| | - Haodong Tian
- Department of Foot and Ankle Surgery, Honghui Hospital Xi'an Jiaotong University Xi'an Shaanxi Province 710054 P. R. China
| | - Xinquan Yang
- Department of Foot and Ankle Surgery, Honghui Hospital Xi'an Jiaotong University Xi'an Shaanxi Province 710054 P. R. China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital Xi'an Jiaotong University Xi'an Shaanxi Province 710054 P. R. China
| | - Xiaojun Liang
- Department of Foot and Ankle Surgery, Honghui Hospital Xi'an Jiaotong University Xi'an Shaanxi Province 710054 P. R. China
| | - Yi Li
- Department of Foot and Ankle Surgery, Honghui Hospital Xi'an Jiaotong University Xi'an Shaanxi Province 710054 P. R. China
| |
Collapse
|
24
|
Fullerton JL, Cosgrove CC, Rooney RA, Work LM. Extracellular vesicles and their microRNA cargo in ischaemic stroke. J Physiol 2023; 601:4907-4921. [PMID: 35421904 PMCID: PMC10952288 DOI: 10.1113/jp282050] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
Acute ischaemic stroke (AIS) is a leading cause of death and disability. MicroRNAs (miRNAs) are short non-coding RNAs which hold the potential to act as a novel biomarker in AIS. The majority of circulating miRNAs are actively encapsulated by extracellular vesicles (EVs) produced by many cells and organs endogenously. EVs released by mesenchymal stem cells (MSCs) have been extensively studied for their therapeutic potential. In health and disease, EVs are vital for intercellular communication, as the cargo within EVs can be exchanged between neighbouring cells or transported to distant sites. It is clear here from both current preclinical and clinical studies that AIS is associated with specific EV-derived miRNAs, including those transported via MSC-derived EVs. In addition, current studies provide evidence to show that modulating levels of specific EV-derived miRNAs in AIS provides a novel therapeutic potential of miRNAs in the treatment of stroke. Commonalities exist in altered miRNAs across preclinical and clinical studies. Of those EV-packaged miRNAs, miRNA-124 was described both as an EV-packaged biomarker and as a potential EV-loaded therapeutic in experimental models. Alterations of miRNA-17 family and miRNA-17-92 cluster were identified in preclinical, clinical and MSC-EV-mediated neuroprotection in experimental stroke. Finally, miRNA-30d and -30a were found to mediate therapeutic effect when overexpressed from MSC and implicated as a biomarker clinically. Combined, EV-derived miRNAs will further our understanding of the neuropathological processes triggered by AIS. In addition, this work will help determine the true clinical value of circulating EV-packaged miRNAs as biomarkers of AIS or as novel therapeutics in this setting.
Collapse
Affiliation(s)
- Josie L. Fullerton
- Institute of Cardiovascular and Medical Sciences College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Caitlin C. Cosgrove
- Institute of Cardiovascular and Medical Sciences College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Rebecca A. Rooney
- Institute of Cardiovascular and Medical Sciences College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Lorraine M. Work
- Institute of Cardiovascular and Medical Sciences College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
25
|
Kaur H, Sarmah D, Datta A, Borah A, Yavagal DR, Bhattacharya P. Stem cells alleviate OGD/R mediated stress response in PC12 cells following a co-culture: modulation of the apoptotic cascade through BDNF-TrkB signaling. Cell Stress Chaperones 2023; 28:1041-1051. [PMID: 36622548 PMCID: PMC10746664 DOI: 10.1007/s12192-022-01319-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/02/2022] [Accepted: 12/17/2022] [Indexed: 01/10/2023] Open
Abstract
Apoptosis mediated by endoplasmic reticulum (ER) stress plays a crucial role in several neurovascular disorders, including ischemia/reperfusion injury (I/R injury). Previous in vitro and in vivo studies have suggested that following I/R injury, ER stress is vital for mediating CCAT-enhancer-binding protein homologous protein (CHOP) and caspase-12-dependent apoptosis. However, its modulation in the presence of stem cells and the underlying mechanism of cytoprotection remains elusive. In vivo studies from our lab have reported that post-stroke endovascular administration of stem cells renders neuroprotection and regulates apoptosis mediated by ER stress. In the current study, a more robust in vitro validation has been undertaken to decipher the mechanism of stem cell-mediated cytoprotection. Results from our study have shown that oxygen-glucose deprivation/reoxygenation (OGD/R) potentiated ER stress and apoptosis in the pheochromocytoma 12 (PC12) cell line as evident by the increase of protein kinase R (PKR)-like ER kinase (p-PERK), p-Eukaryotic initiation factor 2α subunit (EIF2α), activation transcription factor 4 (ATF4), CHOP, and caspase 12 expressions. Following the co-culture of PC12 cells with MSCs, ER stress was significantly reduced, possibly via modulating the brain-derived neurotrophic factor (BDNF) signaling. Furthermore, inhibition of BDNF by inhibitor K252a abolished the protective effects of BDNF secreted by MSCs following OGD/R. Our study suggests that inhibition of ER stress-associated apoptotic pathway with MSCs co-culture following OGD/R may help to alleviate cellular injury and further substantiate the use of stem cells as a therapeutic modality toward neuroprotection following hypoxic injury or stroke in clinical settings.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
26
|
Namestnikova DD, Gubskiy IL, Cherkashova EA, Sukhinich KK, Melnikov PA, Gabashvili AN, Kurilo VV, Chekhonin VP, Gubsky LV, Yarygin KN. Therapeutic Efficacy and Migration of Mesenchymal Stem Cells after Intracerebral Transplantation in Rats with Experimental Ischemic Stroke. Bull Exp Biol Med 2023:10.1007/s10517-023-05822-1. [PMID: 37336809 DOI: 10.1007/s10517-023-05822-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 06/21/2023]
Abstract
We studied therapeutic efficacy and migration characteristics of mesenchymal stem cells isolated from the human placenta after their intracerebral (stereotactic) administration to rats with the experimental ischemic stroke. It was shown that cell therapy significantly improved animal survival rate and reduced the severity of neurological deficit. New data on the migration pathways of transplanted cells in the brain were obtained.
Collapse
Affiliation(s)
- D D Namestnikova
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I L Gubskiy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia.
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - E A Cherkashova
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K K Sukhinich
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - P A Melnikov
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A N Gabashvili
- National Research Technology University "MISiS", Moscow, Russia
| | - V V Kurilo
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V P Chekhonin
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L V Gubsky
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
27
|
Aabling RR, Alstrup T, Kjær EM, Poulsen KJ, Pedersen JO, Revenfeld AL, Møller BK, Eijken M. Reconstitution and post-thaw storage of cryopreserved human mesenchymal stromal cells: Pitfalls and optimizations for clinically compatible formulants. Regen Ther 2023; 23:67-75. [PMID: 37153832 PMCID: PMC10154666 DOI: 10.1016/j.reth.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction The regenerative and immunomodulatory properties of multipotent mesenchymal stromal cells (MSCs) make them an intriguing asset for therapeutic applications. An off-the-shelf approach, using pre-expanded cryopreserved allogenic MSCs, bypasses many practical difficulties of cellular therapy. Reconstitution of a MSC product away from cytotoxic cryoprotectants towards a preferred administration solution might be favorable for several indications. Variations in MSC handling accompanied by a non-standardized use of reconstitution solutions complicate a general clinical standardization of MSC cellular therapies. In this study, we aimed to identify a simple and clinically compatible approach for thawing, reconstitution, and post-thaw storage of cryopreserved MSCs. Methods Human adipose tissue-derived MSCs were expanded in human platelet lysate (hPL) supplemented culture medium and cryopreserved using a dimethyl sulfoxide (DMSO)-based cryoprotectant. Isotonic solutions (saline, Ringer's acetate and phosphate buffered saline (PBS)) with or without 2% human serum albumin (HSA) were used as thawing, reconstitution, and storage solutions. MSCs were reconstituted to 5 × 106 MSCs/mL for evaluating MSC stability. Total MSC numbers and viability were determined using 7-aminoactinomycin D (7-AAD) and flow cytometry. Results For thawing cryopreserved MSCs the presence of protein was proven to be essential. Up to 50% of MSCs were lost when protein-free thawing solutions were used. Reconstitution and post-thaw storage of MSCs in culture medium and widely used PBS demonstrated poor MSC stability (>40% cell loss) and viability (<80%) after 1 h of storage at room temperature. Reconstitution in simple isotonic saline appeared to be a good alternative for post-thaw storage, ensuring >90% viability with no observed cell loss for at least 4 h. Reconstitution of MSCs to low concentrations was identified as critical. Diluting MSCs to <105/mL in protein-free vehicles resulted in instant cell loss (>40% cell loss) and lower viability (<80%). Addition of clinical grade HSA could prevent cell loss during thawing and dilution. Conclusion This study identified a clinically compatible method for MSC thawing and reconstitution that ensures high MSC yield, viability, and stability. The strength of the method lies within the simplicity of implementation which offers an accessible way to streamline MSC therapies across different laboratories and clinical trials, improving standardization in this field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marco Eijken
- Corresponding author. Center of Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark.
| |
Collapse
|
28
|
Li Y, Huang J, Wang J, Xia S, Ran H, Gao L, Feng C, Gui L, Zhou Z, Yuan J. Human umbilical cord-derived mesenchymal stem cell transplantation supplemented with curcumin improves the outcomes of ischemic stroke via AKT/GSK-3β/β-TrCP/Nrf2 axis. J Neuroinflammation 2023; 20:49. [PMID: 36829224 PMCID: PMC9951499 DOI: 10.1186/s12974-023-02738-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Human umbilical cord-derived mesenchymal stem cell (hUC-MSC) engraftment is a promising therapy for acute ischemic stroke (AIS). However, the harsh ischemic microenvironment limits the therapeutic efficacy of hUC-MSC therapy. Curcumin is an anti-inflammatory agent that could improve inflammatory microenvironment. However, whether it enhances the neuroprotective efficacy of hUC-MSC transplantation is still unknown. In the present study, we investigated the therapeutic efficacy and the possible mechanism of combined curcumin and hUC-MSC treatment in AIS. METHODS Middle cerebral artery occlusion (MCAO) mice and oxygen glucose deprivation (OGD) microglia were administrated hUC-MSCs with or without curcumin. Neurological deficits assessment, brain water content and TTC were used to assess the therapeutic effects of combined treatment. To elucidate the mechanism, MCAO mice and OGD microglia were treated with AKT inhibitor MK2206, GSK3β activator sodium nitroprusside (SNP), GSK3β inhibitor TDZD-8 and Nrf2 gene knockout were used. Immunofluorescence, flow cytometric analysis, WB and RT-PCR were used to evaluate the microglia polarization and the expression of typical oxidative mediators, inflammatory cytokines and the AKT/GSK-3β/β-TrCP/Nrf2 pathway protein. RESULTS Compared with the solo hUC-MSC-grafted or curcumin groups, combined curcumin-hUC-MSC therapy significantly improved the functional performance outcomes, diminished the infarct volumes and the cerebral edema. The combined treatment promoted anti-inflammatory microglia polarization via Nrf2 pathway and decreased the expression of ROS, oxidative mediators and pro-inflammatory cytokines, while elevating the expression of the anti-inflammatory cytokines. Nrf2 knockout abolished the antioxidant stress and anti-inflammation effects mediated with combined treatment. Moreover, the combined treatment enhanced the phosphorylation of AKT and GSK3β, inhibited the β-TrCP nucleus translocation, accompanied with Nrf2 activation in the nucleus. AKT inhibitor MK2206 activated GSK3β and β-TrCP and suppressed Nrf2 phosphorylation in nucleus, whereas MK2206 with the GSK3β inhibitor TDZD-8 reversed these phenomena. Furthermore, combined treatment followed by GSK3β inhibition with TDZD-8 restricted β-TrCP nucleus accumulation, which facilitated Nrf2 expression. CONCLUSIONS We have demonstrated that combined curcumin-hUC-MSC therapy exerts anti-inflammation and antioxidant stress efficacy mediated by anti-inflammatory microglia polarization via AKT/GSK-3β/β-TrCP/Nrf2 axis and an improved neurological function after AIS.
Collapse
Affiliation(s)
- Yuan Li
- grid.410570.70000 0004 1760 6682Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038 China
| | - Jialu Huang
- grid.410570.70000 0004 1760 6682Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038 China
| | - Jie Wang
- grid.410570.70000 0004 1760 6682Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038 China
| | - Simin Xia
- grid.410570.70000 0004 1760 6682Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038 China
| | - Hong Ran
- grid.410570.70000 0004 1760 6682Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038 China
| | - Lenyu Gao
- grid.410570.70000 0004 1760 6682Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038 China ,grid.410570.70000 0004 1760 6682Department of Traditional Chinese Medicine and Rheumatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Chengjian Feng
- Department of Medical Engineering, 958th Hospital of the People’s Liberation Army, Chongqing, 400038 China
| | - Li Gui
- grid.410570.70000 0004 1760 6682Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038 China
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038, China.
| | - Jichao Yuan
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038, China.
| |
Collapse
|
29
|
Ercelen N, Karasu N, Kahyaoglu B, Cerezci O, Akduman RC, Ercelen D, Erturk G, Gulay G, Alpaydin N, Boyraz G, Monteleone B, Kural Z, Silek H, Temur S, Bingol CA. Clinical experience: Outcomes of mesenchymal stem cell transplantation in five stroke patients. Front Med (Lausanne) 2023; 10:1051831. [PMID: 36744151 PMCID: PMC9892908 DOI: 10.3389/fmed.2023.1051831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Stem cell therapy, which has promising results in acute disorders such as stroke, supports treatment by providing rehabilitation in the chronic stage patients. In acute stroke, thrombolytic medical treatment protocols are clearly defined in neurologic emergencies, but in neurologic patients who miss the "thrombolytic treatment intervention window," or in cases of hypoxic-ischemic encephalopathy, our hands are tied, and we are still unfortunately faced with hopeless clinical implementations. We consider mesenchymal stem cell therapy a viable option in these cases. In recent years, novel research has focused on neuro-stimulants and supportive and combined therapies for stroke. Currently, available treatment options are limited, and only certain patients are eligible for acute treatment. In the scope of our experience, five stroke patients were evaluated in this study, who was treated with a single dose of 1-2 × 106 cells/kg allogenic umbilical cord-mesenchymal stem cells (UC-MSCs) with the official confirmation of the Turkish Ministry of Health Stem Cell Commission. The patients were followed up for 12 months, and clinical outcomes are recorded. NIH Stroke Scale/Scores (NIHSS) decreased significantly (p = 0.0310), and the Rivermead Assessment Scale (RMA) increased significantly (p = 0.0234) for all patients at the end of the follow-up. All the patients were followed up for 1 year within a rehabilitation program. Major clinical outcome improvements were observed in the overall clinical conditions of the UC-MSC treatment patients. We observed improvement in the patients' upper extremity and muscle strength, spasticity, and fine motor functions. Considering recent studies in the literature together with our results, allogenic stem cell therapies are introduced as promising novel therapies in terms of their encouraging effects on physiological motor outcomes.
Collapse
Affiliation(s)
- Nesrin Ercelen
- Department of Medical Genetics, Faculty of Medicine, Üsküdar University, Istanbul, Türkiye,*Correspondence: Nesrin Ercelen,
| | - Nilgun Karasu
- Department of Medical Genetics, Faculty of Medicine, Üsküdar University, Istanbul, Türkiye
| | | | - Onder Cerezci
- Department of Physical Therapy and Rehabilitation, Faculty of Medicine, Üsküdar University, Istanbul, Türkiye,Department of Physical Medicine and Rehabilitation, American Hospital, Istanbul, Türkiye
| | - Rana Cagla Akduman
- Department of Neurology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Defne Ercelen
- Computational and Systems Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gizem Erturk
- Department of Neurology, American Hospital, Istanbul, Türkiye,Department of Healthcare Management, Faculty of Health Sciences, Üsküdar University, Istanbul, Türkiye
| | - Gokay Gulay
- ATIGEN-CELL/Cell and Tissue Center, Trabzon, Türkiye
| | | | - Gizem Boyraz
- Geneis Genetic System Solutions, Istanbul, Türkiye
| | - Berrin Monteleone
- Department of Pediatrics at NYU Long Island School of Medicine, Medical Genetics, Langone Hospital, New York University, Long Island, NY, United States
| | - Zekiye Kural
- Department of Neurology, American Hospital, Istanbul, Türkiye
| | - Hakan Silek
- Department of Neurology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Sibel Temur
- Department of Anesthesia and Reanimation, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Canan Aykut Bingol
- Department of Neurology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| |
Collapse
|
30
|
Lee SH, Choung JS, Kim JM, Kim H, Kim M. Distribution of Embryonic Stem Cell-Derived Mesenchymal Stem Cells after Intravenous Infusion in Hypoxic-Ischemic Encephalopathy. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010227. [PMID: 36676176 PMCID: PMC9861288 DOI: 10.3390/life13010227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Systemic administration of mesenchymal stem cells (MSCs) has been reported to improve neurological function in brain damage, including hypoxic-ischemic encephalopathy (HIE), though the action mechanisms have not been fully elucidated. In this study, the cells were tracked live using a Pearl Trilogy Small Animal fluorescence imaging system after human embryonic stem Cell-Derived MSCs (ES-MSCs) infusion for an HIE mouse model. ES-MSC-treated HIE mice showed neurobehavioral improvement. In vivo imaging showed similar sequential migration of ES-MSCs from lungs, liver, and spleen within 7 days in both HIE and normal mice with the exception of lungs, where there was higher entrapment in the HIE 1 h after infusion. In addition, ex vivo experiments confirmed time-dependent infiltration of ES-MSCs into the organs, with similar findings in vivo, although lungs and brain revealed small differences. ES-MSCs seemed to remain in the brain only in the case of HIE on day 14 after the cell infusion. The homing effect in the host brain was confirmed with immunofluorescence staining, which showed that grafted cells remained in the brain tissue at the lesion area with neurorestorative findings. Further research should be carried out to elucidate the role of each host organ's therapeutic effects when stem cells are systemically introduced.
Collapse
Affiliation(s)
- Su Hyun Lee
- School of Medicine, CHA University, Pocheon 13496, Republic of Korea
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam 13488, Republic of Korea
| | - Jin Seung Choung
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea
| | - Jong Moon Kim
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea
| | - Hyunjin Kim
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea
| | - MinYoung Kim
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea
- Correspondence: ; Tel.: +82-31-780-1872
| |
Collapse
|
31
|
Isaković J, Šerer K, Barišić B, Mitrečić D. Mesenchymal stem cell therapy for neurological disorders: The light or the dark side of the force? Front Bioeng Biotechnol 2023; 11:1139359. [PMID: 36926687 PMCID: PMC10011535 DOI: 10.3389/fbioe.2023.1139359] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Neurological disorders are recognized as major causes of death and disability worldwide. Because of this, they represent one of the largest public health challenges. With awareness of the massive burden associated with these disorders, came the recognition that treatment options were disproportionately scarce and, oftentimes, ineffective. To address these problems, modern research is increasingly looking into novel, more effective methods to treat neurological patients; one of which is cell-based therapies. In this review, we present a critical analysis of the features, challenges, and prospects of one of the stem cell types that can be employed to treat numerous neurological disorders-mesenchymal stem cells (MSCs). Despite the fact that several studies have already established the safety of MSC-based treatment approaches, there are still some reservations within the field regarding their immunocompatibility, heterogeneity, stemness stability, and a range of adverse effects-one of which is their tumor-promoting ability. We additionally examine MSCs' mechanisms of action with respect to in vitro and in vivo research as well as detail the findings of past and ongoing clinical trials for Parkinson's and Alzheimer's disease, ischemic stroke, glioblastoma multiforme, and multiple sclerosis. Finally, this review discusses prospects for MSC-based therapeutics in the form of biomaterials, as well as the use of electromagnetic fields to enhance MSCs' proliferation and differentiation into neuronal cells.
Collapse
Affiliation(s)
- Jasmina Isaković
- Omnion Research International, Zagreb, Croatia.,Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Klara Šerer
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Barbara Barišić
- University of Zagreb School of Dental Medicine, Zagreb, Croatia
| | - Dinko Mitrečić
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia.,Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
32
|
Wang C, Tian C, Cai D, Jiang H, Zhang W, Liu S, Peng L, Hu X. BDNF-overexpressing MSCs delivered by hydrogel in acute ischemic stroke treatment. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1393. [PMID: 36660688 PMCID: PMC9843400 DOI: 10.21037/atm-22-5921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
Background Ischemic stroke treatment is a challenge worldwide. The efficacy and safety of mesenchymal stem cells (MSCs) for stroke have been confirmed. However, poor survival of MSCs in the ischemic environment limits the therapy efficacy. Changes in MSC status in the ischemic environment after transplantation is difficult to monitor. This study aimed to deliver brain-derived neurotrophic factor (BDNF)-overexpressing MSCs by hydrogel (H-B-MSCs) to promote recovery after ischemic stroke. Methods MSCs were transfected with lentivirus carrying luc2 and BDNF cassette. The properties of hydrogel were tested after synthesis with thiolated gelatin (Gel-SH), thiolated hyaluronic acid (HA-SH), and polyethylene glycol diacrylate (PEGDA). Oxygen-glucose deprivation (OGD) test was carried out to confirm the protective effects of hydrogel in the ischemic environment. Three days after stroke induction, H-B-MSCs, hydrogel carrying MSCs (H-MSCs), or phosphate-buffered saline (PBS) was injected into the brains of mice, respectively. Bioluminescence imaging (BLI) was performed at 3, 7, 14, and 21 days post-cell-transplantation to monitor the dynamic status of MSCs. In the meantime, histology, quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), western blot, and behavior tests were carried out at different time points. Results Hydrogel with good biocompatibility was synthesized. Lentivirus transfection significantly increased the expression of BDNF. BDNF-MSCs could be tracked by BLI in vitro. In vitro OGD/reperfusion (OGD/R) test results suggested that MSCs carried by hydrogel could survive longer in an environment with low oxygen and glucose. H-B-MSCs significantly improved functional recovery after ischemic stroke. Furthermore, H-B-MSCs treatment promoted neurogenesis, white matter recovery, and angiogenesis after ischemic stroke. MSC dynamics could be monitored in vivo with BLI. Conclusions We effectively established a robust MSC delivery system with hydrogel. Prolonged survival of transplanted BDNF-MSCs with a hydrogel delivery system could promote the recovery of ischemic stroke via the continuous release of BDNF.
Collapse
Affiliation(s)
- Congxiao Wang
- Department of Interventional Medical Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuan Tian
- Department of Interventional Medical Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Duo Cai
- Medical Animal Lab, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Han Jiang
- Department of Interventional Medical Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Zhang
- Department of Interventional Medical Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shifeng Liu
- Department of Interventional Medical Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijing Peng
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaokun Hu
- Department of Interventional Medical Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Ha GH, Kim EJ, Park JS, Kim JE, Nam H, Yeon JY, Lee SH, Lee K, Kim CK, Joo KM. JAK2/STAT3 pathway mediates neuroprotective and pro-angiogenic treatment effects of adult human neural stem cells in middle cerebral artery occlusion stroke animal models. Aging (Albany NY) 2022; 14:8944-8969. [PMID: 36446389 PMCID: PMC9740376 DOI: 10.18632/aging.204410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
Mismatches between pre-clinical and clinical results of stem cell therapeutics for ischemic stroke limit their clinical applicability. To overcome these discrepancies, precise planning of pre-clinical experiments that can be translated to clinical trials and the scientific elucidation of treatment mechanisms is important. In this study, adult human neural stem cells (ahNSCs) derived from temporal lobe surgical samples were used (to avoid ethical and safety issues), and their therapeutic effects on ischemic stroke were examined using middle cerebral artery occlusion animal models. 5 × 105 ahNSCs was directly injected into the lateral ventricle of contralateral brain hemispheres of immune suppressed rat stroke models at the subacute phase of stroke. Compared with the mock-treated group, ahNSCs reduced brain tissue atrophy and neurological sensorimotor and memory functional loss. Tissue analysis demonstrated that the significant therapeutic effects were mediated by the neuroprotective and pro-angiogenic activities of ahNSCs, which preserved neurons in ischemic brain areas and decreased reactive astrogliosis and microglial activation. The neuroprotective and pro-angiogenic effects of ahNSCs were validated in in vitro stroke models and were induced by paracrine factors excreted by ahNSCs. When the JAK2/STAT3 signaling pathway was inhibited by a specific inhibitor, AG490, the paracrine neuroprotective and pro-angiogenic effects of ahNSCs were reversed. This pre-clinical study that closely simulated clinical settings and provided treatment mechanisms of ahNSCs for ischemic stroke may aid the development of protocols for subsequent clinical trials of ahNSCs and the realization of clinically available stem cell therapeutics for ischemic stroke.
Collapse
Affiliation(s)
- Geun-Hyoung Ha
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08513, South Korea
| | - Eun Ji Kim
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08513, South Korea
| | - Jee Soo Park
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Ji Eun Kim
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08513, South Korea
| | - Hyun Nam
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08513, South Korea,Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, South Korea,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Je Young Yeon
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Sun-Ho Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, South Korea
| | - Kyunghoon Lee
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16149, South Korea,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea
| | - Chung Kwon Kim
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08513, South Korea,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea
| | - Kyeung Min Joo
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08513, South Korea,Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea,Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, South Korea,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, South Korea,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16149, South Korea,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
34
|
Asgari Taei A, Khodabakhsh P, Nasoohi S, Farahmandfar M, Dargahi L. Paracrine Effects of Mesenchymal Stem Cells in Ischemic Stroke: Opportunities and Challenges. Mol Neurobiol 2022; 59:6281-6306. [PMID: 35922728 DOI: 10.1007/s12035-022-02967-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 07/17/2022] [Indexed: 10/16/2022]
Abstract
It is well acknowledged that neuroprotective effects of transplanted mesenchymal stem cells (MSCs) in ischemic stroke are attributed to their paracrine-mediated actions or bystander effects rather than to cell replacement in infarcted areas. This therapeutic plasticity is due to MSCs' ability to secrete a broad range of bioactive molecules including growth factors, trophic factors, cytokines, chemokines, and extracellular vesicles, overall known as the secretome. The secretome derivatives, such as conditioned medium (CM) or purified extracellular vesicles (EVs), exert remarkable advantages over MSC transplantation in stroke treating. Here, in this review, we used published information to provide an overview on the secretome composition of MSCs, underlying mechanisms of therapeutic effects of MSCs, and preclinical studies on MSC-derived products application in stroke. Furthermore, we discussed current advantages and challenges for successful bench-to-bedside translation.
Collapse
Affiliation(s)
- Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pariya Khodabakhsh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Ding Z, Jiang N, Yang T, Han H, Hou M, Kumar G, Wu Y, Song L, Li X, Ma C, Su Y. Mapping the research trends of astrocytes in stroke: A bibliometric analysis. Front Cell Neurosci 2022; 16:949521. [PMID: 36159395 PMCID: PMC9492963 DOI: 10.3389/fncel.2022.949521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background Stroke, including ischemic stroke and hemorrhagic stroke, possesses complex pathological mechanisms such as neuroinflammation, oxidative stress and blood-brain barrier damage. Astrocyte functions have been reported during injury, neuroprotection and cell crosstalk. It plays a key role in exacerbating stroke injury, promoting neurological repair and enhancing neuroregeneration. Aim This holistic bibliometric analysis aimed to provide a general overview of the recent advancement and the hotspots in the field of stroke and astrocyte from 2001 to 2021. Materials and methods Publications between 2001 and 2021, related to stroke and astrocyte were retrieved from the Web of Science (WOS) and analyzed in Gephi and VOSviewer. Results In total, 3789 documents were extracted from the WOS databases. The publications showed stable growth since 2001. The United States and China were the most prolific countries and University of California San Francisco and Oakland University were the most influential institutes. The top four most productive journals were Brain Research, Journal of Cerebral Blood Flow and Metabolism, Glia and Journal of Neuroinflammation. Keywords frequency and co-occurrence analysis revealed that the topics related to “micro-RNA”, “toll like receptor”, “neuroinflammation”, “autophagy” and “interleukin” were research frontiers. The field of stroke and astrocyte focused on several aspects, such as the role of astrocytes in the treatment of stroke, metabolic changes in astrocytes, the protective role of apoptosis in astrocytes after oxidative stress injury and neurovascular units. Conclusion This comprehensive bibliometric study provides an updated perspective on the trend of research associated with stroke and astrocyte. It will benefit scientific community to identify the important issues, future directions and provide a novel understanding of stroke pathophysiology, hotspots and frontiers to facilitate future research direction.
Collapse
Affiliation(s)
- Zhibin Ding
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Nan Jiang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Ting Yang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Hongxia Han
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, China
| | - Miaomiao Hou
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yige Wu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Lijuan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xinyi Li
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Cungen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- *Correspondence: Cungen Ma,
| | - Yanbing Su
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Yanbing Su,
| |
Collapse
|
36
|
López-Ornelas A, Jiménez A, Pérez-Sánchez G, Rodríguez-Pérez CE, Corzo-Cruz A, Velasco I, Estudillo E. The Impairment of Blood-Brain Barrier in Alzheimer's Disease: Challenges and Opportunities with Stem Cells. Int J Mol Sci 2022; 23:ijms231710136. [PMID: 36077533 PMCID: PMC9456198 DOI: 10.3390/ijms231710136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and its prevalence is increasing. Nowadays, very few drugs effectively reduce AD symptoms and thus, a better understanding of its pathophysiology is vital to design new effective schemes. Presymptomatic neuronal damage caused by the accumulation of Amyloid β peptide and Tau protein abnormalities remains a challenge, despite recent efforts in drug development. Importantly, therapeutic targets, biomarkers, and diagnostic techniques have emerged to detect and treat AD. Of note, the compromised blood-brain barrier (BBB) and peripheral inflammation in AD are becoming more evident, being harmful factors that contribute to the development of the disease. Perspectives from different pre-clinical and clinical studies link peripheral inflammation with the onset and progression of AD. This review aims to analyze the main factors and the contribution of impaired BBB in AD development. Additionally, we describe the potential therapeutic strategies using stem cells for AD treatment.
Collapse
Affiliation(s)
- Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Mexico City 06800, Mexico
| | - Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Alejandro Corzo-Cruz
- Laboratorio Traslacional, Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
- Correspondence:
| |
Collapse
|
37
|
Sheykhhasan M, Poondla N. Bone marrow mesenchymal stem cell treatment improves post-stroke cerebral function recovery by regulating gut microbiota in rats. World J Stem Cells 2022; 14:680-683. [PMID: 36157909 PMCID: PMC9453271 DOI: 10.4252/wjsc.v14.i8.680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/29/2022] [Accepted: 08/14/2022] [Indexed: 02/07/2023] Open
Abstract
Early intervention with bone marrow mesenchymal stem cells to change the form and function of the gut microbiota may help rats regain neurological function after a stroke.
Collapse
Affiliation(s)
- Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838695, Iran.
| | - Naresh Poondla
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
38
|
Ju DT, Van Thao D, Lu CY, Ali A, Shibu MA, Chen RJ, Day CH, Shih TC, Tsai CY, Kuo CH, Huang CY. Protective effects of CHIP overexpression and Wharton's jelly mesenchymal-derived stem cell treatment against streptozotocin-induced neurotoxicity in rats. ENVIRONMENTAL TOXICOLOGY 2022; 37:1979-1987. [PMID: 35442559 DOI: 10.1002/tox.23544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/08/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Diabetic neuropathy is a common complication of diabetes mellitus, posing a challenge in treatment. Previous studies have indicated the protective role of mesenchymal stem cells against several disorders. Although they can repair nerve injury, their key limitation is that they reduce viability under stress conditions. We recently observed that overactivation of the carboxyl terminus of heat shock protein 70 (Hsp70) interacting protein (CHIP) considerably rescued cell viability under hyperglycemic stress and played an essential role in promoting the beneficial effects of Wharton's jelly-derived mesenchymal stem cells (WJMSCs). Thus, the present study was designed to unveil the protective effects of CHIP-overexpressing WJMSCs against neurodegeneration using in vivo animal model based study. In this study, western blotting observed that CHIP-overexpressing WJMSCs could rescue nerve damage observed in streptozotocin-induced diabetic rats by activating the AMPKα/AKT and PGC1α/SIRT1 signaling pathway. In contrast, these signaling pathways were downregulated upon silencing CHIP. Furthermore, CHIP-overexpressing WJMSCs inhibited inflammation induced in the brains of diabetic rats by suppressing the NF-κB, its downstream iNOS and cytokines signaling nexus and enhancing the antioxidant enzyme system. Moreover, TUNEL assay demonstrated that CHIP carrying WJMSCs suppressed the apoptotic cell death induced in STZ-induced diabetic group. Collectively, our findings suggests that CHIP-overexpressing WJMSCs might exerts beneficial effects, which may be considered as a therapeutic strategy against diabetic neuropathy complications.
Collapse
Affiliation(s)
- Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Dao Van Thao
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Cheng-You Lu
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ayaz Ali
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Tzu-Ching Shih
- Department of Biomedical Imaging and Radiological Science College of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Yen Tsai
- Department of Pediatrics, China Medical University Beigang Hospital, Yunlin, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biological Science & Technology College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Chih-Yang Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
39
|
Dose-Dependent Effects of Intravenous Mesenchymal Stem Cell Transplantation in Rats with Acute Focal Cerebral Ischemia. Bull Exp Biol Med 2022; 173:514-518. [DOI: 10.1007/s10517-022-05573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 11/26/2022]
|
40
|
Chen H, Cao Z, Gu Y, Hermann DM. Editorial: Blood-Brain Barrier Dysregulation and Recovery Following Brain Ischemia: Cellular Constituents, Molecular Mechanisms, and Therapeutic Strategies Enabling Successful Brain Remodeling. Front Cell Neurosci 2022; 16:968425. [PMID: 35875354 PMCID: PMC9297729 DOI: 10.3389/fncel.2022.968425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Hansen Chen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Hansen Chen
| | - Zhijuan Cao
- Department of Neurosurgery, Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, United States
- Zhijuan Cao
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Yong Gu
| | - Dirk M. Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany
- Dirk M. Hermann
| |
Collapse
|
41
|
Brooks B, Ebedes D, Usmani A, Gonzales-Portillo JV, Gonzales-Portillo D, Borlongan CV. Mesenchymal Stromal Cells in Ischemic Brain Injury. Cells 2022; 11:cells11061013. [PMID: 35326464 PMCID: PMC8947674 DOI: 10.3390/cells11061013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/07/2023] Open
Abstract
Ischemic brain injury represents a major cause of death worldwide with limited treatment options with a narrow therapeutic window. Accordingly, novel treatments that extend the treatment from the early neuroprotective stage to the late regenerative phase may accommodate a much larger number of stroke patients. To this end, stem cell-based regenerative therapies may address this unmet clinical need. Several stem cell therapies have been tested as potentially exhibiting the capacity to regenerate the stroke brain. Based on the long track record and safety profile of transplantable stem cells for hematologic diseases, bone marrow-derived mesenchymal stromal cells or mesenchymal stromal cells have been widely tested in stroke animal models and have reached clinical trials. However, despite the translational promise of MSCs, probing cell function remains to be fully elucidated. Recognizing the multi-pronged cell death and survival processes that accompany stroke, here we review the literature on MSC definition, characterization, and mechanism of action in an effort to gain a better understanding towards optimizing its applications and functional outcomes in stroke.
Collapse
Affiliation(s)
- Beverly Brooks
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (D.E.); (A.U.)
| | - Dominique Ebedes
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (D.E.); (A.U.)
| | - Ahsan Usmani
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (D.E.); (A.U.)
| | | | | | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (D.E.); (A.U.)
- Correspondence: ; Tel.: +1-8139743988
| |
Collapse
|
42
|
Post-stroke Impairment of the Blood–Brain Barrier and Perifocal Vasogenic Edema Is Alleviated by Endovascular Mesenchymal Stem Cell Administration: Modulation of the PKCδ/MMP9/AQP4-Mediated Pathway. Mol Neurobiol 2022; 59:2758-2775. [DOI: 10.1007/s12035-022-02761-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022]
|
43
|
The Impact of Cerebral Perfusion on Mesenchymal Stem Cells Distribution after Intra-Arterial Transplantation: A Quantitative MR Study. Biomedicines 2022; 10:biomedicines10020353. [PMID: 35203560 PMCID: PMC8962387 DOI: 10.3390/biomedicines10020353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Intra-arterial (IA) mesenchymal stem cells (MSCs) transplantation providing targeted cell delivery to brain tissue is a promising approach to the treatment of neurological disorders, including stroke. Factors determining cell distribution after IA administration have not been fully elucidated. Their decoding may contribute to the improvement of a transplantation technique and facilitate translation of stroke cell therapy into clinical practice. The goal of this work was to quantitatively assess the impact of brain tissue perfusion on the distribution of IA transplanted MSCs in rat brains. We performed a selective MR-perfusion study with bolus IA injection of gadolinium-based contrast agent and subsequent IA transplantation of MSCs in intact rats and rats with experimental stroke and evaluated the correlation between different perfusion parameters and cell distribution estimated by susceptibility weighted imaging (SWI) immediately after cell transplantation. The obtained results revealed a certain correlation between the distribution of IA transplanted MSCs and brain perfusion in both intact rats and rats with experimental stroke with the coefficient of determination up to 30%. It can be concluded that the distribution of MSCs after IA injection can be partially predicted based on cerebral perfusion data, but other factors requiring further investigation also have a significant impact on the fate of transplanted cells.
Collapse
|
44
|
Nucci MP, Oliveira FA, Ferreira JM, Pinto YO, Alves AH, Mamani JB, Nucci LP, Valle NME, Gamarra LF. Effect of Cell Therapy and Exercise Training in a Stroke Model, Considering the Cell Track by Molecular Image and Behavioral Analysis. Cells 2022; 11:cells11030485. [PMID: 35159294 PMCID: PMC8834410 DOI: 10.3390/cells11030485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
The goal of this study is to see how combining physical activity with cell treatment impacts functional recovery in a stroke model. Molecular imaging and multimodal nanoparticles assisted in cell tracking and longitudinal monitoring (MNP). The viability of mesenchymal stem cell (MSC) was determined using a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and bioluminescent image (BLI) after lentiviral transduction and MNP labeling. At random, the animals were divided into 5 groups (control-G1, and experimental G2-G5). The photothrombotic stroke induction was confirmed by local blood perfusion reduction and Triphenyltetrazolium chloride (TTC), and MSC in the G3 and G5 groups were implanted after 24 h, with BLI and near-infrared fluorescence image (NIRF) tracking these cells at 28 h, 2, 7, 14, and 28 days. During a 28-day period, the G5 also conducted physical training, whereas the G4 simply did the training. At 0, 7, 14, and 28 days, the animals were functionally tested using a cylinder test and a spontaneous motor activity test. MNP internalization in MSC was confirmed using brightfield and fluorescence microscopy. In relation to G1 group, only 3% of cell viability reduced. The G2–G5 groups showed more than 69% of blood perfusion reduction. The G5 group performed better over time, with a progressive recovery of symmetry and an increase of fast vertical movements. Up to 7 days, BLI and NIRF followed MSC at the damaged site, demonstrating a signal rise that could be connected to cell proliferation at the injury site during the acute phase of stroke. Local MSC therapy mixed with physical activity resulted in better results in alleviating motor dysfunction, particularly during the acute period. When it comes to neurorehabilitation, this alternative therapy could be a suitable fit.
Collapse
Affiliation(s)
- Mariana P. Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (M.P.N.); (F.A.O.); (J.M.F.); (Y.O.P.); (A.H.A.); (J.B.M.); (N.M.E.V.)
- LIM44, Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Fernando A. Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (M.P.N.); (F.A.O.); (J.M.F.); (Y.O.P.); (A.H.A.); (J.B.M.); (N.M.E.V.)
| | - João M. Ferreira
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (M.P.N.); (F.A.O.); (J.M.F.); (Y.O.P.); (A.H.A.); (J.B.M.); (N.M.E.V.)
| | - Yolanda O. Pinto
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (M.P.N.); (F.A.O.); (J.M.F.); (Y.O.P.); (A.H.A.); (J.B.M.); (N.M.E.V.)
| | - Arielly H. Alves
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (M.P.N.); (F.A.O.); (J.M.F.); (Y.O.P.); (A.H.A.); (J.B.M.); (N.M.E.V.)
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (M.P.N.); (F.A.O.); (J.M.F.); (Y.O.P.); (A.H.A.); (J.B.M.); (N.M.E.V.)
| | - Leopoldo P. Nucci
- Centro Universitário do Planalto Central, Brasília 72445-020, Brazil;
| | - Nicole M. E. Valle
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (M.P.N.); (F.A.O.); (J.M.F.); (Y.O.P.); (A.H.A.); (J.B.M.); (N.M.E.V.)
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (M.P.N.); (F.A.O.); (J.M.F.); (Y.O.P.); (A.H.A.); (J.B.M.); (N.M.E.V.)
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
45
|
Xu J, Zhang M, Liu F, Shi L, Jiang X, Chen C, Wang J, Diao M, Khan ZU, Zhang M. Mesenchymal Stem Cells Alleviate Post-resuscitation Cardiac and Cerebral Injuries by Inhibiting Cell Pyroptosis and Ferroptosis in a Swine Model of Cardiac Arrest. Front Pharmacol 2021; 12:793829. [PMID: 34955860 PMCID: PMC8696260 DOI: 10.3389/fphar.2021.793829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Following cardiopulmonary resuscitation (CPR), the ensuing cardiac and cerebral injuries contribute to the poor outcome of cardiac arrest (CA) victims, in which the pathogenetic process is possibly driven by cell pyroptosis and ferroptosis. Mesenchymal stem cells (MSCs) have been shown to be a promising strategy for post-resuscitation cardiac and cerebral protection in rat, but its effectiveness in the clinically relevant swine model and the potential protective mechanism remain unknown. The present study was designed to investigate whether MSCs administration could alleviate post-resuscitation cardiac and cerebral injuries through the inhibition of cell pyroptosis and ferroptosis in swine. Twenty-four male domestic swine were randomly divided into three groups: sham, CPR, and MSC. A dose of 2.5×106/kg of MSCs derived from human embryonic stem cells was intravenously infused at 1.5, and 3 days prior to CA. The animal model was established by 8 min of CA and then 8 min of CPR. After resuscitation, cardiac, cerebral function and injury biomarkers were regularly evaluated for a total of 24 h. At 24 h post-resuscitation, pyroptosis-related proteins (NLRP3, ASC, cleaved caspase-1, GSDMD), proinflammatory cytokines (IL-1β, IL-18), ferroptosis-related proteins (ACSL4, GPX4) and iron deposition in the heart, cortex and hippocampus were measured. Consequently, significantly greater cardiac, cerebral dysfunction and injuries after resuscitation were observed in the CPR and MSC groups compared with the sham group. However, the severity of cardiac and cerebral damage were significantly milder in the MSC group than in the CPR group. In addition, the expression levels of NLRP3, ASC, cleaved caspase-1, GSDMD and ACSL4, the contents of IL-1β and IL-18, and the level of iron deposition were significantly higher while the expression level of GPX4 was significantly lower in the heart, cortex and hippocampus in all resuscitated animals compared with the sham group. Nevertheless, MSCs administration significantly decreased post-resuscitation cardiac, cerebral pyroptosis and ferroptosis compared to the CPR group. Our results showed that the administration of MSCs significantly alleviated post-resuscitation cardiac and cerebral injuries in swine, in which the protective effects were related to the inhibition of cell pyroptosis and ferroptosis.
Collapse
Affiliation(s)
- Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Minhai Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Fei Liu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Lin Shi
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Xiangkang Jiang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Chuang Chen
- Department of Emergency Medicine, Zhejiang Hospital, Hangzhou, China
| | | | - Mengyuan Diao
- Department of Intensive Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zafar Ullah Khan
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| |
Collapse
|
46
|
Otero-Ortega L, Gutiérrez-Fernández M, Díez-Tejedor E. Recovery After Stroke: New Insight to Promote Brain Plasticity. Front Neurol 2021; 12:768958. [PMID: 34867756 PMCID: PMC8639681 DOI: 10.3389/fneur.2021.768958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023] Open
Affiliation(s)
- Laura Otero-Ortega
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of Hospital La Paz Institute for Health Research (IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of Hospital La Paz Institute for Health Research (IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain
| | - Exuperio Díez-Tejedor
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of Hospital La Paz Institute for Health Research (IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
47
|
Cell Therapy of Stroke: Do the Intra-Arterially Transplanted Mesenchymal Stem Cells Cross the Blood-Brain Barrier? Cells 2021; 10:cells10112997. [PMID: 34831220 PMCID: PMC8616541 DOI: 10.3390/cells10112997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023] Open
Abstract
Animal model studies and first clinical trials have demonstrated the safety and efficacy of the mesenchymal stem cells' (MSCs) transplantation in stroke. Intra-arterial (IA) administration looks especially promising, since it provides targeted cell delivery to the ischemic brain, is highly effective, and can be safe as long as the infusion is conducted appropriately. However, wider clinical application of the IA MSCs transplantation will only be possible after a better understanding of the mechanism of their therapeutic action is achieved. On the way to achieve this goal, the study of transplanted cells' fate and their interactions with the blood-brain barrier (BBB) structures could be one of the key factors. In this review, we analyze the available data concerning one of the most important aspects of the transplanted MSCs' action-the ability of cells to cross the blood-brain barrier (BBB) in vitro and in vivo after IA administration into animals with experimental stroke. The collected data show that some of the transplanted MSCs temporarily attach to the walls of the cerebral vessels and then return to the bloodstream or penetrate the BBB and either undergo homing in the perivascular space or penetrate deeper into the parenchyma. Transmigration across the BBB is not necessary for the induction of therapeutic effects, which can be incited through a paracrine mechanism even by cells located inside the blood vessels.
Collapse
|
48
|
The Effects of Mesenchymal Stem Cell on Colorectal Cancer. Stem Cells Int 2021; 2021:9136583. [PMID: 34349805 PMCID: PMC8328693 DOI: 10.1155/2021/9136583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract with nonobvious early symptoms and late symptoms of anemia, weight loss, and other systemic symptoms. Its morbidity and fatality rate are next only to gastric cancer, esophageal cancer, and primary liver cancer among digestive malignancies. In addition to the conventional surgical intervention, other therapies such as radiotherapy and chemotherapy and new treatment methods such as biologics and microbiological products have been introduced. As a promising cell therapy, mesenchymal stem cell (MSC) has attracted extensive research attention. MSCs are early undifferentiated pluripotent stem cells, which have the common features of stem cells, including self-replication, self-division, self-renewal, and multidirectional differentiation. MSCs come from a wide range of sources and can be extracted from a variety of tissues such as the bone marrow, umbilical cord, and fat. Current studies have shown that MSCs have a variety of biological functions such as immune regulation, tissue damage repair, and therapeutic effects on tumors such as CRC. This review outlines the overview of MSCs and CRC and summarizes the role of MSC application in CRC.
Collapse
|