1
|
Sze YH, Tse DYY, Zuo B, Li KK, Zhao Q, Jiang X, Kurihara T, Tsubota K, Lam TC. Deep Spectral Library of Mice Retina for Myopia Research: Proteomics Dataset generated by SWATH and DIA-NN. Sci Data 2024; 11:1115. [PMID: 39389962 PMCID: PMC11467338 DOI: 10.1038/s41597-024-03958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
The retina plays a crucial role in processing and decoding visual information, both in normal development and during myopia progression. Recent advancements have introduced a library-independent approach for data-independent acquisition (DIA) analyses. This study demonstrates deep proteome identification and quantification in individual mice retinas during myopia development, with an average of 6,263 ± 86 unique protein groups. We anticipate that the use of a predicted retinal-specific spectral library combined with the robust quantification achieved within this dataset will contribute to a better understanding of the proteome complexity. Furthermore, a comprehensive mice retinal-specific spectral library was generated, encompassing a total identification of 9,401 protein groups, 70,041 peptides, 95,339 precursors, and 761,868 transitions acquired using SWATH-MS acquisition on a ZenoTOF 7600 mass spectrometer. This dataset surpasses the spectral library generated through high-pH reversed-phase fractionation by data-dependent acquisition (DDA). The data is available via ProteomeXchange with the identifier PXD046983. It will also serve as an indispensable reference for investigations in myopia research and other retinal or neurological diseases.
Collapse
Affiliation(s)
- Ying Hon Sze
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hung Hom, Hong Kong
| | - Dennis Yan Yin Tse
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hung Hom, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Bing Zuo
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - King Kit Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Xiaoyan Jiang
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Tsubota Laboratory, Inc., Tokyo, Japan
| | - Thomas Cheun Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hung Hom, Hong Kong.
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, 518052, China.
| |
Collapse
|
2
|
Huang Y, Chen X, Zhuang J, Yu K. The Role of Retinal Dysfunction in Myopia Development. Cell Mol Neurobiol 2023; 43:1905-1930. [PMID: 36427109 PMCID: PMC11412200 DOI: 10.1007/s10571-022-01309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Myopia is a refractive disorder arising from a mismatch between refractive power and relatively long axial length of the eye. With its dramatically increasing prevalence, myopia has become a pervasive social problem. It is commonly accepted that abnormal visual input acts as an initiating factor of myopia. As the first station to perceive visual signals, the retina plays an important role in myopia etiology. The retina is a fine-layered structure with multitudinous cells, processing intricate visual signals via numerous molecular pathways. Accordingly, dopaminergic mechanisms, contributions of rod and cone photoreceptors, myopic structural changes of retinal pigment epithelium (RPE) and neuro-retinal layers have all suggested a vital role of retinal dysfunction in myopia development. Herein, we separately discuss myopia-related retinal dysfunction and current dilemmas by different levels, from molecules to cells, with the hope that the comprehensive delineation could contribute to a better understanding of myopia etiology, indicate novel therapeutic targets, and inspire future studies.
Collapse
Affiliation(s)
- Yuke Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China.
| |
Collapse
|
3
|
Zhang X, Yu X, Wen Y, Jin L, Zhang L, Zhu H, Zhang D, Xie C, Guo D, Tong J, Shen Y. Functions of retinal astrocytes and Müller cells in mammalian myopia. BMC Ophthalmol 2022; 22:451. [PMID: 36418970 PMCID: PMC9686084 DOI: 10.1186/s12886-022-02643-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/27/2022] [Indexed: 11/26/2022] Open
Abstract
Background Changes in the retina and choroid blood vessels are regularly observed in myopia. However, if the retinal glial cells, which directly contact blood vessels, play a role in mammalian myopia is unknown. We aimed to explore the potential role and mechanism of retinal glial cells in form deprived myopia. Methods We adapted the mice form-deprivation myopia model by covering the right eye and left the left eye open for control, measured the ocular structure with anterior segment optical coherence tomography, evaluated changes in the morphology and distribution of retinal glial cells by fluorescence staining and western blotting; we also searched the online GEO databases to obtain relative gene lists and confirmed them in the form-deprivation myopia mouse retina at mRNA and protein level. Results Compared with the open eye, the ocular axial length (3.54 ± 0.006 mm v.s. 3.48 ± 0.004 mm, p = 0.027) and vitreous chamber depth (3.07 ± 0.005 mm v.s. 2.98 ± 0.006 mm, p = 0.007) in the covered eye became longer. Both glial fibrillary acidic protein and excitatory amino acid transporters 4 elevated. There were 12 common pathways in human myopia and anoxic astrocytes. The key proteins were also highly relevant to atropine target proteins. In mice, two common pathways were found in myopia and anoxic Müller cells. Seven main genes and four key proteins were significantly changed in the mice form-deprivation myopia retinas. Conclusion Retinal astrocytes and Müller cells were activated in myopia. They may response to stimuli and secretory acting factors, and might be a valid target for atropine. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-022-02643-0.
Collapse
Affiliation(s)
- Xuhong Zhang
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Xin Yu
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Yingying Wen
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Le Jin
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Liyue Zhang
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Hong Zhu
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Dongyan Zhang
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China ,Department of Ophthalmology, Shaoxing Central Hospital, Shaoxing, 312030 Zhejiang China
| | - Chen Xie
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Dongyu Guo
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Jianping Tong
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Ye Shen
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| |
Collapse
|
4
|
Association of Physical Activity and Sedentary Behaviors with the Risk of Refractive Error in Chinese Urban/Rural Boys and Girls. SUSTAINABILITY 2022. [DOI: 10.3390/su14095539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background: Research shows physical activity (PA) is negatively associated with refractive error, especially outdoor activity. Our study aimed to examine the association of PA levels and sedentary time (SED) with refractive error in boys and girls living in urban and rural areas. Methods: A total of 8506 urban/rural boys and girls (13.5 ± 2.8 years old) in Shaanxi Province, China participated in this study. Questions about PA, SED, outdoor exercises, and digital screen time were asked in the study survey. Non-cycloplegic refractive error was measured by an autorefractor. The differences between sex/area groups have been analyzed by one-way ANOVA. The association of PA/SED with spherical equivalent (SE) and cylinder power was analyzed by general linear regression. The association between PA/SED and the risk of refractive error was determined using the binary logistic regression model. Results: Of the 8506 participants, the prevalence of refractive error was significantly higher in girls and urban students (p < 0.05). Less SED and digital screen time, and more outdoor activity were significantly associated with SE (p < 0.05), respectively. More PA and less SED were significantly associated with lower cylinder power (p < 0.05), respectively. More PA and less SED were significantly associated with lower risks of myopia and astigmatism, respectively (p < 0.05). Conclusions: PA and SED were associated with the risk of refractive error. Maintaining a healthy lifestyle can help to reduce the risk of refractive error in boys and girls.
Collapse
|